GE 207 MECHANICS OF MATERIALS

Big Dig Tunnel, Boston, MA

Lab 07: Creep Test

PROFESSOR CORRIE WALTON-MACAULAY

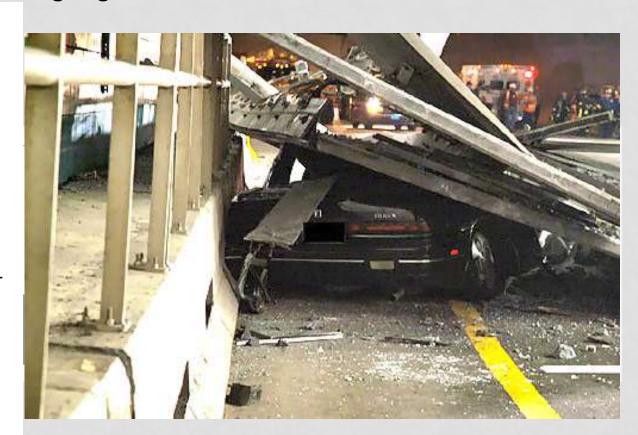
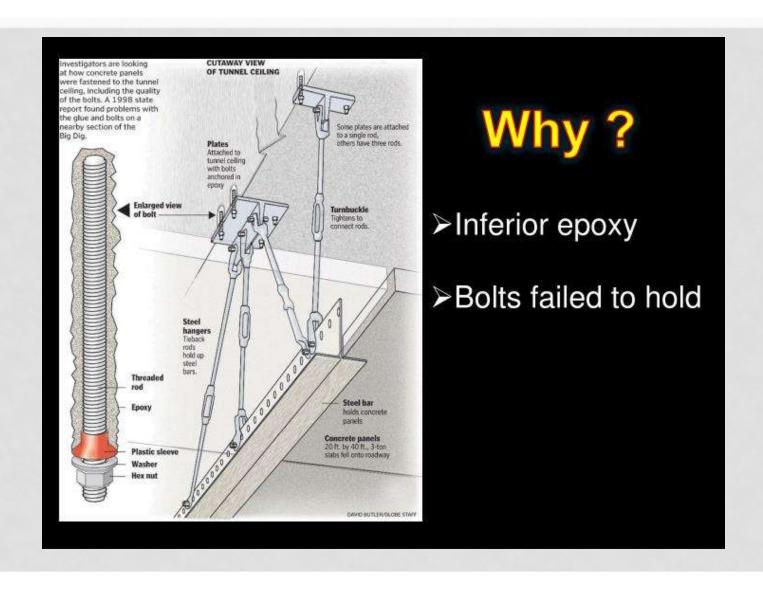


Photo Source: https://www.tunneltalk.com

LECTURE OUTLINE

Recall Concepts (Walton-Macaulay)Creep Test


LECTURE OUTLINE

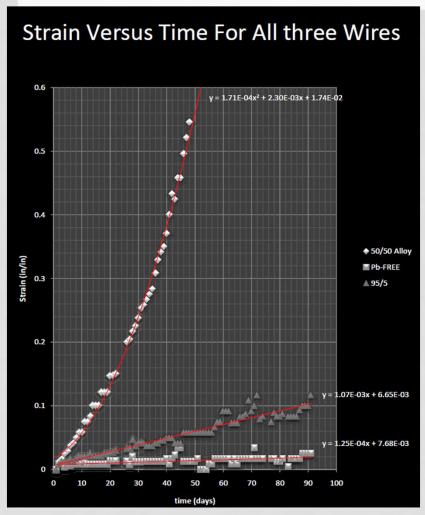
- Shear Force in a Beam
 - Many did not present a table of the reactions
 - How well does the theoretical shear forces predict the behavior of the beam? Not Answered

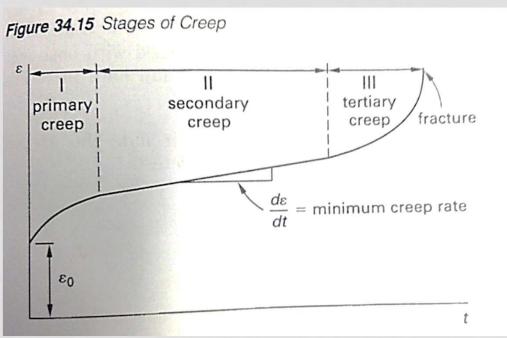
UPCOMING SCHEDULE

DATE	Class Lab	TOPIC	Refere	nce	Repo ¹	
30-Mar	10	Creep			Final	13-Apr
31-Mar					Final	14-Apr
6-Apr	11	Computation/Report Lab / TakeDown Creep Test				
7-Apr						
13-Apr	12	Creep Test Report due				
14-Apr						
20-Apr	13	Course Evaluation				
21-Apr						
27-Apr		No Lab				
28-Apr						

BIG DIG CREEP FAILURE

BIG DIG CREEP FAILURE


Why Bolts Fail?


