pde.sturm Sturm-liouville problems

Before we introduce an important solution

method for PDEs in Lec. pde.separation, we

consider an ordinary differential equation that

will arise in that method when dealing with a

single spatial dimension x: the sturm-liouville sturm—liouville (S-L) differential equation
(S-L) differential equation. Let p, q, o be

functions of x on open interval (a,b). Let X be

the dependent variable and A constant. The

regular S-L problem is the S-L ODE® regular S—L problem
5. For the S-L problem to be regular, it has the additional constraints
d , that p,q,o are continuous and p,o > O on [a,b]. This is
a (PX ) + qX +AcX =0 also sometimes called the sturm-liouville eigenvalue problem. See

Haberman (Haberman, Applied Partial Differential Equations with
Fourier Series and Boundary Value Problems (Classic Version), § 5.3)
for the more general (non-regular) S-L problem and Haberman (ibidem,
§ 7.4) for the multi-dimensional analog.

with boundary conditions

BiX(a)+ B2X'(a) =0
B3X(b) + B4X'(b) =0

with coefficients ; € R. This is a type of

boundary value problem. boundary value problems
This problem has nontrivial solutions, called

eigenfunctions X, (x) withn € Z, eigenfunctions
corresponding to specific values of A = A, called

eigenvalues.® There are several important eigenvalues

6. These eigenvalues are closely related to, but distinct from, the
“eigenvalues” that arise in systems of linear ODEs.

Of greatest interest to us are that 7. ibidem, § 5.3.

theorems proven about this (see Haberman?).

1. there exist an infinite number of
eigenfunctions X,, (unique within a
multiplicative constant),

2. there exists a unique corresponding real
eigenvalue A, for each eigenfunction X,,,

3. the eigenvalues can be ordered as
M<A<-,

4. eigenfunction X, has n — 1 zeros on open
interval (a,b),

5. the eigenfunctions X, form an orthogonal
basis with respect to weighting function o
such that any piecewise continuous
function f : [a, b] — R can be represented
by a generalized fourier series on [a, b].

This last theorem will be of particular interest in
Lec. pde.separation.

Types of boundary conditions

Boundary conditions of the sturm-liouville kind
2 have four sub-types:

dirichlet forjust 8,84 =0,

neumann for just 1,33 =0,

robin forall 3; #0, and

mixed if 1 =0, B3 #0;if B, =0, B4 # 0.

There are many problems that are not regular
sturm-liouville problems. For instance, the
right-hand sides of Eq. 2 are zero, making them

homogeneous boundary conditions; however, homog boundary cond

these can also be nonzero. Another case is

periodic boundary conditions: periodic boundary conditions
X(a) =X(b)

X'(a) = X'(b).

Example pde.sturm-1 re: a sturm-—liouville problem with dirichlet
Consider the differential equation boundary conditions
X"+ AX =0

with dirichlet boundary conditions on the
boundary of the interval [0, L]

X(0)=0 and X(L)=0. l)( X/(Q) /) X /(é 7 = 9

Solve for the eigenvalues and eigenfunctions.

This is a sturm-liouville problem, so we know
the eigenvalues are real. The well-known
general solutions to the ODE is

k1 + kax A=0

X(x) = i . 7
k1e)VA% 4 ke IVAX  otherwise )< (Y) / Wwen

. with real constants ki,k2. The solution must

< also satisfy the boundary conditions. Let’s
< apply them to the case of A = 0 first: / 0
X(0)=0=k; +k2(0) =0= k; =0 )( (
X(L)=0=ky + k(L) =0= ky = —kq /L.
Together, these imply k; = k, = 0, which
gives the trivial solution X(x) = 0, in which we
aren’t interested. We say, then, for nontrivial

solutions A # 0. Now let’s check A < 0. The
solution becomes

[(05

X(x) = ke VINX 4 eVl
= k3 cosh(/|AIx) + kg sinh(\/mx)
where k3 and k4 are real constants. Again - S WA
applying the boundary conditions: I

X(0) =0 = k3 cosh(0) + kg sinh(0) = 0= k3 +0=0= k3 =0 —
X(L) = 0 = 0cosh(v/[AIL) + ka sinh(v/[A[L) = 0 = kg sinh(y/[AIL) = 0.

However, sinh(\/[AIL) # 0 for L > 0, so kg =
k3 = 0—again, the trivial solution. Now let’s

try A > 0. The solution can be written y

X(x) = ks cos(v/Ax) + ke sin(vAx). ) - - \I_\ . \["\ )
Applying the boundary conditions for this case: X(x \< S /\ Y e ( /\ X) + \< ¢ (e § lm x ‘/:\—'
X(0) = 0 = ks cos(0) + kesin(0) =0 = ks +0 =0 = ks =0
X(L) = 0 = 0cos(vVAL) + ke sin(VAL) = 0 = kg sin(vAL) = 0. X /(o) - ,C _ 0
Now, sin(v/AL) = 0 for ( ~

VAL =nn =
/ ‘ - o
Therefore, the}\onlgf;znt.rivial solutions that >< (L‘) = - )< g m 5 (‘/‘l_\-' L) + ) =9

satisfy both the ODE and the boundary
conditions are the eigenfunctions

Xn(x) = sin ( Anx)

a2 “k AN SR L) =2

with corresponding eigenvalues

-y -
n L . . _ 9
! Note that because A > 0, A; is the lowest 5 A ( ) L) -

. eigenvalue.
- Plotting the eigenfunctions

The following was generated from a Jupyter ‘I X\. - n 1\(

notebook with the following filename and
kernel.

notebook filename: eigenfunctions_example_plot.ipynb A : M “

notebook kernel: python3

First, load some Python packages.

import numpy as np

import matplotlib.pyplot as plt
from IPython.display import display, Markdown, Latex X —
n = (o} X

Set L = 1 and compute values for the first four

eigenvalues lambda_n and eigenfunctions X_n.

L=1

x = np.linspace(0,L,100)

n = np.linspace(1,4,4,dtype=int)
lambda_n = (n*np.pi/L)#*%*2

X_n = np.zeros([len(n),len(x)])
for i,n_i in enumerate(n):

X_n[i,:] = np.sin(np.sqrt(lambda_n[i])+x)

Plot the eigenfunctions.

for i,n_i in enumerate(n):
plt.plot(
x,X_nli,:],
linewidth=2,label='n = '+str(n_i)
)
plt.legend()
plt.show() # display the plot
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We see that the fourth of the S-L theorems
appears true: n — 1 zeros of X, exist on the
open interval (0, 1).




