
Control
the kernel of cybernetics
Rico AR Picone PhD

Control

the kernel of cybernetics
Rico A.R. Picone

Department of Mechanical Engineering

Saint Martin’s University

Thursday 24 March, 2022

Copyright © 2022 Rico A.R. Picone All Rights Reserved

Contents

intro Introduction 8

intro.perf Performance . 10

Stability . 10

Transient Response . 10

Steady-State Response . 10

Others . 10

intro.block Feedback control system block diagrams 12

intro.pid Introducing PID control . 14

Ziegler–Nichols tuning method . 15

intro.pidi An interactive PID controller design 18

Symbolic transfer functions . 18

Symbolic to control transfer functions 19

Defining the closed-loop function . 20

Step response . 20

Interactive step response . 21

intro.exe Exercises for Chapter intro . 23

Exe. intro.tabernacle . 23

Exe. intro.psalmody . 23

Exe. intro.calvous . 23

Exe. intro.telesis . 23

Exe. intro.postulant . 23

Exe. intro.mascaron . 23

Exe. intro. 24

stab Stability performance 25

stab.intro Introduction . 26

Stability defined by the free response 26

Stability defined by the forced response 26

stab.tf Stability from the transfer function . 28

Stability from the poles of a closed-loop transfer function 28

Stability from the form of a closed-loop transfer function 29

Contents Contents p. 4

stab.routh Routh-Hurwitz criterion . 31

An algorithm for applying the Routh-Hurwitz criterion 31

stab.exe Exercises for Chapter stab . 34

Exe. stab.saginate . 34

Exe. stab.spleniculus . 34

Exe. stab.break . 34

Exe. stab.relax . 34

trans Transient response performance 36

trans.char Transient response characteristics . 38

trans.exact Exact analytical trans response char of first- and second-order sys . 39

First-order systems without zeros . 39

Second-order systems without zeros 40

trans.approx Approx analytical transient response characteristics 42

trans.sim Simulation . 43

trans.exe Exercises for Chapter trans . 46

Exe. trans.apiarian . 46

Exe. trans.pericentral . 46

Exe. trans.rest . 46

steady Steady-state response performance 48

steady.error Steady-state error for unity feedback systems 49

steady.exe Exercises for Chapter steady . 52

Exe. steady.hypnomancy . 52

Exe. steady.nap . 52

rlocus Root locus analysis 53

rlocus.def Root locus definition . 54

Closed-loop poles are hard to find . 54

Definition . 55

The magnitude and phase criteria . 55

What about negative gains and positive feedback? 56

rlocus.sketch Sketching the root locus . 57

rlocus.comp Generating the root locus via a computer 62

Matlab . 62

Python . 63

rlocus.exe Exercises for Chapter rlocus . 65

Exe. rlocus.burritosteve . 65

Exe. rlocus.dunnage . 66

Exe. rlocus.respite . 67

rldesign Root-locus design 69

Contents Contents p. 5

rldesign.gain Gain from the root locus . 70

Gain, analytically and geometrically 70

Gain, the easy way . 71

rldesign.P Proportional controller design (P) . 72

Example using Python . 76

rldesign.beyondP Beyond proportional design . 81

rldesign.PI Proportional-integral (PI) controller design 82

Design procedure . 82

rldesign.PLag Proportional-lag controller design . 87

Design procedure . 87

A design example . 88

rldesign.PD Proportional-derivative (PD) controller design 93

Design procedure . 94

A design example . 95

rldesign.PLead Proportional-lead design . 101

Design procedure . 102

A design example . 103

rldesign.PID Prop-integral-derivative controller design 109

A design example . 110

rldesign.PLeLa Proportional-lead-lag controller design 119

A design example . 119

rldesign.multd Multiple derivative compensators . 126

Causality . 127

rldesign.exe Exercises for Chapter rldesign . 128

Exe. rldesign.quixotism . 128

Exe. rldesign.arval . 128

Exe. rldesign.22 . 128

Exe. rldesign.23 . 128

Exe. rldesign.diurnation . 128

Exe. rldesign.sebatical . 129

Exe. rldesign.sleep . 129

A design example . 130

rldesign.exe Exercises for Chapter rldesign . 137

Exe. rldesign.quixotism . 137

Exe. rldesign.arval . 137

Exe. rldesign.29 . 137

Exe. rldesign.30 . 137

Exe. rldesign.diurnation . 137

Exe. rldesign.sebatical . 138

Exe. rldesign.sleep . 138

Contents Contents p. 6

freq Frequency response analysis 140

freq.intro Introduction . 141

freq.bode Bode plots . 143

freq.bodesimp Bode plots for simple transfer functions 145

freq.bodesketch Sketching Bode plots . 149

freq.nyquist Nyquist criterion . 152

Introduction . 152

A description of the Nyquist criterion 152

Sketching Nyquist plots . 155

freq.nystab Stability from the Nyquist plot . 159

Stability from the positive jω-axis image, alone 159

Gain margin and phase margin . 160

freq.nybode Stability, GM, and PM from Bode plots 162

freq.freqtime Relations among time and frequency domain reps 164

The second-order assumption . 164

Closed-loop percent overshoot from the closed-loop bandwidth . . . 164

Closed-loop %OS and ζ from ΦM . 165

Closed-loop Ts and Tp from the open-loop system 166

freq.exe Exercises for Chapter freq . 168

freqd Frequency response design 169

freqd.gain Transient response design by adjusting the gain 170

freqd.exe Exercises for Chapter freqd . 171

Exe. freqd.libricide . 171

ss State-space design 172

ss.sfdbck Controller design method . 173

Solving for the gain via the phase-variable canonical form 174

Steady-state error . 176

ss.exe Exercises for Chapter ss . 180

A Mathematical topics 181

A.01 Complex functions . 182

A geometric interpretation of complex functions 183

B Linear systems theory topics 185

B.01 Controllability, observability, and stabilizability 186

Controllability . 186

B.02 Canonical forms of the state model . 187

Phase-variable canonical form . 187

C Physical topics 189

Contents Contents p. 7

C.01 Decibels . 190

Bibliography 191

controller plant
control effort output

Figure intro.1: an open-loop control system block diagram.

intro

Introduction

1 Control theory is the study of control

systems: systems that control the behavior of

other systems. In control theory, a

system—usually called the plant—is analyzed,

often with system dynamics, then a control

system is designed to control the plant.

2 A control system usually controls the plant

via a controller that changes one or more of the

plant’s inputs. The plant’s outputs are variables

we would like to know and/or control. A

graphical representation of this called a block

diagram is shown in Fig. intro.1.

3 If a plant is mathematically modeled with

sufficient accuracy, a controller can specify the

plant’s input (which is the controller output) to

produce the desired plant output. This is called

open-loop control. However, most plants are

not modeled well-enough to do this. It is

especially difficult to model outside

disturbances, like sudden jolts from being

bumped and environmental interference.

Moreover, small errors in modeling can

accumulate over time.

4 For these reasons, most control systems

include feedback: measurements of the plant’s

outputs, as shown in Fig. intro.2. Frequently,

the feedback is compared to a command: the

desired output. The difference is the error, from

which the controller determines the control

effort (the plant’s input). Determining how the

controller should respond to effectively control

intro Introduction perf p. 9

controller plant

measurement

command error control effort output

−

Figure intro.2: a feedback control system block diagram.

the plant’s output (i.e. minimize error) is the

subject of much of control theory.

5 There are several types of controllers used in

control theory, and many adjustable parameters

for each type. Determining which type of

controller and parameter values are best for a

given system are some of the primary tasks of

the control engineer. There are design trade-offs

to be made. Some controllers will be more

expensive to implement than others because

they will require more-expensive hardware.

And some controllers will perform better than

others in ways we will explore in Lec. intro.perf.

intro Introduction perf Performance p. 1

intro.perf Performance

1 Control system performance is measured in

the following ways.

Stability

2 A control system must be designed such that

the plant’s output response is stable: its free

response must not diverge from equilibrium.

Transient Response

3 Transient response of the plant’s output is

often important for a control system. A designer

may have identified such requirements as “the

velocity free response must be 0 ± 1 m/s in 5

seconds and thereafter.” Or “the pressure step

response must not overshoot its final value.”

These sorts of requirements are common. As

with many design techniques, some iteration is

usually needed in order to meet all

requirements.

Steady-State Response

4 Steady-state response of the plant’s output is

another important consideration for a control

system. After the transient response has

decayed, the steady-state response must meet

certain criteria, such as “the position

steady-state response to a unit ramp function

must be within 5 mm of the desired position.”

Others

5 Cost, weight, complexity, and many other

factors must be considered in control system

design. One of the most important of these is

robustness: the control system’s ability to

perform as desired when system parameters

change from their nominal values. This is

important because the parameters of any

intro Introduction block Performance p. 2

implementation of a control system will differ

from their nominal values at least slightly.

intro Introduction block Feedback control system block diagrams p. 1

C(s) G(s)

H(s)

R E U Y

F

−

Figure block.1: a block diagram for a controller C(s).

C(s)G(s)

1+ C(s)G(s)H(s)

R Y

Figure block.2: a block diagram with the corresponding closed-loop transfer
function block, derived in Example intro.block-1.

intro.block Feedback control system block diagrams

1 As we have already seen, a useful tool for

designing control systems is the block diagram.

The plant and the controller are represented as

blocks. Usually a transfer function (or transfer

function matrix) can describe the function of

each block. A typical block diagram is shown in

Fig. def.1.

2 In this configuration, a command function

R(s) is provided to the control system. The

feedback H(s)Y(s) is subtracted from R(s) to give

the error E(s). This is fed to the controller C(s).

The output of the controller is the control effort

U(s), which is the input of the plant G(s). The

output Y(s), after being fed back as H(s)Y(s), is

what the control system is attempting to make

equal to the command R(s), therefore, ideally

E(s) = 0.

3 Block diagrams express algebraic

relationships. (The blocks do not dynamically

“load” each other.) In the case of Fig. def.2, the

relationships are

E(s) = R(s) − F(s) (1a)

U(s) = C(s)E(s) (1b)

Y(s) = G(s)U(s) (1c)

F(s) = H(s)Y(s). (1d)

The closed-loop tranfer function is defined as

Y(s)/R(s). This important transfer function

shows how the system should respond to

commands, of key importance for most

performance criteria.

Example intro.block-1 re: Closed-loop transfer function

Given the feedback block diagram of Fig. def.1

(left), solve for the closed loop transfer function

Y(s)/R(s).

intro Introduction pid Feedback control system block diagrams p. 2

intro Introduction pid Introducing PID control p. 1

Table pid.1: occasionally true generalities about PID controller terms.

Proportional Integral Derivative

• is the workhorse
• speeds up responses •
can lead to instability when too
large

• improves or eliminates steady-
state error • slows down the
response • becomes a liability
when it can’t forget (integral
windup)

• speeds up the response • can
yield jitter when measurement
noise is large • can lead to
instability when measurement
noise is large

intro.pid Introducing PID control

1 One of the most ubiquitous types is the

proportional-integral-derivative (PID)

controller. It has a transfer function with real

constants KP, KI, and KD:

C(s) = KP︸︷︷︸
proportional

+ KI/s︸︷︷︸
integral

+ KDs︸︷︷︸
derivative

. (1)

Remember: the controller operates on the error

E(s), so the PID controller effectively sums

terms proportional to the error, its integral, and

its derivative. Inspecting this in the time

domain with error e(t) by taking the inverse

Laplace transform of the output U(s) = C(s)E(s),

u(t) = KPe(t)︸ ︷︷ ︸
proportional

+KI

ˆ t
0

e(θ)dθ︸ ︷︷ ︸
integral

+ KDė(t)︸ ︷︷ ︸
derivative

. (2)

2 So the control effort u is responsive to:

P the amount and direction of error (reactive, spring-like),

I the accumulation of error over time (memoried, mass-like), and

D the time rate of change of the error (anticipatory, damper-like).
Although the mechanical spring-mass-damper

analog above has its limitations, it is helpful for

our intuition. More generally, we can consider

the three constants KP, KI, and KD to be “knobs”

with which we can include more or less of each

term.

