$$\vec{d} = \frac{\partial v}{\partial t} \vec{e}_t + \frac{v^2}{\rho_a} \vec{e}_r$$
radius

[= mt Momentum



$$T = \frac{1}{2} m v^2$$

$$0.5 \text{ oz} \left(\frac{1 \text{ lb}}{160\text{ z}}\right) = 0.03125 \text{ lb} = W$$

A 0.5-oz model rocket is launched vertically from rest at time 
$$t = 0$$
 with a constant thrust of 0.9 lb for 0.3 s and no thrust for  $t > 0.3$  s. Neglecting air resistance and the decrease in mass of the rocket, determine  $(a)$  the maximum height  $h$  reached by the rocket,  $(b)$  the time required to reach this maximum height.



$$\frac{0.0312516}{32.27\%} = 4.7 \times 10^{-4} \text{ slugs} = m$$

0.9 - W = W A  $0.4 - 0.03125 = 9.7 \times 10^{-4} A$  0.4 - 0.03125 = 896 % = 2  $1.7 \times 10^{-4}$ 

5 = m 2

$$V = V_b + at$$

$$0^2 = 261^2 + 2(-32.2)(y-40)$$

$$\frac{269^2}{2(37.2)} = y - 90$$

$$\frac{261^{2}}{2(32.2)} + 40 = 9 = 1160 + 1$$

$$t = \frac{269}{32.7} = 8.35 \text{ s}$$

from when the

A light train made up of two cars is traveling at 90 km/h when the brakes are applied to both cars. Knowing that car *A* has a mass of 25 Mg and car *B* a mass of 20 Mg, and that the braking force is 30 kN on each car, determine (*a*) the distance traveled by the train before it comes to a stop, (*b*) the force in the coupling between the cars while the train is slowing down.



30 060 T30000 = 45 000 a

$$\frac{60000}{95000} = 1.33 \text{ m/s} = a$$

$$\frac{25^2}{2(1.33)} = x = 234 \text{ m}$$



$$F_c = M_{e}e - 30 kN$$
  
= 25000 (1.33) - 30000 = 3250 N

$$\begin{array}{c|c}
\hline
30 & KN \\
\hline
E, & & \\
\hline
\end{array} = \begin{bmatrix}
M_{\text{D}} & K_{\text{D}} \\
\hline
\end{array}$$