pde.sturm Sturm-liouville problems

sturm-liouville (S-L) differential equation

The special of the second of the model of t

regular S-L problem

Before we introduce an important solution method for PDEs in Lec. pde.separation, we consider an ordinary differential equation that will arise in that method when dealing with a single spatial dimension x: the sturm-liouville (S-L) differential equation. Let p, q, σ be functions of x on open interval (a, b). Let X be the dependent variable and $\boldsymbol{\lambda}$ constant. The regular S-L problem is the S-L ODE^5

 $\frac{\mathrm{d}}{\mathrm{d}x}\left(pX'\right) + qX + \lambda\sigma X = 0$

with boundary conditions

 $\beta_1 X(\alpha) + \beta_2 X'(\alpha) = 0$ $\beta_3 X(b) + \beta_4 X'(b) = 0$

with coefficients $\beta_{\mathfrak{i}} \in \mathbb{R}.$ This is a type of boundary value problem. This problem has nontrivial solutions, called eigenfunctions $X_n(x)$ with $n \in \mathbb{Z}_+$, corresponding to specific values of $\lambda=\lambda_n$ called eigenvalues.⁶ There are several important 6. These eigenvalues are closely related to, but distinct from, the "eigenvalues" that arise in systems of linear ODEs. theorems proven about this (see Haberman⁷).

1. there exist an infinite number of eigenfunctions X_n (unique within a

Of greatest interest to us are that

- multiplicative constant), 2. there exists a unique corresponding real eigenvalue λ_n for each eigenfunction X_n ,
- 3. the eigenvalues can be ordered as
- $\lambda_1 < \lambda_2 < \cdots$ 4. eigenfunction $X_{\mathfrak{n}}$ has $\mathfrak{n}-1$ zeros on open interval (a, b),
- 5. the eigenfunctions X_n form an orthogonal basis with respect to weighting function σ such that any piecewise continuous function $f:[\mathfrak{a},b]\to\mathbb{R}$ can be represented

by a generalized fourier series on [a, b]. This last theorem will be of particular interest in Lec. pde.separation.

Boundary conditions of the sturm-liouville kind

(2) have four sub-types: **dirichlet** for just β_2 , $\beta_4 = 0$, **neumann** for just $\beta_1, \beta_3 = 0$, **robin** for all $\beta_i \neq 0$, and

mixed if $\beta_1=0$, $\beta_3\neq 0$; if $\beta_2=0$, $\beta_4\neq 0$. There are many problems that are not regular sturm-liouville problems. For instance, the right-hand sides of Eq. 2 are zero, making them homogeneous boundary conditions; however, these can also be nonzero. Another case is

periodic boundary conditions:

re: a sturm-liouville problem with dirichlet

X(y)

 $\chi'(x)$

boundary conditions

X'(a) = X'(b).Example pde.sturm-1

Consider the differential equation

with dirichlet boundary conditions on the boundary of the interval [0, L]

X(0) = 0 and X(L) = 0.

Solve for the eigenvalues and eigenfunctions. This is a sturm-liouville problem, so we know the eigenvalues are real. The well-known general solutions to the ODE is

 $X(x) = \begin{cases} k_1 + k_2 x & \lambda = 0 \\ k_1 e^{j\sqrt{\lambda}x} + k_2 e^{-j\sqrt{\lambda}x} & \text{otherwise} \end{cases}$

with real constants k_1, k_2 . The solution must also satisfy the boundary conditions. Let's apply them to the case of $\lambda = 0$ first:

 $X(0) = 0 \Rightarrow k_1 + k_2(0) = 0 \Rightarrow k_1 = 0$ $X(L) = 0 \Rightarrow k_1 + k_2(L) = 0 \Rightarrow k_2 = -k_1/L.$ (8)

Together, these imply $k_1 = k_2 = 0$, which gives the trivial solution X(x) = 0, in which we aren't interested. We say, then, for nontrivial solutions $\lambda \neq 0$. Now let's check $\lambda < 0$. The solution becomes

 $X(x) = k_1 e^{-\sqrt{|\lambda|}x} + k_2 e^{\sqrt{|\lambda|}x}$

 $= k_3 \cosh(\sqrt{|\lambda|}x) + k_4 \sinh(\sqrt{|\lambda|}x)$ where k₃ and k₄ are real constants. Again

applying the boundary conditions: $X(0) = 0 \Rightarrow k_3 \cosh(0) + k_4 \sinh(0) = 0 \Rightarrow k_3 + 0 = 0 \Rightarrow k_3 = 0$ $X(L) = 0 \Rightarrow 0 \cosh(\sqrt{|\lambda|}L) + k_4 \sinh(\sqrt{|\lambda|}L) = 0 \Rightarrow k_4 \sinh(\sqrt{|\lambda|}L) = 0.$

However, $\sinh(\sqrt{|\lambda|}L) \neq 0$ for L > 0, so $k_4 =$ $k_3 = 0$ —again, the trivial solution. Now let's

try $\lambda > 0$. The solution can be written $X(x) = k_5 \cos(\sqrt{\lambda}x) + k_6 \sin(\sqrt{\lambda}x).$

Applying the boundary conditions for this case:

 $X(0)=0\Rightarrow k_5\cos(0)+k_6\sin(0)=0\Rightarrow k_5+0=0\Rightarrow k_5=0$ $X(L) = 0 \Rightarrow 0\cos(\sqrt{\lambda}L) + k_6\sin(\sqrt{\lambda}L) = 0 \Rightarrow k_6\sin(\sqrt{\lambda}L) = 0.$ Now, $\sin(\sqrt{\lambda}L) = 0$ for

Therefore, the only nontrivial solutions that satisfy both the ODE and the boundary

conditions are the eigenfunctions $X_{n}(x) = \sin\left(\sqrt{\lambda_{n}}x\right)$

with corresponding eigenvalues

Note that because $\lambda > 0$, λ_1 is the lowest

 $\sqrt{\lambda}L=n\pi\Rightarrow$

eigenvalue. Plotting the eigenfunctions The following was generated from a Jupyter notebook with the following filename and

notebook filename: eigenfunctions_example_plot.ipynb notebook kernel: python3

First, load some Python packages.

from IPython.display import display, Markdown, Latex

Set L = 1 and compute values for the first four eigenvalues $lambda_n$ and eigenfunctions X_n .

x = np.linspace(0,L,100)
n = np.linspace(1,4,4,dtype=int) lambda_n = (n*np.pi/L)**2 X_n = np.zeros([len(n),len(x)]) for i,n_i in enumerate(n):
 X_n[i,:] = np.sin(np.sqrt(lambda_n[i])*x)

Plot the eigenfunctions.

for i,n_i in enumerate(n): plt.plot(x,X_n[i,:], linewidth=2,label='n = '+str(n_i) plt.legend() plt.show() # display the plot

We see that the fourth of the S-L theorems appears true: n-1 zeros of X_n exist on the open interval (0, 1).

be x'(0) = 0 x'(1)=0

given

 $X(x) = -k_5 \sqrt{\lambda} \sin(\sqrt{\lambda} x) + K_6 \cos(\sqrt{\lambda} x) \sqrt{\lambda}$

×'(0) = |< = 0

X(L) = - K5 VX sin (VXL) + K6 (05 (VXL) = 0

- K, \(\frac{1}{2}\) sin (\(\frac{1}{2}\) = 0

sin (\subsetextraction 1) = 0

VIL = ni

 $\lambda = \left(\frac{n\pi}{L}\right)^2$

 $X_{n}(x) = cos\left(\frac{n}{l}x\right)$