imp.2port Impedance with two-port elements

1 The two types of energy transducing elements, transformers and gyrators, "reflect" or "transmit" impedance through themselves, such that they are "felt" on the other side. 2 For a transformer, the elemental equations

 $V_2(t) = V_1(t)/TF$ and $F_2(t) = -TFF_1(t)$, (1)

the Laplace transforms of which are

 $\mathcal{V}_2(s) = \mathcal{V}_1(s)/TF$ and $\mathcal{F}_2(s) = -TF\mathcal{F}_1(s)$. (

3 If, on the 2-side, the input impedance is Z_3 , as in Fig. 2port.1, the equations of Eq. 2 are subject to the continuity and compatibility

 $\mathcal{V}_2=\mathcal{V}_3 \quad \text{and} \quad \mathcal{F}_2=-\mathcal{F}_3.$

Figure 2port.1:

Substituting these into Eq. 2 and solving for $\ensuremath{\mathcal{V}}_1$

 $v_1 = TFv_3$ and $\mathcal{F}_1 = \mathcal{F}_3/TF$.

The elemental equation for element 3 is $\mathcal{V}_3=\mathcal{F}_3Z_3,$ which can be substituted into the through-variable equation to yield

4 Working our way back from V_3 to V_1 , we apply the compatibility equation $\mathcal{V}_2=\mathcal{V}_3$ and the elemental equation $V_2 = V_1/TF$, as follows:

Solving for the effective input impedance Z_1 ,

 $Z_1=GY^2/Z_3. \\$

 $Z_1 \equiv \frac{\mathcal{V}_1(s)}{\mathcal{F}_1(s)}$ $= TF^2Z_3$.

5 For a gyrator with gyrator modulus GY, in the configuration shown in Fig. 2port.2, a similar derivation yields the effective input impedance Z₁.

Figure 2port.2:

Draw a linear graph of the fluid system. What transducer is the input impedance for an input force to the $Z_{R_{1}} = Z_{R_{1}} + Z_{I}$ $Z_{R_{1}} = Z_{R_{1}} + Z_{I}$ $Z_{R_{2}} = \frac{1}{Z_{R_{1}} + Z_{I}}$ $Z_{R_{2}} = \frac{1}{Z_{R_{1}} + Z_{I}}$ $Z_{R_{3}} = \frac{1}{Z_{R_{1}} + Z_{I}}$ $Z_{R_{3}} = \frac{1}{Z_{R_{3}} + Z_{I}}$

 $Z_{3} = Z_{R_{1}} + \frac{1}{\frac{1}{Z_{R_{2}} + Z_{I}} + \frac{1}{Z_{c}}} = R_{1} + \frac{1}{\frac{1}{R_{1} + I_{5}} + C_{5}} = R_{1} + \frac{R_{1} + I_{5}}{1 + R_{1}C_{5} + CI_{5}^{2}} = \frac{R_{1} + R_{1}R_{2}C_{5} + R_{1}CI_{5}^{2} + R_{2} + I_{5}}{1 + R_{2}C_{5} + CI_{5}^{2}}$

$$Z_1 = 6y^2 / Z_3 = \frac{1}{A^2} \frac{1 + R_1 C_5 + IC_5^2}{R_1 R_2 C_5 + R_1 + R_1 C_1 S_1 + R_2 + I_5} = \frac{V_5}{F_5}$$