3 Just how a controller will affect the

closed-loop response is significantly dependent

on the plant dynamics. Therefore, there is no

way to make fully general statements about the

impact of each of the PID terms. This is why we

need the detailed analytic design tools of

Chapter rldesign and the intervening chapters

hence. However, for some simple systems, we

can make the assertions of Table pid.1.

4 There are many methods of tuning a PID

controller: selecting KP, KI, and KD to meet

certain performance criteria. The root locus

design method of Chapter rldesign and the

intro Introduction pid Introducing PID control p. 1

1. This can be the impulse, step, or free response. Furthermore, it can be
oscillatory.

frequency response design method of

Chapter freqd allow us to precisely design for

specific performance criteria. However, there

are times when specific performance criteria

and involved analysis are not available or

convenient. In these cases, hand-tuning is

possible via several algorithms. One such

algorithm is presented in the following section.

Ziegler–Nichols tuning method

5 The Ziegler–Nichols method of tuning a PID

controller is presented in the following

algorithm.

1. Set KP, KI, KD = 0.

2. Increase KP until a marginally stable

response1 is observed.

3. Record this ultimate gain Ku and the

oscillation period Tu.

4. Set the controller gains:

KP = 0.6Ku KI = 1.2Ku/Tu KD = 3KuTu/40.

(3)

Example intro.pid-1 re: hand-tuning a PID controller

C(s) G(s)
R E U Y

−

Figure pid.1: block diagram for Example intro.pid-1.

For the block diagram of Fig. pid.1, with the

plant

G(s) =
15000

s4 + 50s3 + 875s2 + 6250s+ 15000

use the Ziegler–Nichols method to design a PID

controller C(s).

We proceed with Matlab, symbolically at first.

Let’s define the transfer functions.
syms S kp ki kd % S is the laplace transform s
G_sym = 15000/(S^4+50*S^3+875*S^2+6250*S+15000); % plant
C_sym = kp + ki/S + kd*S; % PID controller transfer fun

From the preceding lecture’s ??, the closed-loop

transfer function is as follows.

CL_sym = simplify(...
C_sym*G_sym/(1+C_sym*G_sym) ...

intro Introduction pid Introducing PID control p. 2

)

CL_sym =

(15000*kd*S^2 + 15000*kp*S + 15000*ki)/(15000*S +
15000*ki + 15000*S*kp + 15000*S^2*kd + 6250*S^2
+ 875*S^3 + 50*S^4 + S^5)

↪→

↪→

I have created a function sym_to_tf that creates
a tf object, which we’ll need for simulation.a

type sym_to_tf.m

function tf_obj = sym_to_tf(sym_tf,s_var)
% TODO test to make sure s_var is in

symvar(sym_tf) ...↪→

syms(symvar(sym_tf))
syms s
sym_tf = subs(sym_tf,s_var,s);
tf_str = char(sym_tf);
s = tf([1,0],[1]);
eval(['tf_obj = ',tf_str,';']);

Let’s wrap it in a function of our own K_sub,
which will create a closed-loop tf object from

our CL_symwith the PID gains included.

K_sub = @(Kp,Ki,Kd) sym_to_tf(...
subs(...

CL_sym, ...
{kp,ki,kd}, ...
{Kp,Ki,Kd} ...

), ...
S ...

);
K_sub(1,0,0) % e.g.

ans =

15000 s

s^5 + 50 s^4 + 875 s^3 + 6250 s^2 + 30000 s

Continuous-time transfer function.

Now let’s use impulse to simulate the response

starting with a small proportional gain.

[y,t] = impulse(K_sub(1,0,0));

intro Introduction pid Introducing PID control p. 3

0 0.5 1 1.5 2

time (s)

-0.5

0

0.5

1

1.5

2

im
pu
lse

res
po
ns
e

Figure pid.2: impulse response with (small) KP = 1.

Now, we should plot the result – see Fig. pid.2.

figure
plot(t,y)
grid on
xlabel('time (s)')
ylabel('impulse response')

If we iteratively increase KP = 1 → 3 → 5.25

(the response for each of these values is plotted

in Fig. pid.3), we find that around the last

value, the system becomes marginally stable

and therefore

Ku = 5.25. (4)

The oscillation period appears to be around

Tu = 0.56 seconds. Defining these quantities,

we can now compute KI and KD from Eq. 3.

0 1 2 3 4 5

time (s)

-10

-5

0

5

10

im
pu
lse

res
po
ns
e

K P = 1

K P = 3

K P = 5.25

Figure pid.3: impulse responses with KI = KD = 0 and KP as shown.

Ku = 5.25;
Tu = 0.56;
KP = 0.6*Ku;
KI = 1.2*Ku/Tu;
KD = 3*Ku*Tu/40;
disp(sprintf(...

'KP = %0.2f, KI = %0.2f, KD = %0.2f', ...
KP,KI,KD ...

))

KP = 3.15, KI = 11.25, KD = 0.22

Let’s try out this controller for step response

and see how it looks.

[y,t] = step(K_sub(KP,KI,KD));
figure
plot(t,y)
xlabel('time (s)')
ylabel('step response')

The resulting step response is plotted in

Fig. pid.4. We didn’t have specific expectations

for performance, here, but this result is a nice,

average-looking step response with some

overshoot and a decent settling time.

0 0.5 1 1.5 2

time (s)

0

0.5

1

1.5

ste
pr
es
po
ns
e

Figure pid.4: closed-loop step response with the PID controller tuned by the
Ziegler-Nichols method.

a. The function is available in the repo: github.com/
ricopicone/matlab-rico.

http://github.com/ricopicone/matlab-rico
http://github.com/ricopicone/matlab-rico

intro Introduction pidi An interactive PID controller design p. 1

2. For more on Python, see python.org.

3. For more on Jupyter, see jupyter.org.

C(s) G(s)
R E U Y

−

Figure pidi.1: a unity feedback control loop.

3. Python code in this section was generated from a Jupyter notebook
named pid_interactive_design_python.ipynb with a python3
kernel.

intro.pidi An interactive PID controller design

1 In this lecture, we will build an interactive

PID control design tool in Python. However,

you need not install Python2 to try the design

tool: it is available at the following web page.

click to launch interactive page in browser

It may take a few minutes to load the Jupyter

notebook.3 Once it does, click Cell Run All . This will

run the Python code that comprises the

remainder of this lecture. Scroll to the bottom of

the webpage to interact with the PID gains that

update the closed-loop step response plot!

2 For the unity feedback block diagram of

Fig. pidi.1, we will design a PID controller C(s).

Design requirements are (a) less than 20 percent

overshoot, (b) an initial peak in less than 0.2

seconds, and (c) zero steady-state error for a

step response.

First, load some general-purpose Python

packages.

import numpy as np # for numerics
import sympy as sp # for symbolics
import control as c # the Control Systems module
import matplotlib as mpl # for plots
import matplotlib.pyplot as plt # also for plots
from IPython.display import display, Markdown, Latex

The following Python packages are specific for

the interactive widget.

from ipywidgets import *
%matplotlib widget

Symbolic transfer functions

Let’s investigate the transfer functions

symbolically. We begin by defining the Laplace

s and gain symbolic variables.

s,K_p,K_i,K_d = sp.symbols('s K_p K_i K_d')

http://python.org
http://jupyter.org
https://mybinder.org/v2/gh/ricopicone/control-systems/master?filepath=pid_interactive_design_python_web.ipynb

intro Introduction pidi An interactive PID controller design p. 1

We will design a PID controller for a plant with

the following transfer function.

G_sym = 15000/(s**4+50*s**3+875*s**2+6250*s+15000)
display(G_sym)

15000

s4 + 50s3 + 875s2 + 6250s+ 15000
The controller has the following symbolic

transfer function.

C_sym = K_p + K_i/s + K_d*s
display(C_sym)

Kds+
Ki
s

+ Kp

The closed-loop transfer function for the unity

feedback system is as follows.

T_sym = sp.simplify(
C_sym*G_sym/(1+C_sym*G_sym)

)
T_num, T_den = list(# for simplifying

map(
lambda x: sp.collect(x,s),
sp.fraction(T_sym)

)
)
T_sym = T_num/T_den
display(T_sym)

15000Ki + s (15000Kds+ 15000Kp)

15000Ki + s (15000Kds+ 15000Kp + s4 + 50s3 + 875s2 + 6250s+ 15000)

Symbolic to control transfer functions

The control package has objects of type
TransferFunction that will be useful for

simulation in the next section. We begin by

defining a function to convert a symbolic

transfer function to a control
TransferFunction object.

def sym_to_tf(tf_sym,s_var):
global s # changes s globally!
S = s_var
s = sp.symbols('s')
tf_sym = tf_sym.subs(S,s)
tf_str = str(tf_sym)

intro Introduction pidi An interactive PID controller design p. 1

s = c.TransferFunction.s
ldict = {}
exec('tf_out = '+tf_str,globals(),ldict)
tf_out = ldict['tf_out']
return tf_out

This isn’t smooth, but it works. Note that

tf_symmust have no symbolic variables besides

s_var, the Laplace s. We can apply this to

G_sym, then, but not yet C_sym.

type(sym_to_tf(G_sym,s))

control.xferfcn.TransferFunction

Defining the closed-loop function

We need to create a function that specifies the

gains, substitutes them into the symbolic

closed-loop transfer function, then converts it to

a control package TransferFunction object via
sym_to_tf.

def pid_CL_tf(CL_sym,Kp=0,Ki=0,Kd=0):
sp.symbols('K_p K_i K_d')
s = c.TransferFunction.s
CL_subs = CL_sym.subs({K_p: Kp, K_i: Ki, K_d: Kd})
return sym_to_tf(CL_subs,s)

For instance, we can let Kp = 1 and Ki = Kd = 0.

display(
pid_CL_tf(T_sym,Kp=1)

)

1.5× 104

s4 + 50s3 + 875s2 + 6250s+ 3× 104

Step response

It is straightforward to use the control
package’s step_response function to get a step
response for a single set of gains.

intro Introduction pidi An interactive PID controller design p. 1

gains = {'Kp':2, 'Ki':1, 'Kd':0.1}
sys_CL = pid_CL_tf(T_sym,**gains)
t_step = np.linspace(0,3,200)
t_step,y_step = c.step_response(sys_CL, t_step)

Now let’s plot it. The result is shown in

Fig. pidi.2.

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
line, = ax.plot(t_step, y_step)
plt.xlabel('time (s)')
plt.ylabel('step response')
plt.show()

0.0 0.5 1.0 1.5 2.0 2.5 3.0

time (s)

0.0

0.2

0.4

0.6

0.8

st
ep

re
sp

on
se

Figure pidi.2: step response with Kp, Ki, Kd = 2, 1, 0.1.
Interactive step response

The following essentially repeats the same

process of

1. setting the PID gains with pid_CL_tf,
2. simulating with step_response, and
3. plotting the response.

The caveat is that this happens with a GUI

interaction callback function update that sets
new gains (based on the GUI sliders), simulates,

and replaces the old line on the plot. The final
plot is shown in ??. It appears to meet our

performance requirements.

