Mechanical Engineering

345 – Mechatronics Midterm Exam 1 Cameron Devine

14 October 2021

Directions: take-home, all day, open notes, open book. Calculators, MATLAB, etc. allowed. Use your own paper, work neatly, and clearly mark your answers. Partial credit may be given.

Problem bupsrul

Write a one- or two-sentence response to each of $\frac{10}{10}$ p. the following questions and imperatives. The use of equations is acceptable when they appear in a sentence. Don't quote me (use your own words, other than technical terminology).

a What is the piecewise linear diode model. **b** What are the relationships between input and output voltage and current in a transformer? Why?

c The current through a capacitor becomes zero. What happens to the voltage across the capacitor?

d Explain the how the current from the drain to the source of a MOSFET changes as the gate voltage is varied. Assume the MOSFET is in the saturation region.

e When can we use impedance analysis?

Problem reorientator

Use the circuit diagram below to answer the following questions and imperatives. Let $V_s = A \sin(\omega t)$. Perform a full circuit analysis, including the transient response to find $v_o(t)$. The initial inductor current is $i_{\rm I}\left(0\right)=0$ and the initial capacitor voltage $v_C(0) = 0$.

a Write the elemental, KCL, and KVL

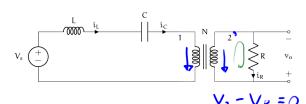
- equations. **b** Write the second-order differential equation for $\nu_{C}(t)$ arranged in the standard form.
- \boldsymbol{c} Convert the initial condition in \mathfrak{i}_L to a second
- initial condition in i_C . $\label{eq:loss_eq} \textbf{d} \ \ \text{Let} \ R = 10 \ \mathrm{k}\Omega, \, L = 100 \ \mathrm{mH}, \, C = 100 \ \mu\mathrm{F}, \, N = 5,$
- A=5~V, and $\omega=500~\frac{\mathrm{rad}}{\mathrm{s}}$ and solve for $\nu_{C}(t)$. **e** Derive an equation to find $v_o(t)$ from $v_C(t)$.
- This equation will include derivatives of $v_C(t)$. You don't need to add your solution to part d into this equation.

$$V_{1} = NV, \quad i_{1} = \frac{1}{N}i_{1} \quad P_{1} = P_{1}$$

$$\frac{dv_{2}}{dt} = \frac{1}{C}i_{1} \quad i_{1} = 0 \quad V_{2} = 0 \quad V_{3} = 0 \quad V_{4} = 0$$

$$i_{1} = 0 \quad i_{2} = 0 \quad V_{4} = 0 \quad V_{5} = 0 \quad V_{6} = 0 \quad V_{7} = 0$$

$$i_{1} = 0 \quad i_{2} = 0 \quad i_{3} = 0 \quad V_{6} = 0 \quad V_{7} = 0 \quad V_{7$$

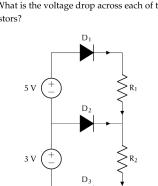

Elevental Ezis

 $V_s = V_L + V_L + V_I$ V2 = VK

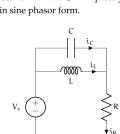
b. $\frac{dv_c}{dt} = \frac{1}{c}i_c = \frac{1}{c}i_L$ $\frac{d^2v_c}{dt^2} = \frac{1}{c}\frac{di_L}{dt} = \frac{1}{Lc}v_L$

 $= \frac{1}{L} ((V_s - V_c - \frac{1}{N} ki_R) = \frac{1}{L} ((V_s - V_c + \frac{1}{N} Ri_2))$

 $= \frac{1}{L_{c}}(V_{s} - V_{c} - V_{i}) = \frac{1}{L_{c}}(V_{s} - V_{c} - \frac{1}{N}V_{i}) = \frac{1}{L_{c}}(V_{s} - V_{c} - \frac{1}{N}V_{R})$

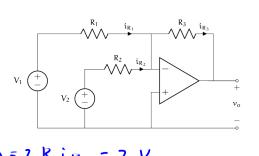


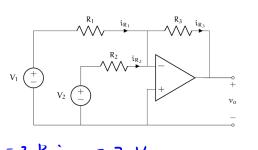
Use the circuit diagram below to answer the following questions. Assume $R_1 = R_2$ and that


 $3 + 5 = V_{\nu_1} + V_{R_1} + V_{R_2} + V_{\nu_3}$ all diodes are ideal.

What state is each diode in?

b What is the voltage drop across each of the




For the circuit diagram below, perform a circuit analysis to solve for the steady state voltage across the resister R, $\nu_R(t).$ Assume $V_s=Ae^{j\frac{\pi}{2}}$ in sine phasor form and $A \in \mathbb{R}$. Express your

Problem kirfunckle

Consider the circuit below with two constant voltage sources V_1 and V_2 . Find the steady state voltage output v_0 , assuming $R_1 = R_2 = R_3$. Hint: start solving with the equation $v_o = -v_{R_3}$.

 $= \frac{1}{1c} (V_s - V_c - \frac{1}{N^2} R i_1) = \frac{1}{Lc} (V_s - V_c - \frac{1}{N^2} R i_c)$ $=\frac{1}{10}\left(V_{r}-V_{c}-\frac{R}{N^{2}}C\frac{dv_{c}}{dt}\right)$ $\frac{d^{1}V_{c}}{LN^{1}} + \frac{R}{LN^{1}} \frac{dV_{c}}{dt} + \frac{1}{Lc}V_{c} = \frac{1}{Lc}V_{s}$ (, i(()) =0 $\frac{dv_{i}}{dt} = \frac{1}{2}i_{i} \qquad \frac{dv_{e}}{dt} = 0$ ℓ . $V_0 = V_R = V_2 = NV_1 = N(V_5 - V_L - V_C)$ = N(V, - L diL - Va) = N(Vs-L dic -ve) = N(Vs-LC dvc - Vc)

in, = in, = in, = in, 3-V_{R1}=V_{P1} 8 = VD1 + VK1 + VR2 + VD7 3-9= VD2 $3 = \bigvee_{R_1} + \bigvee_{R_2}$ $= i_{R_1} R_1 + i_{R_2} R_2$ = R (i)-1 = VD2 < 0 V = R (iR, + iR) = 2 RiR, 10,70 V 10, 70 V 8- VR, = VR,

3 = VP2 + VR2 + VRX

3-4= 4=VR,

Elemental Ezis

VR = R, iR,

VRI=RIGRI

KVL

KCL

assume D, and Dz on

D, 0++

 $V_{p_1} = 0$ $i_{p_2} = 0$ $V_{p_3} = 0$

in time in

(p, = (R)

 $3 = \bigvee_{D_1} + \bigvee_{R_2} + \bigvee_{D_3}$

i R , + i D = [R ,

iR2=103