trans.firsto First—order systems in transient response

1 First order systems have input-output
differential equations of the form
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with T € R called the time constant of the fime constant

system. Systems with a single energy storage

element—such as those with electrical or

thermal capacitance—can be modeled as

first-order.

2 The characteristic equation yields a single

root A = —1/7, so the homogeneous solution y,, hemegeneous selution
for constant k € R, is
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Free response
3 The free response yg, of a system is its free response v

response to initial conditions and no forcing
(f(t) = 0). This is useful for two reasons:

1. perturbations of the system from
equilibrium result in free response and

2. from superposition, the free response can
be added to a forced response to find the
specific response: y(t) = yg(t) + yg(t).
This allows us to use tables of solutions
like Table firsto.1 to construct solutions for
systems with nonzero initial conditions
with forcing.

4 The free response is found by applying
initial conditions to the homogeneous solution.
With initial condition y(0), the free response is

ya(t) =y(0)e™V/T,

which begins at y(0) and decays exponentially
to zero.

Step response

5 In what follows, we develop forced response ~ferced response y,
Y, solutions, which are the specific solution

responses of systems to given inputs and zero zero initial conditions
initial conditions: all initial conditions set to

Zero.

6 If we consider the common situation that

by = 0and u(t) = Kug(t) for some K € R, the

solution to Equation 1 is
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The non-steady term is simply a constant 7 r ’r) - Y, - /‘./ e
scaling of a decaying exponential.
7 A plot of the step response is shown in yf,, (%) = b . 7 », 1 L o7y
Figure firsto.1. As with the free response, within .t
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8 The response to all three singularity inputs
are included in Table firsto.1. These can be
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Figure firsto.1: free and forced responses and their sum for a first order system with input w(t) = Ku, (t), iniial condition y (0), and by = 0.

combined with the free response of Equation 2
using superposition. Results could be described
as bitchin’. bitchin’

Table firsto. 1: first-order system characteristic and total forced responses for singularity inputs. The relevant differential equation is of the standard form Ty +y = f.

u(t)  characteristic response total forced response yg, for t > 0
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Example trans.firsto—1 re: RC-circuit response the easy way

Consider a parallel RC-circuit with input

current Is(t) = 2u(t) A, initial capacitor
voltage v¢(0) = 3 V, resistance R = 1000 Q,
and capacitance C = 1 mF. Proceeding with

the usual analysis would produce the io
differential equation

dve
C—+vc/R=1s.
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Use Table firsto.1 to find v¢(t).
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