- Overstress
- Fatigue
- Creep

Why Humans Fail?

- Overstress
- Fatigue
- They become creeps

CREEP TEST

CREEP TEST (AKA CREEP STRAIN)

- Continuous yielding of a material under constant stress
- During creep test: low tensile load of constant magnitude is applied to a specimen
- Strain measured as a function of time

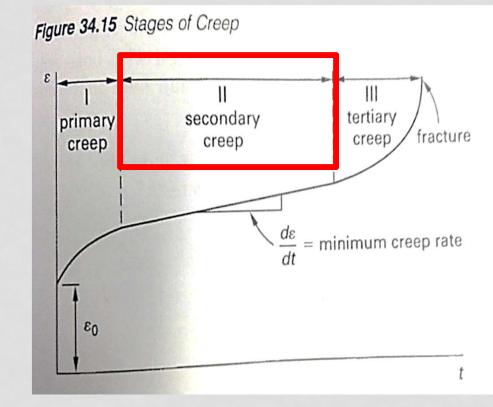
DEFINITION

- Creep strength: stress that results in specific creep rate (usually 0.001% or 0.0001% per hour)
- Rupture strength: stress that results in a failure after a given amount of time
- Creep rate: rate of change of strain over rate of change of time

$$\frac{d\varepsilon}{dt} = creep\ rate$$

THREE STAGES OF CREEP

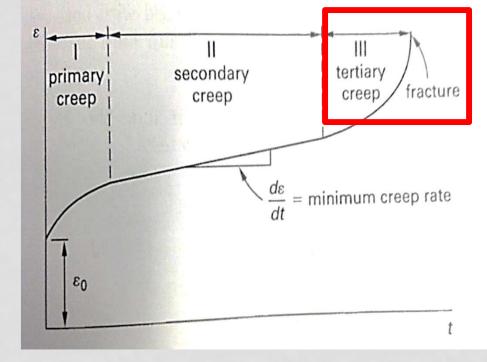
I. Primary Creep


Creep rate decreases since strain hardening occurs at a greater rate than annealing

Strain hardening: dislocation generation and interaction with grain boundaries and other barriers)

Annealing: annihilation of dislocations, climb, cross-slip, and some recrystallization

THREE STAGES OF CREEP


- II. <u>Secondary Creep (aka cold flow)</u>
 - Creep rate is constant;
 - strain hardening and annealing occurring at same time
 - typically, rate is lower than primary and tertiary creep rates
 - Creep rate in secondary creep represented by slope (on log-log scale) is stress and temperature dependent

THREE STAGES OF CREEP

- III. <u>Tertiary Creep (aka cold flow)</u>
 - Specimen begins to "neck down"
 - Ruptureeventually occurs

Figure 34.15 Stages of Creep

RESULTS AND DISCUSSION SECTION

- Graph: Plot a graph of creep strain versus time (in days)
- Are three stages of creep evident in the graph you developed?
 - Label and discuss the three stages of creep (if it is evident)

- Determine values for the provided data
 - E.g. note equation for best fit curve
 - \diamond the R^2 values of the graphs
 - Determine the minimum creep rate (if evident)

RESULTS AND DISCUSSION SECTION

- Consider how variation in temperature might influence the creep strain versus time curve. Was this significant in your actual experiment?
- Do experiments involve "relaxation"?
- Compare 2017 data to 2023 data
 - E.g. note equation for best fit curve
 - \diamond the R^2 values of the graphs
 - How did completeness of data affect the "fitness" of your curve?

REPORT TYPE

- Group report
 - Full Report
 - Abstract
 - Introduction
 - Procedure
 - Results and Discussion
 - Conclusion
 - Reference
 - Apendix