%matplotlib widget
simulate
t_step = np.linspace(0,3,200)
sys_CL = pid_CL_tf(T_sym,Kp=1)
t_step,y_step = c.step_response(sys_CL, t_step)

initial plot
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
line, = ax.plot(t_step, y_step)
plt.xlabel('time (s)')
plt.ylabel('step response')
plt.show()

intro Introduction exe An interactive PID controller design p. 2

GUI callback function
def update(Kp = 1.0, Ki = 0.0, Kd = 0.0):

global t_step, kp, ki, kd
kp,ki,kd = Kp,Ki,Kd
sys_CL = pid_CL_tf(T_sym,Kp=Kp,Ki=Ki,Kd=Kd)
t_step,y_step = c.step_response(sys_CL, t_step)
line.set_ydata(y_step)
ax.relim()
ax.autoscale_view()
fig.canvas.draw_idle()
plt.show()

interaction definition
interact(

update,
Kp=(0.0,10.0),
Ki=(0.0,20.0),
Kd=(0.0,1.0)

);

0.0 0.5 1.0 1.5 2.0 2.5 3.0

time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

st
ep

re
sp

on
se

Figure pidi.3: step response from interaction with Kp, Ki, Kd =
3.1, 6.2, 0.8.

The sliders appear as shown in Fig. pidi.4.

Figure pidi.4: this is how the sliders should look.

intro Introduction exe Exercises for Chapter intro p. 1

C(s) G(s)

H(s)

R E U Y

F

−

Figure exe.1: a block diagram with a controller C(s).

intro.exe Exercises for Chapter intro

Exercise intro.tabernacle

If a control system has a constant controller

C(s) = K, unity feedback (H(s) = 1), and plant

G(s) =
10

(s+ 2)(s+ 5)
,

what is the closed-loop transfer function?

Express the result as a single fraction of

polynomials in s.

Exercise intro.psalmody

What are the three primary performance criteria

for most feedback control systems?

Exercise intro.calvous

Consider the block diagram of Fig. exe.1. Derive

the transfer function from the command R(s) to

the error E(s); that is, E(s)/R(s). This is

sometimes called the error transfer function.

Exercise intro.telesis

If a PID control system suffers from poor

steady-state performance, which term of a PID

controller—that is, P, I, or D—is most likely to

help and why?

Exercise intro.postulant

If a PID control system suffers from slow

transient response performance, increasing

which PID terms—that is, of P, I, and D—are

most likely to help and why?

Exercise intro.mascaron

A given feedback control system meets its

transient performance requirements, but has a

finite steady-state error for a unit step

command. How might you recommend

stab Introduction Exercises for Chapter intro p. 1

augmenting the controller to achieve zero

steady-state error?

Exercise intro.

stab

Stability performance

stab Stability performance intro Introduction p. 1

1. The is sometimes called the “natural” or “initial condition” or
“unforced” response.

2. The forced response is sometimes called the “input response.”

3. � N. Nise, 2015.

4. � ibidem.

stab.intro Introduction

Of the three most significant control system

specifications—stability, transient response, and

steady-state error—stability is the most

important. We will now turn to stability

considerations, limiting ourselves to linear,

time-invariant (LTI) systems.

Recall that a system response can be considered

to be composed of two parts: (1) the free

response1 and (2) the forced2 response. This

terminology will be used throughout the

following.

Stability defined by the free response

Using the concept of the free response, we

define the following types of stability for LTI

systems3.

1. An LTI system is assymptotically stable if

the free response approaches zero as time

approaches infinity.

2. An LTI system is unstable if the free

response grows without bound as time

approaches infinity.

3. An LTI system is marginally stable if the

free response neither decays nor grows

but remains constant or oscillates as time

approaches infinity.

Stability defined by the forced response

An alternate formulation of the stability

definitions above is called the bounded-input

bounded-output (BIBO) definition of stability,

and states the following4.

1. A system is BIBO stable if every bounded

input yields a bounded output.

2. A system is BIBO unstable if any bounded

input yields an unbounded output.

stab Stability performance tf Introduction p. 2

In terms of BIBO stability, marginal stability,

then, means that a system has a bounded

response to some inputs and an unbounded

response to others. For instance, a second-order

undamped system response to a sinusoidal

input at the natural frequency is unbounded,

whereas every other input yields a bounded

output.

Although we focus on the definitions of stability

in terms of the free response, it is good to

understand BIBO stability, as well.

stab Stability performance tf Stability from the transfer function p. 1

5. Recall that poles, eigenvalues, and roots of the characteristic equation
are all equivalent.

stab.tf Stability from the transfer function

Stability from the poles of a closed-loop transfer function

From our definitions in terms of the free

response (Lecture stab.intro), we see that a

closed-loop LTI system is assymptotically stable

if all its poles5 have negative real parts (i.e. are

in the left half-plane).

Conversely, a closed-loop LTI system is

unstable if it has at least one pole with a positive

real part (i.e. in the right half-plane) and/or has

poles of multiplicity greater than one on the

imaginary axis.

Finally, a closed-loop LTI system is marginally

stable if it is not unstable but has at least one

pole with zero real part (i.e. on the imaginary

axis) and if none of these has multiplicity

greater than one.

Example stab.tf-1 re: Stability of a closed-loop transfer

function from its polesGiven the plant transfer function

G(s) =
1

(s2 + 3)

find the unity (negative) feedback closed-loop

transfer function and comment on its stability.

Let the command be R(s) and the output Y(s).

stab Stability performance tf Stability from the transfer function p. 1

6. The logical statement P ⇒ Q means P is sufficient for Q and Q is
necessary for P. That is, if P thenQ (sufficiency) and if notQ then not P
(necessity). Necessity and sufficiency are duals. Let P be “the system is
stable” andQ be “all bi are positive.” Then if any bi is negative (¬Q),
then the system is unstable (¬P). But ifQ, it does not necessarily follow
that P—more information is required.

Stability from the form of a closed-loop transfer function

Let ai, bi, c ∈ R be constant coefficients and the

denominator of a closed-loop transfer function

be the polynomial

bns
n + bn−1s

n−1 + · · ·+ b0 = c(s− a1)(s− a2) · · · (s− an).
(1)

If a system is stable, it must have all left

half-plane poles, so

1. all ai must have negative real parts, which

(non-obviously) implies that

2. all bi must be positive and, additionally,

3. all bi must be nonzero for 0 6 i 6 n (i.e. no

“missing” powers of s).

However, these bi conditions are merely

necessary conditions for stability, meaning that

they are necessary for stability, but not

sufficient (something more is needed to ensure

stability).6 However, if they are not met, this is a

sufficient condition to draw the conclusion that

the control system is unstable (i.e. nothing more

needed).

Example stab.tf-2 re: Stability of a closed-loop transfer

function by inspectionGiven the closed-loop transfer functions

G1(s) =
s+ 4

(s+ 3)(s+ 10)(s+ 22)
, G2(s) =

s2 + 2s+ 5

s2 − 5s+ 8
,

G3(s) =
1

s3 + s+ 4
, and G4(s) =

s2 + 5

s4 + 3s3 + s2 + s+ 3
.

comment on the stability of each without

solving for poles.

stab Stability performance routh Stability from the transfer function p. 2

stab Stability performance routh Routh-Hurwitz criterion p. 1

7. For the interested reader, see this stackexchange discussion.

8. Edward John Routh and Adolf Hurwitz were their names.

9. It is noteworthy that the criterion is based on the Routh-Hurwitz
theorem.

Table routh.1: the general form of the Routh table. Empty cells are always
zero.

1 2 3 4 · · ·

sn a0 a2 a4 a6 · · · · · ·

sn−1 a1 a3 a5 a7 · · · · · ·

sn−2 b1 b2 b3 b4 · · · · · ·

sn−3 c1 c2 c3 c4 · · · · · ·

sn−4 d1 d2 d3 d4 · · · · · ·
...

...
...

...
...

s2 e1 e2

s1 f1

s0 g1

stab.routh Routh-Hurwitz criterion

There is no practical way to find the roots of a

polynomial greater than degree four.7 An

implication of this is that we cannot practically

solve (analytically) for the poles of a closed-loop

transfer function with degree greater than four.

Fortunately, numerical root finders can handle

these higher-order systems with ease. However,

there is a drawback to using numerical root

finders to determine stability: design

parameters, which show up in the coefficients of

the denominator polynomial of a transfer

function, must be assigned a specific value.

A couple of mathematicians8 in the late 19th

century came up with a clever test—called the

Routh-Hurwitz stability criterion9—for learning

much about the stability of a system without

computing its poles; moreover, the test yields an

analytically tractable way to determine ranges

over which design parameters yield stable

closed-loop systems.

An algorithm for applying the Routh-Hurwitz criterion

We consider an algorithm for this test. First, we

address the “basic” algorithm and refer the

reader to N. Nise (2015) for the two exceptions

that arise when Column 1 has a zero or when an

entire row is zero. You can teach this algorithm

(including the exceptions) to a computer, as

some have, but it is easy enough by-hand for

many systems.

Let the denominator of a closed-loop transfer

function, with real coefficients ai be

a0s
n + a1s

n−1 + · · ·+ an−1s+ an,

where n a finite integer greater than or equal to

the order of the numerator polynomial and

a0 > 0 (if it is not, make it so by multiplication

by −1). Perform the following two steps.

http://math.stackexchange.com/a/200622/144745
https://en.wikipedia.org/wiki/Routh%E2%80%93Hurwitz_theorem
https://en.wikipedia.org/wiki/Routh%E2%80%93Hurwitz_theorem
https://www.mathworks.com/matlabcentral/fileexchange/58-routh-m

stab Stability performance routh Routh-Hurwitz criterion p. 2

First, construct a Routh table. The procedure is

to fill in the general form of the Routh table,

shown in Table routh.1, with the definitions:

b1 = −
1

a1

∣∣∣∣∣a0 a2

a1 a3

∣∣∣∣∣ , b2 = −
1

a1

∣∣∣∣∣a0 a4

a1 a5

∣∣∣∣∣ , b3 = −
1

a1

∣∣∣∣∣a0 a6

a1 a7

∣∣∣∣∣ , · · · (1)

c1 = −
1

b1

∣∣∣∣∣a1 a3

b1 b2

∣∣∣∣∣ , c2 = −
1

b1

∣∣∣∣∣a1 a5

b1 b3

∣∣∣∣∣ , c3 = −
1

b1

∣∣∣∣∣a1 a7

b1 b4

∣∣∣∣∣ , · · ·

d1 = −
1

c1

∣∣∣∣∣b1 b2

c1 c2

∣∣∣∣∣ , d2 = −
1

c1

∣∣∣∣∣b1 b3

c1 c3

∣∣∣∣∣ , d3 = −
1

c1

∣∣∣∣∣b1 b4

c1 c4

∣∣∣∣∣ , · · ·

...
...

...

g1 = −
1

f1

∣∣∣∣∣e1 e2

f1 0

∣∣∣∣∣ , g2 = −
1

f1

∣∣∣∣∣e1 0

f1 0

∣∣∣∣∣ , g3 = −
1

f1

∣∣∣∣∣0 0

0 0

∣∣∣∣∣ .
Note the pattern that emerges in Equation 1.

The number of rows and potentially nonzero

columns are n+ 1 and
⌈
(n+ 1)/2

⌉
. Potentially

nonzero values hug Column 1. Descending

rows, the number of potentially nonzero

coefficients decreases.

The second step is to interpret the Routh table.

For the basic Routh table, no poles lie on the

imaginary axis (which excludes marginal

stability), so interpretation is simple: the

number of sign changes in Column 1 is equal to

the number of poles in the right half-plane—and

all others are in the left half-plane. Therefore,

the system is strictly stable if its Routh array is

of the basic type and has no sign changes in

Column 1.

Example stab.routh-1 re: Basic Routh table with an unknown

parameterGiven the closed-loop transfer function

s+ 7

s3 + 3s2 + s+ k
(2)

where k is a design parameter, using the Routh-

Hurwitz criterion, find the range of k for which

the closed-loop system is stable.

stab Stability performance exe Routh-Hurwitz criterion p. 3

Let’s build the Routh table in Table routh.2.

