6.17. A permanent magnet dc generator is driven by a line around a pulley of radius r as shown in Figure 6.38. One end of the line is connected to a spring of stiffness K, and the other is attached to a source of known force F(t). The line is taut at all times. The generator is connected to a large capacitor

C. Derive a set of state equations and an output equation for the voltage across the capacitor. You may ignore the inductance of the generator winding but should include the rotor inertia J and the winding resistance R.

Figure 6.38: A line driven electric generator.

Figure 6.38: A line driven electric generator.

$$\begin{bmatrix}
V_{e} \\
i \\
q
\end{bmatrix} = \begin{bmatrix}
K_{A} & 0 \\
0 & -K_{A}
\end{bmatrix} \begin{bmatrix}
N_{i} \\
V_{i}
\end{bmatrix} = \begin{bmatrix}
V & 0 \\
0 & -K_{A}
\end{bmatrix} \begin{bmatrix}
V_{i} \\
F_{i}
\end{bmatrix}$$

From any: F_{S} F_{K} V_{i} V_{i} V_{i} V_{i} V_{i} in V_{i} V_{i} is secondary V_{S} V_{K} F_{i} N_{i} N_{i} V_{K} V_{i} is a secondary V_{S} V_{K} V_{i} $V_$

 $\frac{dv_{k}}{dx} = \frac{1}{7}i_{k}$