5.10. In a two-color printing press, two pairs of large printing drums are rotated from a single drive shaft as shown in Fig. 5.29. Each drum pair has total rotary inertia J, and is supported in bearings with a linear rotational drag coefficient B. The drive-shaft sections each have a torsional stiffness K. The system is driven by a motor that may be considered as an angular velocity source. Derive a set of state equations for this system.

Figure 5.29: A rotary drive system.

primary:
$$\Delta_s$$
 ω_{τ_1} ω_{τ_2} τ_{k_1} τ_{k_2} τ_{ll_1} τ_{ll_2}

Secondary: T_s τ_{τ_1} τ_{τ_2} ω_{k_1} ω_{k_2} ω_{ll_1} ω_{ll_2}

State: ω_{τ_1} ω_{τ_1} τ_{t_1} τ_{k_1}

$$\frac{d\omega_{\tau_1}}{dt} = \frac{1}{\tau_1} \tau_{\tau_1}$$

State v_{σ_1} elemental equits

$$\frac{d\tau_{k_1}}{dt} = |\kappa_1| \omega_{k_1}$$

$$\frac{d\tau_{k_1}}{dt} = |\kappa_1| \omega_{k_1}$$

$$T_{i} = T_{k_{1}} - T_{g_{2}}$$

$$T_{i} = T_{k_{1}} - T_{k_{1}} - T_{g_{1}}$$

$$W_{g_{1}} = W_{f_{1}}$$

$$W_{h_{1}} = W_{f_{1}}$$

$$W_{k_{1}} = W_{f_{1}} - W_{f_{1}}$$

$$W_{k_{1}} = W_{f_{1}} - W_{f_{1}}$$

$$W_{k_{1}} = M_{f_{1}} - W_{f_{1}}$$

$$W_{k_{1}} = M_{f_{1}} - W_{f_{1}}$$

~ B2 = B2 ~ B2