The lower entries were computed from

Equation 1 (n.b. we knew b2 = 0, but compute

it for demonstrative purposes) as follows:

Table routh.2: Routh table for Example stab.routh-1.

1 2 3

s3 0

s2 0

s1 0

s0 0 0

→

1 2 3

s3 0

s2 0

s1 0

s0 0 0

b1 = −
1

a1

∣∣∣∣∣a0 a2

a1 a3

∣∣∣∣∣ = −
1
∣∣∣∣∣

∣∣∣∣∣ = ,

b2 = −
1

a1

∣∣∣∣∣a0 a4

a1 a5

∣∣∣∣∣ = −
1
∣∣∣∣∣

∣∣∣∣∣ = , and

c1 = −
1

b1

∣∣∣∣∣a1 a3

b1 b2

∣∣∣∣∣ = −
1

∣∣∣∣∣
∣∣∣∣∣ = .

Nowwemust interpret the result. Since the first

two entries in Column 1 are positive, the last

two must be in order for the system stability.

The conditions are:

> 0 ⇒ and

k > .

Therefore, the range for stability is .

Expressed as an interval, k ∈ .

stab Stability performance exe Exercises for Chapter stab p. 1

C(s) G(s)

H(s)

R E U Y

F

−

Figure exe.1: a block diagram with a controller C(s).

/35 p.

/25 p.

stab.exe Exercises for Chapter stab

Exercise stab.saginate

A closed-loop transfer function has

denominator

s9+s8+s7+3s6+9s5+4s4+7s3+(a−7)s2+s+3

for some a ∈ R. Do not determine necessary and

sufficient conditions for stability. Rather, find a

single necessary condition for stability in terms

of a by inspection.

Exercise stab.spleniculus

Consider the block diagram of Fig. exe.1. What

is the closed-loop transfer function; that is, the

transfer function from the command R(s) to the

output Y(s)? Let the plant G have transfer

function

G(s) =
10(s− 1)

(s+ 5)(s+ 1)
, (1)

the feedback transfer function H(s) = 1, and the

controller C have transfer function

C(s) = K (2)

where K ∈ R is some gain. Determine the range

of stable controller gains K.

Exercise stab.break

Given the system shown in the diagram below,

find:

1. the closed loop transfer function, and

2. the number of poles in the right half plane.

s2−1
s3+2

s2

3s2+5

R E Y

F

−

trans Stability performance Exercises for Chapter stab p. 2

Exercise stab.relax

Given a closed loop transfer function with a

denominator,

s8+8s7+27s6+124s5+168s4−208s3−272s2−2304s−2304,

find,

1. the number of poles in the right half plane,

and

2. the number of poles on the imaginary axis.

trans

Transient response performance

Stable system time responses are often

described in terms of two intervals, loosely

defined as transient—the first part during

which the effects of initial conditions remain

significant—and steady-state—the second part

during which the response has “settled” near its

final value or final amplitude of oscillation.

In this chapter, we consider performance in

terms of the transient response; in the next, we

will consider it in terms of the steady-state

response—specifically as steady-state error.

Transient response characteristics are typically

found via two methods:

1. analytically and

a) precisely for first- and second-order

systems without zeros and

b) approximately for first- and

second-order systems with zeros and

higher-order systems that have

dominant poles relatively close to the

imaginary complex-plane axis and

2. numerically, in simulation.

The analytical method is especially

advantageous for design. Design methods we

will learn in Chapter rldesign require we

“place” the closed-loop poles in the complex

plane. The transient response depends very

much on this placement, and exactly how is

something we can better understand from

trans Transient response performance char p. 4

studying first- and second-order system

response. We can only simulate systems defined

by concrete numbers, so simulation, although

powerful, is typically more helpful to fine-tune

a controller rather than design it “from scratch.”

trans Transient response performance exact Transient response characteristics p. 1

1. This definition assumes the step input occurs at t = 0. Otherwise,
subtract the nonzero initial time.

trans.char Transient response characteristics

We define four transient response

characteristics, all defined in terms of a system’s

step input response. For the following, please

refer to the illustration in Fig. char.1.

1. The rise time Tr is the duration from the

time the response reaches 10 % to the time

it reaches 90 % of its final value.

2. The peak time Tp is the time at which the

response reaches its first or maximum

peak.1

3. The percent overshoot %OS expresses the
amount the response overshoots its

steady-state value, expressed as a

percentage of the steady-state value.

4. The settling time Ts is the time at which the

response reaches, and thereafter remains

within, ±2 % of its steady-state value.1

0 Tp Ts

0.1yss

0.9yss

yss ± 2 %

yp

%OS = 100
yp − yss

yss

Tr

Figure char.1: transient response characteristics rise time Tr, peak time Tp, percent overshoot %OS, and settling time Ts in terms of a response’s steady-state
yss and peak yp.

trans Transient response performanceexact Exact analytical trans response char of first- and second-order sys p. 1

trans.exact Exact analytical trans response char of

first- and second-order sys

First-order systems without zeros

A first-order system without zeros has a

transient response characterized by a

time-constant τ that appears in the general

response as

e−t/τ + . (1)

The transient exponential decays such that in

three time constants 3τ only 5 % of the term

remains; in 5τ, less than 1 %.

There is neither peak nor overshoot for this type

of response. However, the rise time for these

systems is found by solving the time-domain

differential equation

τẏ(t) + y(t) = ku(t) (2)

with output variable y, input variable u, and

real constant k. It is easily shown that the

solution to Eq. 2 in Eq. 2 is, for a unit step input,

y(t) = k
(
1− e−t/τ

)
, (3)

from which we discover that the steady-state

value is

yss = lim
t→∞y(t) (4a)

= k. (4b)

The rise time is, by definition, the duration of

the time interval [t1, t2] such that

y(t1) = 0.1yss to (5a)

y(t2) = 0.9yss. (5b)

The first of these yields

k
(
1− e−t1/τ

)
= 0.1k⇒ (6a)

t1 = −τ ln 0.9 (6b)

≈ 0.1054τ. (6c)

trans Transient response performanceexact Exact analytical trans response char of first- and second-order sys p. 1

Figure exact.1: the relationship between the pole-zero plot of a second-order
system with no zeros andωn and ζ.

0 0.2 0.4 0.6 0.8 1
1

2

3

ζ

T
r
ω
n

Figure exact.2: the relationship between rise time, natural frequency, and
damping ratio.

Solving in an analogous fashion, we find

t2 ≈ 2.3026τ. The interval, then, is
t2 − t1 = 2.1972τ.

Equation 7 first-order system rise

time

Finally, the settling time can be derived in a

fashion similar to the rise time.

Equation 8 first-order system

settling time

Second-order systems without zeros

Second-order system transient responses are

characterized by a natural (angular) frequency

ωn and damping ratio ζ. It is helpful to recall

the complex-plane graphical representation of

the pole-zero plot for a second-order system

without zeros, as shown in Fig. exact.1.

Following a procedure very similar to that for

first-order systems, the following relationships

can be derived.

The rise time Tr does not have an analytical

solution in terms of ωn and ζ. However,

Fig. exact.2 shows numerical solutions for Tr

scaled by ωn for ζ ∈ (0, 1).

The peak time Tp has the following, simple

expression

Tp =
π

ωd
, (9)

where ωd = ωn
√
1− ζ2 is the damped natural

frequency.

The percent overshoot %OS is related directly to

trans Transient response performanceapprox Exact analytical trans response char of first- and second-order sys p. 2

ζ as follows

%OS = 100 exp −ζπ√
1− ζ2

⇔ (10)

ζ =
− ln(%OS/100)√
π2 + ln2(%OS/100)

. (11)

Finally, the settling time Ts is expressed as

Ts =
4

ζωn
. (12)

trans Transient response performance sim Approx analytical transient response characteristics p. 1

trans.approx Approx analytical transient response

characteristics

Certain higher-order systems can be

approximated as second-order systems and can

be characterized by the parameters in the

preceding section. This includes systems with

zeros (in the preceding section we assumed the

second-order system had no zeros).

These conditions for “good approximation” are

as follows. Each is necessary but by individually

insufficient; together, they are sufficient.

higher-order poles and zeros are significantly leftward

Higher-order poles and any zeros have

significantly more negative real parts than

the dominant second-order poles. A

typical guideline is that they should be at

least five-times as negative. These poles

and zeros contribute a relatively small

amount to the transient response, since

they decay much faster.

nearby higher-order poles and zeros nearly cancel

All poles near the dominant second-order

pole pair are nearly canceled by nearby

higher-order zeros and vice-versa (i.e.

zeros near a dominant second-order pole

pair are nearly cancelled by higher-order

poles).

trans Transient response performance sim Simulation p. 1

trans.sim Simulation

Many control systems are not in the class of

those we have described, analytically: first- or

second-order and without zeros. In order to

evaluate their transient performance, regardless

of how well they are approximated by the

analytic solutions from before, we will simulate

their step responses.

Matlab has several built-in and Control Systems

Toolbox functions for analyzing the transient

response of a system represented by a transfer

function system model. We’ll explore a few,

here.

Consider, for instance, a closed-loop system

with transfer function

F(s) =
ω2n(−s/z+ 1)

s2 + 2ζωn +ω2n
, (1)

where z is some real zero we’ll move around,

later; ωn = 20π rad/s is the natural frequency;

and ζ = 0.3 is the damping ratio.

Let’s explore this system’s transient response.

Clearly, for large negative values of z, the

response should be approximately congruent

with the exact analytic solutions of

Lecture trans.exact. Specifically, the rise time Tr

will be described by Figure exact.2, the peak

time Tp = π/ωd, the percent overshoot will be

%OS = 100 exp −ζπ√
1− ζ2

, (2)

and the settling time Ts will be

Ts =
4

ζωn
. (3)

Let’s compute these analytic values.

z = 0.3;
w_n = 20*pi;
w_d = w_n*sqrt(1-z^2);

T_r_an = 1.39/w_n % s ... analytic, from Figure 03.3
T_p_an = pi/w_d % s ... analytic

trans Transient response performance sim Simulation p. 2

OS_an = 100*exp(-z*pi/sqrt(1-z^2)) % %, analytic
T_s_an = 4/(z*w_n) % s ... analytic

T_r_an =
0.0221

T_p_an =
0.0524

OS_an =
37.2326

T_s_an =
0.2122

Now, let’s define the transfer function object.

z_a = -z*w_n*[1.5,3,5];
n_z = length(z_a);
F = stack(1,tf(1,1)); % init model array
for i = 1:n_z % for each zero!

F(:,:,i) = tf(... % tf def transfer func object
w_n^2*[-1/z_a(i),1],... % num. polyn. coef's
[1,2*z*w_n,w_n^2]... % den. polyn. coef's

);
end

For a step input u(t) = us(t) and initial value

y(0) = 0, let’s simulate. The step function
would be the easiest way to solve for the step

response. However, we choose the

more-general lsim for demonstration purposes.

We must do so for each zero location z.

t_a = linspace(0,.3,100); % time array
u = @(t) ones(size(t)); % input for t>=0
y_0 = 0; % initial condition
y_t = NaN*ones(n_z,length(t_a)); % preallocate
for i = 1:n_z

y_t(i,:) = lsim(F(:,:,i),u(t_a),t_a,y_0);
end

This total solution is shown in Fig. sim.1.

figure;
for i = 1:n_z

p(i) = plot(t_a,y_t(i,:),...
'displayname', ...
['z \approx ', sprintf('%0.2g',z_a(i))], ...
'linewidth',1.5);hold on

end
hold off
xlabel('time (s)');

trans Transient response performance exe Simulation p. 3

ylabel('step response');
grid on
l = legend(p);

0 0.05 0.1 0.15 0.2 0.25 0.3
0

1

2

time (s)
st
ep

re
sp
o
n
se

z ≈ −28

z ≈ −57

z ≈ −94

Figure sim.1: step response for different zero locations, from lsim.

