The sprocket wheel and chain shown are initially at rest. If the wheel has a uniform angular acceleration of 90 rad/s² counterclockwise, determine (a) the acceleration of point A of the chain, (b) the magnitude of the acceleration of point B of the wheel after 3 s.

$$a = dxr = \begin{vmatrix} i & j & k \\ 0 & 0 & q8 \end{vmatrix} = -4.90i i^{3} + 360i^{3}$$

$$= 360i - 791.6 \times 10^{3} i i \frac{1}{52}$$

$$= 360i - 791.6 \times 10^{3} i i \frac{1}{52}$$

$$= 360i - 791.6 \times 10^{3} i i \frac{1}{52}$$

$$= 360i - 791.6 \times 10^{3} i i \frac{1}{52}$$

$$= 360i - 791.6 \times 10^{3} i i \frac{1}{52}$$

$$wx(vxr) = \begin{cases} i & j & k \\ 0 & 0 & 276 \\ 0 & 1086 \end{cases} = -270.1080i = -211.6x10^{\frac{3}{2}}i & i\frac{1}{52}$$

Plane motion

$$\vec{V}_{B} = \vec{V}_{A} + \vec{V}_{B/A}$$

$$\vec{V}_{B} = \vec{V}_{A} + \omega k \times \vec{F}_{B/A}$$

Translation with A

Rotation about A +

$$\frac{V_b}{V_p} = \pm a h \theta$$

An overhead door is guided by wheels at A and B that roll in horizontal and vertical tracks. Knowing that when $\theta = 30^{\circ}$ the velocity of wheel B is 2 ft/s downward, determine (a) the angular velocity of the door, (b) the velocity of end D of the door.

$$W = \frac{V_{A}}{I \cos \theta}$$

$$W = \frac{V_{B}}{I \cos \theta}$$

$$= \frac{V_{B}}{I \cos \theta} = \frac{V_{B}}{V_{B}} = \frac{Z}{S \sin \theta}$$

$$= \frac{V_{B}}{I \cos \theta} = \frac{Z}{S \sin \theta}$$