05.3 Boolean algebra on digital signals

We will require an understanding of Boolean algebra on digital signals to implement a switch debouncing circuit in Lec. 05.4 . It is a digital circuit that operates with logic gates, which are here introduced.

A digital signal's Boolean variable values $\underline{1}$ and $\underline{0}$ are isomorphic to propositional calculus's truth values $\underline{1}$ (true) and $\underline{1}$ (false). Similarly, Boolean algebra (i.e. Boolean logic) operations are isomorphic to propositional calculus operations, such as not (\neg), and (\land), and or (\lor). Table 05.1 is a truth table for a number of Boolean algebra operators.

Digital electronics instantiate these operators as logic gates, sometimes as subcircuits of CPUs and sometimes as discrete integrated circuits for incorporation on a prototyping board (as in Lab Exercise 05) and eventually on a PCB. The simplest gate is the not gate, which has the following circuit symbol.

This gate accepts digital signal represented by Boolean variable p and returns $\neg p$. So, $p=1\Rightarrow \neg p=0$ and $p=0\Rightarrow \neg p=1$. Most gates have two inputs. For instance, the or gate, what has circuit symbol

 $\begin{tabular}{lll} \textbf{Table 05.1:} & a truth table for logic operations. The first two columns are operation inputs, the rest, outputs. \end{tabular}$

р	q				$\frac{\text{nand}}{p \uparrow q}$			$\begin{array}{c} xnor \\ p \Leftrightarrow q \end{array}$
0	0	1	0	0	1	1	0	1
0	1	1	0	1	1	0	1	0
1	0	0	0	1	1	0	1	0
1	1	0	1	1	0	0	0	1

Table 05.2: logic operations and equivalent C expressions and gate symbols.

name	logic	С	gate	
not	¬р	!p	-	
and	$p \wedge q$	pååq	Shirt	
or	$p\vee q$	p q	Ju.74	
nand	$\mathfrak{p}\uparrow\mathfrak{q}$! (p&&q)		
nor	$p\downarrowq$! (p q)		
xor	$\mathfrak{p} \veebar \mathfrak{q}$	$p \mid = q$		
xnor	$p \Leftrightarrow q$	p==q		٠.

 $q \longrightarrow p \lor q$

accepts digital signals with Boolean variables (say) p and q and returns p \vee q. Table 05.2 summarizes logic gates and their associated Boolean algebra operators.

Register 4321

2 Port 3 Type

Encoder Type

Qualitative 0100

Step Direction 0000

Encoder Port

Port 1 0010

Port 0 0000

Register = Quadrature | Port | = 0100 | 0010 = 0110