Now, this indicates that the zero location

definitely matters, and that the deviation is

worse the closer the zero gets to the poles.

Quantifying the response characteristics is

tedious, visually, but Matlab has a built-in tool

that helps: stepinfo.

for i = 1:n_z
si(i) = stepinfo(y_t(i,:),t_a); % struct
rt(i) = 1e3*si(i).RiseTime;
pt(i) = 1e3*si(i).PeakTime;
os(i) = si(i).Overshoot;
st(i) = 1e3*si(i).SettlingTime;
row_names{i} = sprintf('z @ %0.2g',z_a(i));

end
labels = {'T_r','T_p','OS','T_s'};
disp('Time in ms:')
disp(table(rt',pt',os',st',...

'variablenames',labels,...
'rownames',row_names ...

))

Time in ms:
T_r T_p OS T_s

______ ______ ______ ______
z @ -28 6.09 30.303 125.86 251.63
z @ -57 11.395 36.364 64.707 205.52
z @ -94 15.635 42.424 47.35 203.21

So that zero location drastically affects the

overshoot and rise time, but has relatively little

effect on settling and peak times. The takeaway

here is not so much this specific result, but the

tools one can use to find such results and the

importance of doing so.

steady Transient response performance Exercises for Chapter trans p. 1

C(s) G(s)

H(s)

R E U Y

F

−

Figure exe.1: a block diagram with a controller C(s).

/10 p.

trans.exe Exercises for Chapter trans

Exercise trans.apiarian

A control system has dominant closed-loop

poles at −8± j3. Under the second-order
assumption, what is its settling time?

Exercise trans.pericentral

Consider the block diagram of Fig. exe.1. Let the

plant G have transfer function

G(s) =
9

(s+ 4)(s2 + 3s+ 9)
, (1)

the feedback transfer function H(s) = 1, and the

controller C have transfer function

C(s) = K (2)

where K ∈ R is some gain.

1. Determine the closed loop transfer

function Y(s)/R(s).

2. For K = 4 and a unit step input to the

closed-loop system, what are the

second-order approximations of the peak

time Tp, rise time Tr, settling time Ts, and

percent overshoot %OS?
3. For K = 4 and a unit step input to the

closed-loop system, simulate to estimate

peak time Tp, rise time Tr, settling time Ts,

and percent overshoot %OS.
4. Compare the second-order

approximations with the simulated

results. Explain the differences and

similarities.

Exercise trans.rest

For a second order system with a 10% overshoot

and a 0.1 second rise time, find:

1. the damping ratio ζ,

steady Transient response performance Exercises for Chapter trans p. 2

2. the natural frequence ωn, and

3. the location of the closed loop poles Ψ.

steady

Steady-state response performance

After the transient response has settled—that is,

reached steady-state—the system may or may

not be in a desirable state. If the response

asymptotically approaches any state other than

that commanded, it is said to have steady-state

error. These arise from three primary sources:

1. nonlinearities, like backlash in gears—we

won’t explore this one;

2. disturbances, like those from the

environment; and

3. input (command) type and the plant

dynamics.

We will focus our attention on item 3; item 2 is

similar.

steady Steady-state response performance error Steady-state error for unity feedback systems p. 1

1. For more details, see N. S. Nise (2011, Section 7.6).

Figure error.1: unity feedback block diagram with controller G1(s) and
plantG2(s).

steady.error Steady-state error for unity feedback

systems

It is uncommon for a feedback system to be

truly “unity.” However nonunity feedback

systems can be re-written and evaluated in

terms of unity feedback counterparts.1 For this

reason, we will focus on unity feedback systems.

First we recall the final value theorem. Let f(t)

be a function of time that has a “final value”

f(∞) = limt→∞ f(t). Then, from the Laplace

transform of f(t), F(s), the final value is

f(∞) = lims→0 sF(s).
Let’s consider the unity feedback system of

Figure error.1 with command R, controller

transfer function G1, plant transfer function G2,

and error E. Recall that we call e(t) or (its

Laplace transform) E(s) the error. We want to

know the steady-state error, which, from the

final value theorem, is

e(∞) = lim
s→0

sE(s). (1)

Now all we need is to express E(s) in more

convenient terms. For the analysis that follows,

we combine the controller and plant:

G(s) = G1(s)G2(s). From the block diagram, we

can develop the transfer function from the

command R to the error E.

Equation 2 error transfer function

Given a specific command R and forward-path

transfer function G, we could take inverse

Laplace transform of E(s) to find e(t) and take

the limit. However, it is much easier to use the

final value theorem:

steady Steady-state response performance error Steady-state error for unity feedback systems p. 2

e(∞) = lim
s→0

sE(s)

= lim
s→0

s

1+G(s)
R(s).

This last expression is the best we can do

without a specific command R. Three different

commands are typically considered canonical.

The first is now developed in detail, and the

results of the other two are given below. First,

consider a unit step command, which has

Laplace transform R(s) = 1/s.

where we let Kp = lims→0G(s). We call Kp the

position constant. If Kp is large, the steady-state

error is small. If Kp is infinitely large, the

steady-state error is zero. If Kp is small, the

steady-state error is a finite constant.

The form of G(s) has implications for Kp. G(s)

has a factor 1/sn where n is some nonnegative

integer. Since we are concerned about what

happens to G(s) when we take its limit as s→ 0,

this factor is of particular importance. If n > 0,

Kp = lims→0G(s) = ∞. We call the transfer

function 1/s an integrator, which is the inverse

of the transfer function s, the differentiator.

We needn’t solve for E explicitly, then. All we

need to know is the command R and the number

of integrators n in the forward-path transfer

function G(s) (we call this the system type).

The steady-state error for other commands and

system type can be derived in the same manner.

The results for the canonical inputs are shown

in Table error.1.

steady Steady-state response performance exe Steady-state error for unity feedback systems p. 3

Example steady.error-1 re: steady-state error

Let a system have forward-path transfer

function

G(s) =
10(s+ 3)(s+ 4)

s(s+ 1)(s2 + 2s+ 5)
.

For commands r1(t) = 2us(t), r2(t) = 6tus(t),

and r3(t) = 7t2us(t), what are the steady-state

errors?

Table error.1: the static error constants and steady-state error for canonical commands r(t) and systems of Types 0, 1, 2, and n (the general case). Note that
the faster the command changes, the more integrators are required for finite or zero steady-state error.

Type n Type 0 Type 1 Type 2

r(t)
error
const.

e(∞)
error
const.

e(∞)
error
const.

e(∞)
error
const.

e(∞)

us(t) Kp = lim
s→0

G(s)
1

1+ Kp
Kp

1

1+ Kp
∞ 0 ∞ 0

tus(t) Kv = lim
s→0

sG(s)
1

Kv

1

2
t2us(t) Ka = lim

s→0
s2G(s)

1

Ka

rlocus Steady-state response performance Exercises for Chapter steady p. 1

/10 p.

steady.exe Exercises for Chapter steady

Exercise steady.hypnomancy

If a control system responds to a command

r(t) = 1 such that its output y(t) quickly settles

near 0.95, what can be said about the control

system’s stability, steady-state response, and

transient response?

Exercise steady.nap

Given the system show below with an input

u(t) = 0.2tus(t), find:

1. the system type,

2. the correct static error constant, and

3. the steady state error.

s+12
s(s+3)(s+2)

R E Y

F

−

1. The root locus technique was developed by Evans (1950).

rlocus

Root locus analysis

The root locus is a graphical technique for

designing for closed-loop transient response

from open-loop knowledge—and some

cleverness.1 A system’s transient response is

dominated by its poles. For a system with

feedback, solving for these closed-loop poles is

challenging, as we will see in Lec. rlocus.def.

Due to the use of complex analysis in this

chapter, it is recommended that the reader

review Appendix A.01 before proceeding.

rlocus Root locus analysis def Root locus definition p. 1

K G(s)

H(s)

R E U Y

−

Figure def.1: a block diagram for a proportional controller K.

KG(s)

1+ KG(s)H(s)

R Y

Figure def.2: a block diagram with the corresponding closed-loop transfer
function block.

rlocus.def Root locus definition

Closed-loop poles are hard to find

A feedback system’s closed-loop poles

determine its stability and transient response.

These poles depend on parameters in the

controller, often the gain K, as shown in

Fig. def.1.

We define the forward transfer function to be

the transfer function from a loop’s error E to its

output Y; for the loop in Fig. def.2, this is simply

KG(s). Furthermore, the feedback transfer

function is defined to be the to be the transfer

function from the output to the feedback

summation, H(s) in the example. Finally, the

open-loop transfer function is defined to be the

product of the two—in the case of our example:

KG(s)H(s).

We break down G(s) and H(s) into numerators

and denominators:

G(s) =
Gn(s)

Gd(s)
and H(s) =

Hn(s)

Hd(s)
. (1)

Now we can see how these affect the

closed-loop transfer function

KGn(s)Hd(s)

Gd(s)Hd(s) + KGn(s)Hn(s)
. (2)

We make the following observations:

1. The closed-loop poles depend on K, but

for controller design, K is that for which

we are solving.

a) An analytic solution for the

closed-loop poles is intractable for

systems of order greater than three.

b) For a given value of K, a numerical

root finder is very effective.

That is, the closed-loop poles are hard to

find!

2. As K→ 0, the closed-loop poles approach

the open-loop poles.

rlocus Root locus analysis def Root locus definition p. 1

3. As K→∞, the closed-loop poles approach

the open-loop zeros.

These last two observations give us the “start”

and “finish” for closed-loop pole locations when

K is varied from 0 to∞, a procedure we will

now define—as the root locus!

Definition

The root locus is the collection of closed-loop

pole locations for varying proportional

controller gain K. Recall that for a feedback

system with plant G(s) and feedback transfer

function H(s), the closed-loop transfer function

is

KG(s)

1+ KG(s)H(s)
(3)

and that finding the poles is difficult, in general.

However, let us consider our observations from

Lec. rlocus.def. We know our “starting points”:

at K = 0, the closed-loop poles are equal to the

open-loop poles. And we know our “end

points”: as K→∞, the closed-loop poles are

equal to the open-loop zeros. Therefore, we can

consider the root locus to be a collection of

curves that begin at the open-loop poles and

terminate at the open-loop zeros.

The magnitude and phase criteria

The closed-loop poles can be found by setting

the denominator of the closed-loop transfer

function to zero and solving for the values of s

that satisfy this condition. Examining the

closed-loop transfer function, we see this is

equivalent to

.

(4)

Eq. 4 gives rise to the magnitude and phase

criteria.

rlocus Root locus analysis sketch Root locus definition p. 1

Equation 5 magnitude criterion

Equation 6 phase criterion

These criteria are always satisfied and so they

will be our guide to understanding, sketching,

and designing with the root locus.

What about negative gains and positive feedback?

We typically consider only nonnegative gains

for the root locus, since negative gains typically

lead to instability. However, this is only true for

systems with positive open-loop transfer

functions! When encountering a negative

open-loop transfer function, it is advisable to

temporarily treat it as positive, proceed with the

controller design, then multiply the controller

by −1 (or use positive feedback). If one suspects

a negative gain might be of service in a specific

controller (often, slightly negative gains can

remain stable) or if one is building an unstable

system intentionally, develop the root locus for

negative gains (or, equivalently, positive

feedback); for these occasions, see N. Nise

(2015).

rlocus Root locus analysis sketch Sketching the root locus p. 1

rlocus.sketch Sketching the root locus

It is easy to get lost in the detailed rules of

manual root locus construction. In the “old

days” accurate root locus construction was

critical, but now it is useful only for gaining

intuition for how a given system will behave

given its open-loop transfer function—which is

extremely useful for design. If a detailed root

locus is desired, we should use the computer

tools of Lec. rlocus.comp.

