03.L Lab Exercise: Low—-level character io

Objectives
In this exercise you will gain experience with:

1. The keypad and LCD display.

2. Code requirements for character I/O of a
custom embedded computing application.

3. On-line debugging techniques.

Introduction

In this lab you will write the lowest-level
routines for character I/O for our keypad and
LCD display. They are the putchar_lcd
function and the getkey function called from
getchar_keypad in Lab Exercise 02, as shown in
the following function structure.

doublle_in (Lab 01) prompts LCD and returns keypad double

— fgets_keypad (Lab 02) gets string from keypad

L@ab 02) gets char from keypad

h.ab 03) gets char from keypad « this Igb!

Y.ab 03) prints char to LCD <« thig lab!

[
Q"intf_lcd ;Lab 01) prints string to LCD
@b 03) prints char to LCD «- this lal

+ vsnprintf (Lab 01) assigns to formatted string

(— sscanf (Lab 01) converts ASCII to binary

— strstr (Lab 01) find string in string

\— strpbrk (Lab 01) find member in string

Pre-loboratory preparation

Two functions, in addition to main, must be
written in the exercise.

Part #1: character output: writing putchar_icd

The function putchar_lcd puts a single
character on the LCD display. The character
may be any in the ASCII code or any of the
escape sequences described in Lab Exercise 01
(If, Iv, In, ). The prototype of the
putchar_lcd function is

int putchar_lcd(int value);

where the argument (value) is the character to
be sent to the display. If the input value is in the
range [0, 255] then the returned value is also
equal to the input value. If the input value is
outside that range then an error is indicated by
returning EQF.

Your version of putchar_lcd will replace that in
the me477 library. Calls to putchar_lcd might
be

ch = putchar_lcd('m'); // or
— e
putchar_led('\n');

Serial data is sent to the LCD display through a
Universal Asynchronous Receiver/Transmitter
(UART). Write the putchar_lcd to perform four
functions:

1. Initialize the UART the first time that
putchar_lcdis called.

2. Send a character to the display or send a
decimal code to the display to implement
an escape sequence.

3. Check for the success of the UART write.

4. Return the EOF error code, if appropriate.
Otherwise, return the character to the

calling program.

uart.name = "ASRL2::INSTR"; // UART on Connector B

uart.defaultRM = O; // def. resource manager A

uart.session = 0; // session reference

status = Uart_Open( &mart, // port information
19200, // baud rate C
8, // no. of data bits
Uart_StopBits1_0, // I stop bit D
Uart_ParityNone); // No parity

Listing 03.1: initializing the UART.

The UART must be initialized once before any i
data is passed to the display. It is initialized 76+ 6- 127 A 5S¢ I.I
through the Uart_Open function that sets B b v 90 - 15¢

appropriate myRIO control registers to define

the operation of the UART. The initialization

may be accomplished as shown in Listing 03.1,

where uart (type: static MyRio_Uart)is a port
information structure, and the returned value is
assigned to status (type: NiFpga_Status). The
macros Uart_StoEBitsi_(m____—
Uart_ParityNone are defined in UART . h. You
must #include UART.h in your code.

Perform this UART initialization just once, and
immediately return EQF from putchar_lcd if
status is less than the VI_SUCCESS macro.
Escape sequences, received as the argument of
putchar_lcd, control the cursor position and
the function of the LCD display. They are
implemented by sending the escape sequences
o

Arguments of putchar_lcd, in the range of 0 to
127, are sent to the display where they are
interpreted as the corresponding ASCII
characters. Other arguments, in the range 128 to
255 are used for special control functions of this
display.

Both escape sequences and ASCII characters are
sent to the display using the Uart Write
function. A typical call would be as shown in
Listing 03.2, where uart is the port information
structure defined during the initialization,
writeS (type: uint8_t) is an array containing

status = Uart_Write( &uart, // port information
writeS, // data array
nData); // no. of data codes

Listing 03.2: writing to the UART.

the data to be written, and nData (type: size_t)
indicates the number of elements in writeS.
Again, return EOF if status is less than the
VI_SUCCESS. Under normal operation (no
errors), return the input character to the calling
program.

See Algorithm L.1 for putchar_lcd pseudocode.

Part #2: keypad input: writing getkey

You will write the getkey function, which waits
for a key to be depressed on the keypad, and
returns the character code corresponding to that
key. The prototype of the getkey function is

char getkey(void); ‘

Your version of getkey will replace that in the C
library. A call to getkey might be:

key = getkey(); ‘

The keypad is a matrix of switches. When
pressed, each switch uniquely connects a row
conductor to a column conductor. The row and
column conductors are connected to eight
digital I/O channels of connector-B
(DIO-0-DI0-7) of the myRio as shown in

Fig. L.1.

Each channel may be programmed to operate as
either a digital input or an output. As an output,
the channel operates with low output
impedance as it asserts either a high or a low
voltage at its terminal. Programmed as an
input, the channel has high input impedance
("Hi-Z mode”) as it detects either a high or a
low voltage.

