Mechanical Engineering

345 – Mechatronics Midterm Exam 1 Cameron Devine

Cameron Devine 14 October 2021

Directions: take-home, all day, open notes, open book. Calculators, MATLAB, etc. allowed. Use your own paper, work neatly, and clearly mark your answers. Partial credit may be given.

Problem bupsrul

Write a one- or two-sentence response to each of the following questions and imperatives. The use of equations is acceptable when they appear in a sentence. Don't quote me (use your own words, other than technical terminology).

- a What is the piecewise linear diode model.
 b What are the relationships between input and output voltage and current in a transformer? Why?
- **c** The current through a capacitor becomes zero. What happens to the voltage across the capacitor?
- **d** Explain the how the current from the drain to the source of a MOSFET changes as the gate voltage is varied. Assume the MOSFET is in the saturation region.
- e When can we use impedance analysis?

Problem reorientator

Use the circuit diagram below to answer the following questions and imperatives. Let $V_s = A\sin(\omega t). \mbox{ Perform a full circuit analysis, including the transient response to find } \nu_o(t). \mbox{ The initial inductor current is } i_L(0) = 0 \mbox{ and the initial capacitor voltage } \nu_C(0) = 0. \label{eq:vc}$

- **a** Write the elemental, KCL, and KVL
- equations. **b** Write the second-order differential equation for $\nu_C(t)$ arranged in the standard form.
- **c** Convert the initial condition in i_L to a second initial condition in i_C.
- **d** Let R = 10 k Ω , L = 100 mH, C = 100 μ F, N = 5, A = 5 V, and ω = 500 $\frac{\text{rad}}{\text{s}}$ and solve for $v_{\text{C}}(t)$.
- **e** Derive an equation to find $v_0(t)$ from $v_C(t)$. This equation will include derivatives of $v_C(t)$. You don't need to add your solution to part **d** into this equation.

$$\frac{dt^2}{dt^2} + 4x10^3 \frac{dV_c}{dt} + 10^5 V_c = 5x10^5 504 (500)$$

$$\lambda = \frac{-4 \times 10^{3} \pm \sqrt{(4 \times 10^{5})^{2} - 4(10^{5})}}{2}$$

$$V_{cp}(t) = C_1 e^{-25t} + C_2 e^{-3775t}$$

$$\frac{A^{2}V_{ch}}{At} = -25\times10^{4} \text{ k, sin (sout)} - 25\times10^{9} \text{ k, cos(sout)}$$

$$V_{c}(t) = V_{c}_{f}(t) + V_{c}_{h}(t)$$

$$= (1e^{-2St} + (2e^{-347St} - 0.0186 \sin(Sout) - 0.749 \cos(Sout))$$

$$\frac{dv_{e}}{dt} = -25 \, C_{1} e^{-25t} - 3475 \, C_{1} e^{-3475t} - 1.3265 \, (500 t) + 125 \, \sin(500 t)$$

$$-25 (_1 - 3175 (_1 - 1.31 = 0)$$

$$(_1 + (_2 - 0.241 = 0)$$

$$C_1 = 0.253$$
 $C_2 = -0.0039$

$$C_1 = 0.253 e^{-25t} - 0.0039 e^{-39.75t} - 0.01865 (500t) - 0.271 (05(500t))$$

$$V_s \stackrel{i_L}{\longleftarrow} V_s \stackrel{i_L}{\longleftarrow}$$

Problem unrectangularization

Use the circuit diagram below to answer the following questions. Assume $R_1=R_2$ and that all diodes are ideal.

a What state is each diode in?b What is the voltage drop across each of the

b What is the voltage drop across each of the resistors?

Problem transidentilationism

For the circuit diagram below, perform a circuit analysis to solve for the steady state voltage across the resister R, $\nu_R(t)$. Assume $V_s = A e^{j \frac{\pi}{2}}$ in sine phasor form and $A \in \mathbb{R}$. Express your answer in sine phasor form.

Problem kirfunckle

Consider the circuit below with two constant voltage sources V_1 and V_2 . Find the steady state voltage output v_o , assuming $R_1 = R_2 = R_3$. Hint: start solving with the equation $v_o = -v_{R_3}$.