We will construct a procedure for sketching a

root locus from the following rules. In what

follows phrases such as “has locus” are used to

describe curves in the complex plane for which

the root locus is defined. That is, everywhere in

the complex plane for which the root locus is

defined is said to “have locus.” Note that some

of the following rules only apply for K > 0.

R1. The root locus begins at open-loop poles,

where K = 0, and approaches open-loop

zeros, where K→∞. This was shown in

Lec. rlocus.def to follow from the form of

the closed-loop transfer function.

R2. The number of branches of the root locus

is equal to the number of closed-loop

poles. The number of closed-loop poles is

equal to the number of open-loop poles or

zeros, whichever is greater.

R3. The root locus is symmetric about the

real-axis. This is due to the fact that poles

can “leave” the real-axis only as conjugate

pairs.

R4. On the real-axis, there is locus wherever

an odd number of open-loop zeros and

poles are on the real-axis, to the

right—and no locus, elsewhere. This is a

consequence of the phase criterion, Eq. 6.

Recall, from Appendix A.01, the geometric

evaluation of transfer functions. The phase

rlocus Root locus analysis sketch Sketching the root locus p. 2

−20 −18 −16 −14 −12 −10 −8 −6 −4 −2 2

−10

−8

−6

−4

−2

2

4

6

8

10

Re(s)

Im(s)

Figure sketch.1: a root locus example for illustrating the geometric
interpretation of the phase criterion on the real axis.

criterion states that, for locus, ∠KG(s)H(s)

must always be π or its equivalent, so, for

a test point ψ, the sum of the angles from

each of the open-loop poles and zeros to ψ

must be π or its equivalent, as can be

illustrated in Fig. sketch.1. Due to the fact

that every off-axis pair of open-loop poles

or zeros contributes no net angle (because

their angles are equally opposite), only

poles and zeros on the real axis contribute

to the phase of a given point on the real

axis. When the point is to the right of

every real-axis pole and zero, all the angle

contributions are zero, and the phase

criterion is not met. Moving the point

leftward and it passes a pole or zero, the

angle becomes ±π, satisfying the angle
criterion. Continuing leftward, each time

it crosses a pole or zero, ±π is added,
toggling satisfaction of the angle criterion.

R5. “Missing” poles and zeros are paired with

infinite zeros and poles, asymptotically.

An open-loop transfer function with a

different number of poles and zeros is said

to have “missing” poles or zeros. This is

because the root locus begins at open-loop

poles and approaches open-loop

zeros—but what about systems with

missing open-loop poles or zeros? For

these situations, the root locus begins or

ends at poles or zeros at infinity. For a

system with more poles than zeros, which

is quite common, some poles approach

zeros at infinity, asymptotically.

Conversely, for a system with more zeros

than poles, which is uncommon and is

called a non-causal system, some branches

of the root locus begin asymptotically from

poles at infinity. Asymptotes originate at a

single real-axis intercept σa, which can be

shown to be related to the finite poles pi

rlocus Root locus analysis sketch Sketching the root locus p. 3

and zeros zj, with np and nz the number

of poles and zeros, as follows.

Equation 1 root locus

asymptote real-axis intercept

Note that the imaginary parts of the poles

and zeros cancel, so they needn’t be

considered. With N ≡ np − nz, the

number of asymptotes is |N|. Each is a ray

that originates at σa, and all that remains

undetermined is the angle of each ray,

which can be shown to be as follows, for

allm ∈ Z.
Equation 2 root locus

asymptote angles

Note that these repeat every |N|

consecutive values of θm.

Every root locus (with K > 0) will satisfy the

rules above. They will help us construct

sketches with the following procedure.

RL1. Sketch the open-loop poles and zeros.

According to Rule R1, the root locus starts

at the open-loop poles and ends at the

open-loop zeros.

RL2. Sketch real-axis locus in accordance with

Rule R4. Let’s start with a win. Begin at

the right of all real-axis poles and zeros

(where there is never locus) and move

leftward, toggling for each pole or zero,

“no locus, locus, no locus, locus ….”

RL3. If applicable, determine poles or zeros at

infinity and draw asymptotes. Determine

the number of finite poles np and finite

rlocus Root locus analysis sketch Sketching the root locus p. 4

zeros nz. Compute N = np − nz. If N > 0,

there are |N| zeros at infinity; if N < 0,

there are |N| poles at infinity; and if N = 0,

there are neither poles nor zeros at infinity

and the rest of this step should be skipped.

Compute the asymptote real-axis intercept

σa from Eq. 1. Compute |N| asymptote

angles θ0, θ1, · · · from Eq. 2. Sketch the

asymptotes.

RL4. Finish the root locus sketch, respecting all

rules. Typically, a qualitatively accurate

sketch can now be constructed, which is

our goal.

Example rlocus.sketch-1 re: sketching the root locus

Sketch the root locus for the open-loop transfer

function

3(s+ 1)

(s+ 3)(s+ 5)
.

Example rlocus.sketch-2 re: sketching the root locus

Sketch the root locus for the open-loop transfer

function

53

(s+ 5)(s2 + 2s+ 2)
.

rlocus Root locus analysis comp Sketching the root locus p. 5

rlocus Root locus analysis comp Generating the root locus via a computer p. 1

rlocus.comp Generating the root locus via a computer

Matlab

In Matlab, the command rlocus generates a root

locus plot from a linear system model object

defined by tf, zpk, or ss. The data cursor has

particularly useful information associated with

it, including the gain required for the

closed-loop pole of a given branch to be located

at the selected point. Here are a few examples.

Example rlocus.comp-1 re: rlocus using zpk

UseMatlab and zpk to generate a root locus plot

from the open-loop transfer function

s+ 10

(s+ 5)(s+ 15)(s+ 20)
.

The following code generates the root locus

plot.

1 sys=zpk([-10],[-5,-15,-20],1);
2 figure
3 rlocus(sys)

The figure it generates should look something

like the following.

−30 −25 −20 −15 −10 −5

−20

−10

10

20

<(s)

=(s)

Example rlocus.comp-2 re: rlocus using tf and custom gains

Use Matlab and tf to generate a root locus plot

from the open-loop transfer function

4s+ 3

s3 + 2s2 + 7s+ 25
.

rlocus Root locus analysis comp Generating the root locus via a computer p. 1

The following code generates the root locus

plot.

1 sys=tf([4,3],[1,2,7,25]);
2 k=sort([3.5,logspace(-1,3,50),Inf

]); % custom gains
3 figure
4 rlocus(sys,k)

Note the use of custom gain values. Sometimes

this is useful, especially if a specific gain value

or range is important. In the code above, a

specific gain of 3.5 is chosen; most gains (50 of

them) are generated logarithmically from 10−1

to 103, logspace(-1,3,50); and the final gain of∞, Inf, is included. The array is sorted such that

3.5 is placed in the correct order in the array.

The figure the code generates should look

something like the following.

−4 −3 −2 −1 1

−20

−10

10

20

<(s)

=(s)

Python

The following was generated from a Jupyter

notebook with the following filename and

kernel.

notebook filename: python_root_locus.ipynb
notebook kernel: python3

We begin with the usual loading of modules.

rlocus Root locus analysis exe Generating the root locus via a computer p. 2

import numpy as np # for numerics
import control as c # the Control Systems module!
import matplotlib.pyplot as plt # for plots!

Let’s draw the root locus for the transfer

function
1

s3 + 2s2 + 3s+ 4
. (1)

Defining a transfer function in Python is

straightforward with the Control Systems

module (documentation here).

transfer_function = c.TransferFunction(1,[1,2,3,4])

Now transfer_function is a transfer function
object. We use the root_locusmethod of the

Control Systems module.

p1 = c.rlocus(transfer_function) # compute root locus
plt.show() # display the plot

−6 −4 −2 0 2

−5

0

5

Real

Im
ag
in
ar
y

pole: -0.06+1.64j gain: 1.07

Notice that double-clicking the locus yields a

data cursor that gives the complex coordinate

and corresponding gain! For instance, at the

coordinate −0.10+ j1.61, the gain is 0.67.

Therefore, to place a closed-loop pole at this

location, we would choose K = 0.67.

https://python-control.readthedocs.io/en/0.8.2/index.html

rlocus Root locus analysis exe Exercises for Chapter rlocus p. 1

rlocus.exe Exercises for Chapter rlocus

Exercise rlocus.burritosteve

Given the open-loop pole-zero plots below,

sketch the root locus plots (use this sheet) for

positive controller gain K.

a.

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−3

−2

−1

1

2

3

Re(s)

Im(s)

b.

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−3

−2

−1

1

2

3

Re(s)

Im(s)

c.

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−3

−2

−1

1

2

3

Re(s)

Im(s)

d.

rlocus Root locus analysis exe Exercises for Chapter rlocus p. 1

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−3

−2

−1

1

2

3

4 poles
Re(s)

Im(s)

Exercise rlocus.dunnage

Given the open-loop pole-zero plots below,

sketch the root locus plots (use this sheet) for

positive controller gain K.

1.

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−3

−2

−1

1

2

3

Re(s)

Im(s)

2.

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−3

−2

−1

1

2

3

Re(s)

Im(s)

3.

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−3

−2

−1

1

2

3

Re(s)

Im(s)

rlocus Root locus analysis exe Exercises for Chapter rlocus p. 1

/20 p.

4.

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−3

−2

−1

1

2

3

2 poles2 zeros Re(s)

Im(s)

Exercise rlocus.respite

Given the open-loop pole-zero plots below,

sketch the root locus plots (use this sheet) for

positive controller gain K. Comment on the

stability of each system. For example, the

system is stable for all gain K, or it becomes

unstable as K increases.

1.

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−3

−2

−1

1

2

3

Re(s)

Im(s)

2.

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−3

−2

−1

1

2

3

Re(s)

Im(s)

rldesign Root locus analysis Exercises for Chapter rlocus p. 2

3.

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−3

−2

−1

1

2

3

Re(s)

Im(s)

rldesign

Root-locus design

In root locus design, our task is to place the

dominant closed-loop poles such that the

closed-loop system

1. is stable (Chapter stab),

2. has desirable transient response

performance characteristics

(Chapter trans), and

3. has desirable steady-state response

characteristics (Chapter steady).

Several types of controllers can be designed

using these techniques. The most basic is gain

control (Lec. rldesign.P), which gives us a single

parameter—the loop gain—for controller

design. The others we consider here are of two

main types: proportional-integral-derivative

(PID) and proportional-lead-lag. The two are

quite similar, but the latter can be implemented

with passive circuits, whereas the former

require active circuits.

rldesign Root-locus design gain Gain from the root locus p. 1

−3 −1

20

ψ

|ψ− p1|
|ψ− p2|

|ψ− p3||ψ− z1|

K =

∏3
i=1 |ψ− pi|

|k| · |ψ− z1|

<(s)

=(s)

Figure gain.1: an example of a geometric interpretation of the the loop gain
K for a closed-loop system with transfer function poles p1,2,3, zero z1, and gain k at
a complex value s = ψ on the root locus.

rldesign.gain Gain from the root locus

In what follows, we will be primarily concerned

with locations on the root locus that yield

desirable transient response characteristics. But

knowing the location on the root locus at which

we would like to operate requires that we know

the implicit gain associated with placing the

closed-loop poles at that location. This lecture

demonstrates two methods of finding the gain

associated with a given location on the root

locus.

Gain, analytically and geometrically

Recall that in Lec. rlocus.def, we defined the

root locus magnitude criterion to be

(1)

Solving this for K, we obtain the following

result, which is valid for a test point s = ψ on

the root locus.

Equation 2 gain from the

magnitude criterion

Consider this in terms of the gain k, poles pj,

and zeros zi of G(s)H(s) (note that k is exclusive

of the controller gain K). Eq. 2 can be written as

a function of a test point ψ on the root locus.

(See Appendix A.01 for details on this

representation.)