Algorithm L1 buffered putchar_lcd

pseudocode
function putchar_led(c) » ¢ is ASCII character
code
initialize variables > include
static int 4First=1
if iFirst==1 then > first call!

initialize UART (Listing 03.1) > status
Uart_open(...)
if status < VI_SUCCESS then

return EOF
end if . N _ 0
end if | F WS o
n«1 > assume n (data points) is 1
ifc == mf mthen > clear display,
backlight on
S[0] «+ 17 > Sis uint8_t array
S[1] « 12
n««2 > n actually 2 in this case
elseif ¢ == b D then - cursor backspace
S[0] « 8
elseif ¢ == v Dthen > cursor line-0
S[0] « 128
elseif ¢ == lﬂ then > cursor line-1
S[0] «+ 148
elseif ¢ == 2|] then > cursor line-2
S[0] + 168
elseif ¢ == 3|] then > cursor line-3
S[0] «+ 188
elseif ¢ == n Dthen > cursor to next
line
S[0] «+ 13
elseif ¢ > 255 then > outside range
return EOF
else > send ascii code
S[0] « ccastasuint8_t o castsyntax
(uint8_t) c¢
end if

write S to UART (Listing 03.2) » status <
Uart_Write(...)
if status < VI_SUCCESS then

return EOF
else
return ¢ 33 V4
end if
end function
T o oh 077
el <] [x]  [%l
= = = s D T 0 g T 0 7
1 2 3 upP —
_L—n _I_—c _I_—c _I_—c / a —0—
[DIo-4 —4- — & —

9
B3
=
i

|>J:-
|_U'|

6
-4 B AR I
[DIO-5 >—4— b  —
9
L

[Dlo6)>——F &3 & 2 & =

[DIO-7 >—4-

Figure L.1: keypad dircuif. 33 v
How will we detect if a key is depressed? 4 0 K-—“- 3
Briefly, this is accomplished by driving (as H I = Z
output) one column to low voltage (digital DI 2

false), with the other columns channels in Hi-Z

> 3.3V
mode. Then, all of the rows are scanned
(detected). If a row is found to be low, the key
connecting that row to the driven column must Te lc 4
be depressed. This procedure is repeated for D l— ) L o
each column. The entire process is repeated

until a key is found.

Essential to this scheme is that a pull-up resistor

is connected between each channel and the high

voltage.3 So, unless a row is connected (through 3. The NI myRIO-1900 User Guide and Specifications describes the DIO
. as having built-in 40 KQ pull-up resistors to 3.3 V (Instruments, 2013,

a key) to a low-impedance, low-voltage column, 1),

it will always read high.

Strategy A strategy for getkey is shown in the
pseudocode Algorithm L.2.

Channel initialization The MyRio_Dio
structure, defined inDIO.h, identifies the
control registers and the bit to read or write for
a channel.

typedef struct { uint32_t dir; // direction register
uint32_t out; // output value regisfer

uint32_t in; // input value registpr

Algorithm L.2 getkey pseudocode

function getkey
initialize the 8 digital channels
while a low bit not detected do
for each column do
for each column do
set column to Hi-Z
end for
set one column low
for each row do
read bit
if bit is low then
break row loop
end if
end for
if bit is low then
break out of column loop
end if
end for
wait for some msec
end while
while row is still down do
{ wait for some msec
end while
identify key from row, column in table
return key
end function

uint8_t bit; // Bit to modify
} MyRio_Dio;

Declare an array of MyRio_Dio structures, one
element for each of the 8 necessary channels. In
a loop initialize the channels as follows.

MyRio_Dio Ch[8);

for (1=0; i<8; i++) {
Ch[i].dir = DIDB_7ODIR;
Chlil.out = DIOB_TOOUT;
Ch[i].in = DIOB_TOIN;
Chli].bit = i

Again, the symbols shown are defined in DIO0.h.

Channel I/0O
Input—Digital channel read function prototvpe:

NiFpga_Bool Dio_ReadBit(MyRio_Dio* channel); ‘

For example, a typical call might be:

bit = Dio_ReadBit (&Ch[row+4]); ‘

Note: In addition to reading the bit,
Dio_ReadBit sets the channel to Hi-Z mode.
-

Output—Digital channel write function

prototype:

void Dio_WriteBit(MyRin_Din* channel, NiFpga_Bool valu~e);

For example, a typical call might be:

Dio_WriteBit(&Ch[col]l, NiFpga_False); ‘

The data type NiFpga_Bool may take values of
either NiFpga_True (high), or NiFpga_False
(low).

Key code The key code returned by getkey is
determined by the indices of a key code table.
The key code table can be stored in a statically

declared 4 x 4 array of characters.
O I Y &

char table[4][4] = { {'1','2','3"', UP}, &~

vas (), g reduan 'HLQ[I]EZ’J
{171,'8', 19" ,ENT}, ¢
{'0",1., =", DEL} };7

For example, if the detected row was 1, and the
column was 2, then the value of table[1] [2] is
the character '6'.

The symbols UP, DN, ENT, DEL are defined in
med77.n.

Wait The x ms time delay will be determined
by executing a delay-interval routine. The
“wait” function below is suggested. It executes
in a small fraction of a second. In next week’s
lab we will calculate and measure its precise
duration.

/* —

Function wait

Purpose: waits for m ms.
Parameters: none
Returns: none
* -/
veid wait(void) {
uint32_t i;

i = 417000;

while(i>0){
i-—;

}

return;

¥

Writing the main function

Write a main function that tests your versions of
putchar_lcd and getkey. It should:

1. Make at least one individual call to each of
putchar_lcd and getkey. Be sure to test
the value-out-of-range error returned by
putchar_lcd.

2. Collect an entire string using
fgets_keypad (which automatically calls
getkey).

3. Write an entire string using printf_lcd
(which automatically calls putchar_lcd).
Be sure to test all four escape sequences.

Laboratory Procedure

Test and debug your program.

Part 1l

Timing, Threads, and Finite State
Machines

04|

Finite state machine control

Finite state machines model the behavior of an
intelligent system as consisting of a finite
number of states and transitions thereamong.
These models are commonly used in the design
of intelligent systems.

This chapter introduces some additional
concepts of importance:

¢ pulse-width modulation (Lec. 04.1),

¢ the driving of a DC motor (Lec. 04.2 ), and

* measuring motor position and velocity
(Lec. 04.3).

Finally, finite state machines are introduced in
Lec. 04.4 . In Lab Exercise 04, we apply a finite
state machine model to basic DC motor speed
control.



