imp.2port Impedance with two-port elements

1 The two types of energy transducing elements, transformers and gyrators, "reflect" $\,$ or "transmit" impedance through themselves, such that they are "felt" on the other side. 2 For a transformer, the elemental equations

 $\mathcal{V}_2(t) = \mathcal{V}_1(t)/TF \quad and \quad \mathfrak{F}_2(t) = -TF \mathfrak{F}_1(t), \ \ (1)$

the Laplace transforms of which are

 $V_2(s) = V_1(s)/TF$ and $\mathcal{F}_2(s) = -TF\mathcal{F}_1(s)$. (2)

3 If, on the 2-side, the input impedance is Z_3 , as in Fig. 2port.1, the equations of Eq. 2 are subject to the continuity and compatibility equations

 $\mathcal{V}_2=\mathcal{V}_3 \quad \text{and} \quad \mathcal{F}_2=-\mathcal{F}_3.$

Figure 2port.1:

Substituting these into Eq. 2 and solving for \mathcal{V}_1 and \mathcal{F}_1 ,

 $v_1 = \text{TF}v_3$ and $\mathcal{F}_1 = \mathcal{F}_3/\text{TF}$.

The elemental equation for element 3 is $\mathcal{V}_3 = \mathcal{F}_3 Z_3$, which can be substituted into the through-variable equation to yield

$$F_1 = \frac{1}{Z_3 TF} V_3$$

4 Working our way back from V_3 to V_1 , we apply the compatibility equation $\mathcal{V}_2=\mathcal{V}_3$ and the elemental equation $\mathcal{V}_2=\mathcal{V}_1/TF$, as follows:

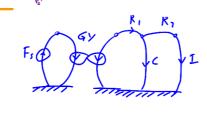
= ZITEZVI Solving for the effective input impedance Z_1 ,

Figure 2port.2:

5 For a gyrator with gyrator modulus GY, in

the configuration shown in Fig. 2port.2, a similar derivation yields the effective input

 $Z_1=GY^2/Z_3. \\$


impedance Z₁,

Example imp.2port-1

 $Z_1 \equiv \frac{\mathcal{V}_1(s)}{\mathcal{F}_1(s)}$ $= TF^2Z_3$.

re: input impedance of fluid system with Draw a linear graph of the fluid system. What transducer

is the input impedance for an input force to the

$$Z_{R_1I} = R_1 + I_s$$

$$Z_{R_1I} c = \frac{I}{\frac{I}{R_1 + I_s}} + C_s = \frac{R_1 + I_s}{I + CR_1 s + CI_s}$$

$$Z_3 = R_1 + \frac{R_2 + L_5}{1 + CR_2 S + CLS^2}$$

$$Z_1 = G \gamma^2 \left(R_1 + \frac{R_2 + I_5}{1 + CR_2 + CI_5^2} \right)$$

$$\frac{V_{s(s)}}{F_{s}(s)} \frac{1}{A^{2}} \left(R_{1} + \frac{R_{2} + I_{s}}{1 + CR_{2} s + CIs^{2}} \right)$$