Equation 3 geometric gain

From the discussion of Appendix A.01, we

obtain the geometric interpretation: the gain is

equal to the the product of the lengths of vectors

rldesign Root-locus design P Gain from the root locus p. 1

that originate at poles and terminate at the test

point divided by the product of kwith the

lengths of vectors that originate at the zeros and

terminate at the test point. This is illustrated in

Fig. gain.1.

Gain, the easy way

Finding the loop gain K that yields a closed-loop

pole at a specific point on the root locus is much

easier to find numerically. Recall that for a

given value of gain K, the closed-loop poles are

easily found numerically. Software typically

generates root locus plots in a brute-force way:

by simply computing the closed-loop pole

locations for a range of gains. Therefore, the

gain corresponding to each point on these plots

is then known a priori.

In programs such as MATLAB, the data cursor

will typically display the gain corresponding to

each point. If insufficient resolution is available,

more can typically be specified with an optional

argument, as in MATLAB’s rlocus as follows.

G = zpk([-10,-20],[-5,5,-3],1); % transfer function
k = [logspace(-1,4,1e4),Inf]; % custom gains
figure;
rlocus(G,k) % plot with custom gains

rldesign Root-locus design P Proportional controller design (P) p. 1

rldesign.P Proportional controller design (P)

Proportional controller design is the task of

choosing the gain K with which the closed-loop

system performs in a desirable manner. All

three performance classes—stability, transient

response, and steady-state error—can be

affected by changes in the gain. However, with

a gain controller there is typically no way to

satisfy strict requirements in all categories.

Typically, stability can be satisfied and transient

response characteristics can be partially

satisfied. Varying the gain simply moves the

closed-loop poles along the root locus.

However, often the root locus does not pass

through the closed-loop pole location required

for ideal transient response performance. Later,

we will learn how to design controllers that do

not have this limitation.

Virtually always, we assume it is a requirement

for the closed-loop system to be stable, therefore

we can immediately restrict our task to selecting

from those values of gain K for which the

system is stable.

Recall from Chapter trans the relationships

between the location of closed-loop poles and

the corresponding transient response

performance. The parameters rise time Tr, peak

time Tp, settling time Ts, and percent overshoot

%OS can all be related to the dominant

closed-loop pole locations. Criteria will be given

in terms of these transient response

performance parameters and the design task

will be to choose the best gain K such that these

requirements are met.

For most problems, we make the first- or

second-order assumption for higher-order

systems and for first- and second-order systems

with zeros (see Lec. trans.approx). Recall that,

even if this is an inaccurate assumption, it gives

us a starting-point for design. We will always

rldesign Root-locus design P Proportional controller design (P) p. 2

simulate to evaluate the actual performance

criteria of a given design.

The following procedure is one way to go about

designing a proportional controller. Let us keep

in mind the adage that

plans are useless, but planning is

essential.

Here is the procedure.

1. Using the second- or first-order

assumption, estimate the ideal location of

the closed-loop poles for the desired

transient response criteria.

2. Construct a root locus plot and select the

location on the root locus that is closest to

the desired closed-loop pole location.

Using a computer, determine to which

value of gain K this location corresponds.

3. Solve for the closed-loop transfer function

with this gain.

4. Simulate the response for a unit step

command. Evaluate the performance

criteria. Iterate if necessary.

Example rldesign.P-1 re: proportional controller design for percent

overshootFor a plant with transfer function

(s+ 13)(s+ 15)

(s+ 2)(s− 2)

design a unity feedback gain controller such

that the system has a 20 percent overshoot and

minimal settling time.

We will use MATLAB. First, let’s define the

transfer function.

G=zpk([-13,-15],[2,-2],1);

The desired closed-loop pole location is along

the ray corresponding to 20 percent overshoot.

Since this is available with the data cursor in

the rlocus plot, there is no need to compute the

damping ratio or the angle of the ray. Let us

rldesign Root-locus design P Proportional controller design (P) p. 3

consider the root locus.

figure
rlocus(G) % root locus
grid on

This yields the correct root locus, but with

insufficient resolution to determine the proper

gains. We can do better if we specify a higher

resolution for those regions, as follows.

figure
Ka=sort([0:1:50,0.22:.001:0.23,

logspace(-3,3,500),Inf]);
rlocus(G,Ka) % root locus with custom

gains
grid on

−15 −10 −5

−5

5

K = 0.234

K = 0.032

%OS = 20

← settling time decreasing

<(s)

=(s)

From the figure, we can see that when the gain

is either K = 0.032 or K = 0.234, according to

the second-order approximation, the %OS is 20.
We prefer the latter because of our requirement

to minimize the settling time, which decreases

as the closed-loop poles move leftward. Now

we must find the closed-loop transfer function,

which can be found as follows.

Gcl=feedback(K*G,1);

Nowwe are ready to simulate the step response

to evaluate the actual transient response.

t1=5; % final time
[y,t]=step(Gcl,t1);
stepinfo(y,t)

rldesign Root-locus design P Proportional controller design (P) p. 4

The command stepinfo computes the actual

transient response characteristics. The result is

%OS = 24.5, greater than our requirement. This

discrepancy is not surprising, since we were

using the second-order approximation. Let’s

look at a plot.a

0.5 1 1.5 2

0.5

1

1.2

time (s)

y(
t)

Note that the steady-state error is nonzero

(which we can’t really do anything about).

Looking back at the root locus plot, we see that

as the gain increases from here, the percent

overshoot should decrease. We iterate the gain

to obtain K = 0.35. The final closed-loop step

response is shown, below.

0.5 1 1.5 2

0.5

1

1.2

time (s)

y(
t)

/y
(∞)

In this last plot we have divided by the steady-

state value such that the percent overshoot is

rldesign Root-locus design P Proportional controller design (P) p. 1

clearly visible in the plot. This is a nice idiom,

but it is important not to forget that there is still

a nonzero steady-state error!

a. It is striking that the initial condition does not appear to
be satisfied. This is due to the two zeros, which effectively
differentiate the step input, which changes infinitely quickly at
the origin.

Example using Python

The following was generated from a Jupyter

notebook with the following filename and

kernel.

notebook filename:
python_root_locus_design_example_01.ipynb↪→

notebook kernel: python3

Problem statement

For a plant with transfer function

15000

s4 + 50s3 + 875s2 + 6250s+ 15000
(1)

design a unity feedback proportional controller

such that the closed-loop system has 10%

overshoot and setting time less than one second.

We begin with the usual loading of modules.

import numpy as np # for numerics
import control as c # the Control Systems module!
import matplotlib.pyplot as plt # for plots!

Determining ψ

Let’s determine a target point ψ for a

closed-loop pole.

Ts = 1 # sec ... target settling time
OS = 10 # percent ... target overshoot

The second-order approximation from

Chapter trans tells us that the settling time

specification implies a specific Re(ψ) and the

rldesign Root-locus design P Proportional controller design (P) p. 1

overshoot a specific angle ∠ψ. The real part is

found from the expressions

Ts =
4

ζωn
and Re(ψ) = −ζωn ⇒ (2)

Re(ψ) = −
4

Ts
. (3)

The angle is found via the equations

ζ =
− ln(%OS/100)√
π2 + ln2(%OS/100)

, (4)

tan(∠ψ) = π−

√
1− ζ2

ζ
, and tan(∠ψ) = Im(ψ)/Re(ψ).

(5)

Remarkably simple expressions result:

Im(ψ)/Re(ψ) = π−

√
1− ζ2

ζ
(6a)

Im(ψ)/Re(ψ) = π+
π

ln(%OS/100) . (6b)

So, in the final analysis, the desired pole location

ψ (assuming the second-order approximation is

valid) is given by the expression

ψ = −
4

Ts

(
1− j

π

ln(100/%OS)

)
. (7)

This formula holds beyond the scope of this

problem. We define it as a function.

def psi_fun(Ts,pOS):
return -4/Ts*(1-1j*np.pi/np.log(100/pOS))

psi = psi_fun(Ts,OS)
print("psi = %0.3g + j %0.3g" % (np.real(psi),np.imag(psi)))

psi = -4 + j 5.46

Design with the root locus

Defining a transfer function in Python is

straightforward with the Control Systems

module (documentation here).

plant_tf = c.TransferFunction(15000,[1,50,875,6250,15000])

https://python-control.readthedocs.io/en/0.8.2/index.html

rldesign Root-locus design P Proportional controller design (P) p. 1

Now plant_tf is a transfer function object. We

use the root_locusmethod of the Control

Systems module and also place the target point

ψ, where we’d like to have a closed-loop pole.

p1 = c.rlocus(plant_tf) # compute root locus
plt.plot(np.real(psi),np.imag(psi),'kx')
plt.annotate(

'ψ',
(np.real(psi),np.imag(psi)),
textcoords='offset points',
xytext=(20,-2),
arrowprops={'arrowstyle':'->'}

)
plt.show() # display the plot

−30 −20 −10 0

−20

−10

0

10

20

ψ

Real

Im
ag
in
ar
y

pole: -4.34+5.81j gain: 0.64

The root locus doesn’t go through our test point,

but it does get close. Our overshoot requirement

suggests we should stay along a ray from the

origin to the root locus. Double-clicking the

locus yields a data cursor that gives the complex

coordinate and corresponding gain. We choose

the coordinate −4.52+ j5.95 with its

corresponding gain 0.64.

K1 = 0.64 # gain selection from root locus

Now we need to evaluate via simulation the

transient response performance this yields.

Check and tune via simulation

We use the Control Systems module’s feedback
method to find the closed-loop transfer function.

rldesign Root-locus design P Proportional controller design (P) p. 2

controller_tf = K1 # controller transfer function
closed_loop_tf = # closed-loop transfer function

c.feedback(K1*plant_tf)

Now we can simulate the step response using

the Control System module method

step_response.

t,y = c.step_response(closed_loop_tf)

p2 = plt.plot(t,y)
plt.xlabel('time (s)')
plt.ylabel('step response $y(t)$')
plt.grid()
plt.show()

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

0.0

0.1

0.2

0.3

0.4

time (s)

st
ep

re
sp
o
n
se
y
(t
)

It is difficult to evaluate the performance from

the graph, so we use the step_infomethod.

si = c.step_info(closed_loop_tf)
si

{'RiseTime': 0.28463337550583534,
'SettlingTime': 0.9079645665577206,
'SettlingMin': 0.35175282522378337,
'SettlingMax': 0.422669315052121,
'Overshoot': 8.279065668845002,
'Undershoot': 0.0,
'Peak': 0.422669315052121,
'PeakTime': 0.6440028887143202,
'SteadyStateValue': 0.39035183065283424}

Specifically, we want to know the overshoot

and settling time.

rldesign Root-locus design beyondP Proportional controller design (P) p. 3

print("percent OS: %3.3g" % si['Overshoot'])
print("settling time: %3.3g" % si['SettlingTime'])

percent OS: 8.28
settling time: 0.908

This is pretty close to the requirements. We

could tune the gain to try to get closer.

rldesign Root-locus design PI Beyond proportional design p. 1

1. When describing “active” and “passive” controllers, we have
in mind analog circuit instantiations. However, the vast majority
of modern controllers are actually instantiated in digital circuits via
microcontrollers. Due to the high rates of analog-to-digital (ADC) and
digital-to-analog (DAC) conversion in modern controllers, often digital
controller performance is nearly identical to that of a corresponding
analog controller. A consequence of this is that continuous-time (analog)
controller design, as we learn in this chapter, can be applied in the
discrete-time (digital) case with minor alteration.

rldesign.beyondP Beyond proportional design

Using proportional design, the closed-loop

poles are restricted to the root locus. Often the

root locus does not pass through the closed-loop

pole location specified by performance

requirements. Therefore, design techniques that

can move the poles to desirable locations are

indicated.

