imp.ip Input impedance and admittance

1 We now introduce a generalization of the familiar impedance and admittance of electrical circuit analysis, in which system behavior can be expressed algebraically instead of differentially. We begin with generalized input impedance. 2 Consider a system with a source, as shown in Fig. ip.1. The source can be either an acrossor a through-variable source. The ideal source specifies either \mathcal{V}_{in} or \mathcal{F}_{in} , and the other variable

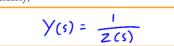
$$Z_{c} = \frac{1}{i v_{c}}$$

$$Z_{c} = \frac{1}{c_{s}}$$

depends on the system. 3 Let a source variables have Laplace transforms $\mathcal{V}_{in}(s)$ and $\mathfrak{F}_{in}(s).$ We define the system's input impedance Z and input admittance Y to be the Laplace-domain ratios

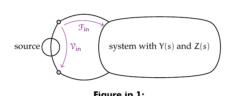
$$Z(s) = \frac{V_{\text{in}}(s)}{\mathcal{F}_{\text{in}}(s)} \quad \text{and} \quad Y(s) = \frac{\mathcal{F}_{\text{in}}(s)}{V_{\text{in}}(s)}. \tag{1}$$

4 Note that Z and Y are system properties, not system properties



Both Z and Y can be considered transfer functions: for a through-variable source \mathcal{F}_{in} , the impedance Z is the transfer function to across-variable $\boldsymbol{\nu}_{in}\text{;}$ for an across-variable source \mathcal{V}_{in} , the admittance Y is the transfer function to through-variable \mathcal{F}_{in} . Often, however, we use the more common impedance Z to characterize systems with either type of source.

properties of the source. An impedance or



admittance can characterize a system of interconnected elements, or a system of a single element, as the next section explores.

Impedance of ideal passive elements

5 The impedance and admittance of a single, ideal, one-port element is defined from the Laplace transform of its elemental equation.

Generalized capacitors A generalized capacitor has elemental equation

$$\frac{\mathrm{d}\mathcal{V}_{\mathrm{C}}(\mathsf{t})}{\mathrm{d}\mathsf{t}} = \frac{1}{\mathrm{C}}\mathcal{F}_{\mathrm{C}}(\mathsf{t}),\tag{2}$$

$$sV_{C}(s) = \frac{1}{C}\mathcal{F}_{C}(s),$$

which can be solved for impedance $Z_C = \mathcal{V}_C/\mathcal{F}_C$ and admittance $Y_C = \mathcal{F}_C/\mathcal{V}_C$:

$$Z_c(s) = \frac{1}{cs} \quad \gamma_c(s) = cs$$

Generalized inductors A generalized inductor has elemental equation

 $s\mathcal{F}_{L}(s) = \frac{1}{L}\mathcal{V}_{L}(s),$

which can be solved for impedance
$$Z_L=\mathcal{V}_L/\mathcal{F}_L \text{ and admittance } Y_L=\mathcal{F}_L/\mathcal{V}_L :$$

$$Z_{\ell}(s) = Ls$$
 $Y_{\ell}(s) = \frac{L}{Ls}$

Generalized resistor A generalized resistor generalized resistor has elemental equation

 $V_R(t) = \mathcal{F}_R(t)R$

 $V_{R}(s) = \mathcal{F}_{R}(s)R,$

$$Z_R = V_R/\mathcal{F}_R$$
 and admittance $Y_R = \mathcal{F}_R/V_R$:
$$Z_R = R \qquad Y_R = Y_R$$

6 For a summary of the impedance of one-port elements, see Table els.1.

Impedance of interconnected elements

7 As with electrical circuits, impedances of linear graphs of interconnected elements can be combined in two primary ways: in parallel or in series.

8 Elements sharing the same through-variable

are said to be in series connection. N elements connected in series $o_{Z_1} o_{Z_2} o_{Z_3} \cdots$ have equivalent impedance Z and admittance Y:

$$N = z$$

$$y(s) = \frac{1}{1 + 1}$$

 $Z(s) = \sum_{i=1}^N Z_i(s) \quad \text{and} \quad Y(s) = 1 \Bigg/ \sum_{i=1}^N 1/Y_i(s)$

9 Conversely, elements sharing the same across-variable are said to be in parallel connection. N elements connected in parallel

where equivalent impedance Z and admittance Y:
$$Z(s) = 1 \bigg/ \sum_{i=1}^N 1/Z_i(s) \quad \text{ and } \quad Y(s) = \sum_{i=1}^N Y_i(s).$$

re: input impedance of a simple circuit input impedance.