RW

14.1. The phase and amplitude relationships between two sinusoidal variables in a dynamic system are important in fields ranging from sound and video signal processing to elements of automated machinery. Many simple dynamic systems with a single energy storage element have a transfer function:

$$H(s) = \frac{Y(s)}{U(s)} = \frac{K}{\tau s + 1}$$

Consider a system with K=2 and $\tau=0.1$ s and with an input $u(t)=5\sin(\omega t)$.

- (a) Derive the frequency response function $H(j\omega)$, and express it in terms of the magnitude and phase functions.
- (b) Determine the steady-state sinusoidal response for input frequencies
 - i. $\omega = 5 \text{ rad/s}$
 - ii. $\omega = 10 \text{ rad/s}$
 - iii. $\omega = 40 \text{ rad/s}$

For each case sketch both u(t) and y(t) on the same graph.

(c) Comment on the influence of increasing frequency on the amplitude and phase of y(t) with

$$w = 5$$
 $y(t) = 5(1.79) sin(5t - 0.46)$
 $w = 10$
 $y(t) = 5(1.41) sin(5t - 0.78)$
 $w = 40$
 $y(t) = 5(0.49) sin(5t - 1.3)$