trans.exact Exact analytical trans response char of first— and second—order sys

First-order systems without zeros

A first-order system without zeros has a transient response characterized by a time-constant $\boldsymbol{\tau}$ that appears in the general response as

 $_e^{-t/\tau} + __.$

The transient exponential decays such that in three time constants $\underline{3\tau}$ only $\underline{5}~\%$ of the term remains; in 5τ , less than 1%. There is neither peak nor overshoot for this type 1 - 6 % of response. However, the rise time for these systems is found by solving the time-domain differential equation

 $\tau \dot{y}(t) + y(t) = k u(t)$

with output variable y, input variable u, and real constant k. It is easily shown that the solution to Eq. 2 in Eq. 2 is, for a unit step input,

 $y(t) = k \left(1 - e^{-t/\tau} \right),$

from which we discover that the steady-state value is

$$y_{ss} = \lim_{t \to \infty} y(t)$$

$$= k.$$
(4a)

The rise time is, by definition, the duration of the time interval $[t_1,t_2]$ such that

$$y(t_1) = 0.1y_{ss}$$
 to (5a)

 $y(t_2) = 0.9y_{ss}$.

The first of these yields

$$k\left(1 - e^{-t_1/\tau}\right) = 0.1k \Rightarrow \tag{6}$$

$$t_1 = -\tau \ln 0.9 \tag{6}$$

 $\approx 0.1054\tau$. Solving in an analogous fashion, we find $t_2\approx 2.3026\tau.$ The interval, then, is

 $t_2 - t_1 = 2.1972\tau. \\$

Tr= 7 In 1 = 2.2 ~

Finally, the settling time can be derived in a fashion similar to the rise time.

Ts = - 7 In 0.02 = 3.97

Second-order systems without zeros

Second-order system transient responses are characterized by a natural (angular) frequency ψ_n and damping ratio? This below the second-order system transient responses are ω_n and damping ratio $\zeta.$ It is helpful to recall the complex-plane graphical representation of the pole-zero plot for a second-order system without zeros, as shown in Fig. exact.1. Following a procedure very similar to that for first-order systems, the following relationships can be derived.

The rise time $T_{\rm r}$ does not have an analytical solution in terms of ω_n and ζ . However, Fig. exact.2 shows numerical solutions for $T_{\scriptscriptstyle T}$ scaled by ω_n for $\zeta \in (0,1)$. The peak time $T_{\rm p}$ has the following, simple

expression

where $\omega_d = \omega_n \sqrt{1-\zeta^2}$ is the damped natural

The percent overshoot %OS is related directly to

Figure exact.1: the relationship between the pole-zero plot of a second-order system with no zeros and ω_n and $\zeta.$

 $\begin{tabular}{lll} \textbf{Figure exact.2:} & the relationship between rise time, natural frequency, and damping ratio. \end{tabular}$

 ζ as follows

$$\% OS = 100 \exp \frac{-\zeta \pi}{\sqrt{1 - \zeta^2}} \Leftrightarrow (100 \exp \frac{-\ln(\% OS/100)}{\sqrt{\pi^2 + \ln^2(\% OS/100)}}.$$

Finally, the settling time $T_{\text{\tiny S}}$ is expressed as

$$T_s = \frac{4}{\zeta \omega_n}.$$