can.exe Exercises for Chapter can

Exercise can.mad

Use the diagram below to answer the following questions and imperatives. Let $I_s = A_0$, where $A_0 \in \mathbb{R}$ is a known constant. Perform a full circuit analysis, including the transient response. The initial inductor current is

 $\mathfrak{i}_L(0)=0.$ (a) Write the elemental, KCL, and KVL

equations. (b) Write the differential equation for $\mathfrak{i}_L(t)$ arranged in the standard form and identify the time constant τ . (c) Solve the differential equation for $\mathfrak{i}_L(t)$

and use the solution to find the output voltage $\nu_o(t).$

Exercise can.theocratically

Use the diagram below to answer the following questions and imperatives. Let $I_s = A_0$, where $A_0 \in \mathbb{R}$ is a known constant. Perform a full circuit analysis, including the transient response. The initial capacitor voltage is $\nu_C(0) = \nu_{C0}$, a known constant.

(a) Write the elemental, KCL, and KVL equations.
(b) Write the differential equation for ν_C(t) arranged in the standard form.

(c) Solve the differential equation for $v_C(t)$. $I_s \qquad \qquad \downarrow i_C \qquad \qquad \downarrow i_R$

For the RC circuit diagram below, perform a complete circuit analysis to solve for $\nu_o(t)$ if $V_S(t)=A \sin \omega t$, where $A\in \mathbb{R}$ is a given amplitude and $\omega\in \mathbb{R}$ is a given angular frequency. Let $\nu_C(t)|_{t=0}=\nu_{C0}$, where $\nu_{C0}\in \mathbb{R}$ is a given initial capacitor voltage. Hint: you will need to solve a differential equation for $\nu_C(t)$.

 $V_s \stackrel{i_R}{\stackrel{i_R}{\longrightarrow}} Cv_o$

Exercise can.fruitarianism

Exercise can.hippophobia

For the circuit diagram below, perform a complete circuit analysis to solve for $v_o(t)$ if $V_s(t) = A \sin \omega t$, where $A \in \mathbb{R}$ is a given amplitude and $\omega \in \mathbb{R}$ is a given angular frequency. Let $\underline{i_L(t)}|_{t=0} = 0$ be the initial inductor current. Hint: you will need to solve a differential equation for $i_L(t)$.

Exercise con.gostrolobium For the circuit diagram below, perform a complete circuit analysis to solve for $v_o(t)$ if $V_s(t) = 0$. Let $v_C(t)|_{t=0} = 5$ V and $dv_C/dt|_{t=0} = 0$ V/s be the initial conditions. Assume the characteristic equation has distinct roots. Recommendation: due to the initial conditions being given in it, solve the differential equation in v_C .

Exercise can.thyroprivic

Exercise con.thyroprivic For the circuit diagram below, perform a complete circuit analysis to solve for $\nu_o(t)$ if $V_s(t) = 3 \sin(10t)$. Let $\nu_C(t)|_{t=0} = 0$ V and $d\nu_C/dt|_{t=0} = 0$ V/s be the initial conditions. Assume the characteristic equation has distinct, complex roots. Recommendation: due to the initial conditions being given in it, solve the differential equation in ν_C . Also, consider which, if any, of your results from Exercise can. apply and re-use them, if so.

$$V_s \stackrel{+}{\overset{-}{\longrightarrow}} Cv$$

Exercise can.hemogenesis

For the circuit diagram below, solve for $\nu_{o}(t)$ if $V_s(t) = A \sin \omega t$, where A = 2 V is the given amplitude and $\omega \in \mathbb{R}$ is a given angular frequency. Let $R = 50 \Omega$, L = 50 mH, and C = 200 nF. Let the circuit have initial conditions $\nu_C(0)=1~V$ and $\mathfrak{i}_L(0)=0$ A. Find the steady-state ratio of the output amplitude to the input amplitude A for $\omega = \{5000, 10000, 50000\}$ rad/s. This circuit is called a low-pass filter—explain why this makes sense. Plot $\nu_o(t)$ in MATLAB, Python, or Mathematica for $\omega = 400 \text{ rad/s}$ (you think this won't be part of the quiz, but it will be!). Hint: either re-write your system of differential-algebraic equations and initial conditions as a single second-order differential equation with initial conditions in the differential variable or re-write it as a system

of two first-order differential equations and solve that. $\begin{matrix} R & L \\ V_s & + \end{matrix} \begin{matrix} C \nu_o \\ - \end{matrix}$

Exercise can.photochromascope

Use the circuit diagram below to answer the following questions and imperatives. Let $I_s = A_0, \text{ where } A_0 > 0 \text{ is a known constant.}$ Perform a full circuit analysis, including the transient response. The initial inductor current is $\mathfrak{i}_L(0) = 0$ and the initial capacitor voltage is $\nu_C(0) = 0$. Assume the damping ratio $\zeta \in (0,1)$; i.e. the system is underdamped and the roots of the characteristic equation are complex.

(a) Write the elemental, KCL, and KVL equations.
 (b) Write the second-order differential equation for i_L(t) arranged in the standard form and identify the natural frequency ω_π and damping ratio ζ.

(c) Convert the initial condition in ν_{C} to a

second initial condition in \mathfrak{i}_L . (d) Solve the differential equation for $\mathfrak{i}_L(t)$ and use the solution to find the output voltage $\nu_o(t)$. It is acceptable to use a known solution and to express your solution in terms of ω_n and ζ .

