trans.firsto First-order systems in transient response

1 First order systems have input-output differential equations of the form

$$\tau \frac{dy}{dt} + y = b_1 \frac{du}{dt} + b_0 u \tag{1}$$
 with $\tau \in \mathbb{R}$ called the time constant of the system. Systems with a single energy storage

system. Systems with a single energy storage element—such as those with electrical or thermal capacitance—can be modeled as first-order. 2 The characteristic equation yields a single

root $\lambda = -1/\tau$, so the homogeneous solution y_h ,

Yh(t)=ke-tx

Free response

for constant $\kappa \in \mathbb{R}$, is

3 The free response y_{fr} of a system is its response to initial conditions and no forcing (f(t) = 0). This is useful for two reasons:

- 1. perturbations of the system from equilibrium result in free response and
- 2. from superposition, the free response can be added to a forced response to find the $specific \ response: y(t) = y_{fr}(t) + y_{fo}(t).$ This allows us to use tables of solutions like Table firsto.1 to construct solutions for systems with nonzero initial conditions with forcing.
- 4 The free response is found by applying initial conditions to the homogeneous solution. With initial condition y(0), the free response is

$$y_{fr}(t) = y(0) e^{-t/\tau},$$
 (2)

which begins at y(0) and decays exponentially to zero.

Step response

5 In what follows, we develop forced response forced response y_{fo} y_{fo} solutions, which are the specific solution responses of systems to given inputs and zero zero initial conditions

initial conditions: all initial conditions set to 6 If we consider the common situation that

 $\mathfrak{b}_1=0$ and $\mathfrak{u}(t)=K\mathfrak{u}_s(t)$ for some $K\in\mathbb{R}$, the solution to Equation 1 is

40(t) = Kb. (1-e-+/()

The non-steady term is simply a constant scaling of a decaying exponential. 7 A plot of the step response is shown in Figure firsto.1. As with the free response, within 5τ the transient response is less than 1% of the

difference between y(0) and steady-state.

Impulse and ramp responses

8 The response to all three singularity inputs are included in Table firsto.1. These can be

 $\textbf{Figure firsto.1:} \ \text{free and forced responses and their sum for a first order system with input} \ u(t) = Ku_s(t), \ \text{initial condition} \ y(0), \ \text{and} \ b_1 = 0.$

combined with the free response of Equation $\boldsymbol{2}$ using superposition. Results could be described

as bitchin'.

 $\textbf{Table firsto.1:} \ \ \text{first-order system characteristic and total forced responses for singularity inputs.} \ \ \text{The relevant differential equation is of the standard form} \ \tau \dot{y} + y = f.$

$\mathfrak{u}(t)$	$ characteristic \ response \\ f(t) = u(t) $	total forced response y_{fo} for $t\geqslant 0$ $f(t)=b_1\dot{u}+b_0u$
$\delta(t)$	$\frac{1}{\tau}e^{-t/\tau}$	$\frac{b_1}{\tau}\delta(t) + \left(\frac{b_0}{\tau} - \frac{b_1}{\tau^2}\right)e^{-t/\tau}$
$\mathfrak{u}_s(t)$	$1-e^{-t/\tau}$	$b_0 - \left(b_0 - \frac{b_1}{\tau}\right) e^{-t/\tau}$
$\mathfrak{u}_{r}(t)$	$t - \tau (1 - e^{-t/\tau})$	$b_0 t + (b_1 - b_0 \tau)(1 - e^{-t/\tau})$

Example trans.firsto-1

re: RC-circuit response the easy way

Consider a parallel RC-circuit with input current $I_S(t) = 2u_s(t)$ A, initial capacitor voltage $v_C(0) = 3$ V, resistance R = 1000 Ω , and capacitance C = 1 mF. Proceeding with the usual analysis would produce the io differential equation

$$C\frac{d\nu_C}{dt} + \nu_C/R = I_S.$$
 Use Table firsto.1 to find $\nu_C(t).$

$$C \frac{dv_0}{dt} + \frac{V_0}{R} = I_S$$

$$RC \frac{dv_0}{dt} + V_0 = RI_S$$

$$T = RC \qquad b_1 = 0 \qquad b_n = R$$

$$y_{tr}(t) = y(0) e^{-t} = 3e^{-t} r$$

$$T(t) = U_S(t)$$

$$y_r = 1 - e^{-t} r$$

$$T(t) = 2R U_S(t)$$

$$y_{to} = 2R y_r = 2R(1 - e^{-t} r)$$

$$y(t) = y_{t_0}(t) + y_{t_0}(t)$$

$$= 3e^{-t/r} + 2R(1-e^{-t/r})$$

$$= 3e^{-t/r} + 2R - 2Re$$

$$= 2R + (3-2R)e^{-t/r}$$