We consider two classes of controller:

proportional-integral-derivative (PID) and

proportional-lead-lag. PID controllers use

“ideal” integrators (s−1) and differentiators (s)

and therefore require active circuits for

instantiation. Proportional-lead-lag controllers

can be considered approximations of PID

controllers, and these can be realized in passive

circuits.1

We will build controllers incrementally by

cascade compensation, which is illustrated in

Fig. beyondP.1. This means we will begin with

proportional controller design, then add

cascade compensation to achieve different

performance requirements. For instance, we

will begin with a gain (P) control design, then

cascade an integral compensator (now the

controller is PI), and finally cascade a derivative

compensator (now it is PID).

K C1(s) C2(s) G(s)

H(s)

R E
compensators

U Y

−

controller

Figure beyondP.1: block diagram illustrating cascade compensation
via compensators C1 and C2.

rldesign Root-locus design PI Proportional-integral (PI) controller design p. 1

rldesign.PI Proportional-integral (PI) controller design

When studying steady-state error, we

discovered that the more integrators (s−1) in the

open-loop transfer function, the better the

steady-state error. PI control includes integrator

compensation to a proportional controller

without significantly affecting the transient

response. Later, we will deal with how to

design for transient response.

Here’s the plan: include an integrator (i.e. pole

at the origin) in the controller and a nearby zero

to counter the pole’s (slowing) effects on the

transient response.

Why does the integrator affect the transient

response? Adding a pole at the origin

completely changes the root locus, and therefore

the location of the closed-loop poles, and

therefore the transient response.

In order to mitigate this, we place a zero near

the origin, which nearly cancels the integrator’s

effect on the root locus. To see this, recall that

the root locus must meet the phase criterion

(Lec. rlocus.def). Let us meditate on Fig. PI.1, in

which a system is presented that initially

contained the three left half-plane poles and no

zeros. Including the integral pole at the origin

(integrator) and zero nearby, we obtain the root

locus shown. From the phase criterion,

−θ1 + θ2 − θ3 − θ4 − θ5 = π± 2πm (m ∈ Z).
(1)

If the compensator zero is placed close to the

pole, then θ2 − θ1 ≈ 0 and the root locus is

mostly unchanged from its pre-compensation

state.

Design procedure

The following design procedure can guide us

through this typically straightforward controller

design.

rldesign Root-locus design PI Proportional-integral (PI) controller design p. 2ψ|ψ− p1|

|ψ− p2|

θ1

θ2
θ3θ4θ5 <(s)

=(s)

Figure PI.1: the effect of the integral compensator on the root locus’s
angle condition.

1. Design a proportional controller to meet

transient response requirements by

choosing the gain K for the dominant

closed-loop poles to be p1,2.

2. Include cascade integral compensation

and a real zero near Re(p1,2)/10.
3. Tune the gain K such that the close-loop

poles are as desirable as possible.

4. Simulate the time response to see if it

meets specs. Tune. If the steady-state

compensation is too slow, try moving the

zero leftward.

Example rldesign.PI-1 re: PI control for percent overshoot

For a plant with transfer function

10

(s+ 2)(s+ 5)

design a unity feedback PI controller such that

the system has %OS = 20 and zero steady-state

error for step inputs.

We will use MATLAB. First, let us observe

that with no integrators in the plant (Type

0 system), the system will have a finite

steady-state error to step inputs. Therefore, we

require integral compensation. Let’s define the

transfer function.

rldesign Root-locus design PI Proportional-integral (PI) controller design p. 3

sys1 = zpk([],[-2,-5],10);

The desired closed-loop pole location is along

the ray corresponding to 20 percent overshoot.

Since this is available with the data cursor in

the rlocus plot, there is no need to compute the

damping ratio or the angle of the ray. Let us

consider the root locus.

figure;
rlocus(sys1,sort([0,.225,4:.1:10,Inf])

);
ylim([-10,10])
grid on

−8 −6 −4 −2 2

−5

5

%
O
S
=
20

K1 = 4.9

Re (s)

Im (s)

From the figure, we can see that when the

gain is K1 = 4.9, according to the second-order

approximation, the %OS is 20. This occurs at

the test point stp = −3.5 + j6.84. If we were

designing simply a P controller, we would

now simulate the closed-loop response with

this gain. Before we simulate, let’s apply

integral compensation. We put a pole at the

origin as the integrator and compensate with

a nearby zero. We start with that zero at

Re(stp)/10 = −0.35. Our compensator has the

transfer function

s+ 0.35

s

and can be applied to the open-loop transfer

function as follows.

rldesign Root-locus design PI Proportional-integral (PI) controller design p. 4

sReal = -3.5;
zeroc = sReal/10;
comp = zpk([zeroc],[0],1); %

compensator
sys2 = K1*comp*sys1; % controlled open

-loop tf

Now a new root locus analysis is required in

order to determine the new gain required to get

back near the test point. This is shown below.

−8 −6 −4 −2 2

−5

5

%
O
S
=
20

K2 = 0.94

Re (s)

Im (s)

We see that the cascade gain required to return

to the overshoot ray is K2 = 0.94.

Now we must find the closed-loop transfer

functions for each controller design, which can

be found as follows.

sys1cl = feedback(K1*sys1,1);
sys2cl = feedback(K2*sys2,1);

Now we are ready to simulate the closed-loop

step response to evaluate the actual step

response for each controller design.

tvec = 0:.01:8;
y1 = step(sys1cl,tvec);
y2 = step(sys2cl,tvec);
stepinfo(y1,tvec)

The command stepinfo computes the

simulated transient response characteristics.

The result is %OS = 20.0, good! Note that we

used the P controller for this evaluation. The

strict definition of this gives a skewed value

due to the steady-state error compensation.

rldesign Root-locus design PLag Proportional-integral (PI) controller design p. 5

Let’s take a look at a plot comparing the two

step responses.

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

time (s)

un
it

st
ep

re
sp

on
se

P controller

PI controller

Note that the PI-controlled system has

steady-state error approaching zero and

that the two systems have similar transient

response characteristics, per our expectation.

The steady-state error does respond relatively

“slowly” because the third closed-loop pole

introduced by the integral compensator is

relatively close to the imaginary axis. Moving

the compensator zero leftward can speed

this response, but transient responses will

be increasingly effected. In this case, the

settling time determined by the complex

closed-loop poles (we could call this the

“transient settling time”) will increase as

we move the zero leftward. However, the

settling time determined by the integrator

(we could call this the “steady-state settling

time”) will simultaneously decrease. Specific

system requirements would determine how we

balance these considerations.

Our final controller design has transfer function

K1K2 ·
s+ 0.35

s
= 4.61 · s+ 0.35

s
.

rldesign Root-locus design PLag Proportional-lag controller design p. 1

2. There are more precise ways to compute a location of zc based on
a specified factor α of steady-state error improvement that depend on
the system type and command. However, given the complex tradeoffs
among steady-state error, its speed, and transient response performance,
we often will re-adjust the gain in any case, making optimization, here,
premature.

rldesign.PLag Proportional-lag controller design

PI control can be approximated by

proportional-lag control. Instead of adding a

true integrator and increasing the system type,

which the integral compensator does, yielding

zero steady-state error for a system and input

combination with finite steady-state error, the

lag compensator reduces the steady-state error

by some finite factor in the same instance. An

advantage of using a lag compensator instead of

an integrator is that it can be instantiated in a

passive circuit.

Design procedure

The following procedure provides a

starting-point for proportional-lag controller

design. Let’s assume the steady-state error

design specification is to improve a finite

steady-state error by a factor of α.

1. Design a proportional controller to meet

transient response requirements by

choosing the gain K1 for the dominant

closed-loop poles to be p1,2.

2. Include a cascade lag compensator of the

form

K2
s− zc
s− pc

, (1)

where pc < 0 is a real pole near the origin;

zc is a real zero near αpc;2 and, initially,

K2 = 1. For minimal effect on the original

transient response design, Re(p1,2)� zc,

but this is often violated for faster

steady-state error compensation.

3. Use a new root locus to tune the gain K2

such that the closed-loop poles are as

desirable as possible. This step can often

be omitted.

rldesign Root-locus design PLag Proportional-lag controller design p. 1

4. Construct the closed-loop transfer

function with the controller

K1K2
s− zc
s− pc

. (2)

5. Simulate the time response to see if it

meets specifications. Tune. If the

steady-state compensation is too slow, try

moving zc and/or pc leftward. If it is too

large, increase the ratio zc/pc.

A design example

Let a system have plant transfer function

s+ 10

s2 + 8s+ 25
. (3)

Design a proportional-lag controller such that

the closed-loop settling time is less than 0.4

seconds and the step response has steady-state

error 10 times less than with a proportional

controller, alone.

We use Matlab for the design. First, we design a

proportional controller to meet the transient

response performance criterion that the the

settling time Ts is less than 0.4 seconds. The root

locus is shown in Figure PLag.1.

G = tf([1,10],[1,8,25]);
figure
rlocus(G)

Let’s use the second-order approximation that

Ts ≈
4

ζωn
=

4

−Re(p1,2)
, (4)

where p1,2 are the closed-loop pole locations.

For Ts = 0.4, Re(p1,2) = −10. This corresponds

to a gain of about

K1 = 12. (5)

rldesign Root-locus design PLag Proportional-lag controller design p. 2

−20 −15 −10 −5 5

−5

5

Re (s)

Im (s)

Figure PLag.1: root locus for proportional controller design.

Let’s construct the compensator and

corresponding closed-loop transfer function GP

for gain control.

K1 = 12;
G_P = feedback(K1*G,1)

G_P =

12 s + 120

s^2 + 20 s + 145

Continuous-time transfer function.

Now, we use cascade lag compensation with

compensator

K2
s− zc
s− pc

. (6)

For now, we set K2 = 1. Our steady-state error

specification is a 10-fold factor of decrease in

steady-state error, so we set α = 10. If we begin,

somewhat arbitrarily, with pc = −0.1, then

zc = αpc = −1, which is still comfortably distant

from p1,2. Let’s construct the compensator and

closed-loop transfer function GPL.

alpha = 10;
p_c = -0.1;
z_c = alpha*p_c;

rldesign Root-locus design PLag Proportional-lag controller design p. 3

C_L = zpk(z_c,p_c,1)
G_PL = feedback(K1*C_L*G,1);

C_L =

(s+1)

(s+0.1)

Continuous-time zero/pole/gain model.

We could check out the root locus, but as along

as we haven’t botched something, it should be

quite similar to the original. Let’s simulate the

step responses for the proportional and

proportional-lag controllers.

t_a = linspace(0,2,100); % simulation time
y_P = step(G_P,t_a); % p control step response
y_PL = step(G_PL,t_a); % p-lag control step response

Let’s look at the simulation results, shown in

Figure PLag.2. The settling time for the

proportional controller looks about right, but

the steady-state error is about 18%. We’d like it

to be about 1.8%. The lag compensator has a

similar transient and a slow steady-state error

decrease. It’s so slow that we can’t really

evaluate its size after two seconds. Rather than

extend the simulation, we choose to speed up

the steady-state error compensation by moving

the compensator pole and zero leftward.

C_L2 = zpk(2*z_c,2*p_c,1)
G_PL2 = feedback(K1*C_L2*G,1);
y_PL2 = step(G_PL2,t_a);

C_L2 =

(s+2)

(s+0.2)

Continuous-time zero/pole/gain model.

From Figure PLag.3, we see that there’s

improvement. Let’s try increasing the gain K2

rldesign Root-locus design PLag Proportional-lag controller design p. 4

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

time (s)

st
ep

re
sp
o
n
se

P control

P-lag control

Figure PLag.2: step responses for proportional and proportional-lag
controllers (initial design).

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

time (s)

st
ep

re
sp
o
n
se

P control

PL control

PL2 control

Figure PLag.3: step responses for proportional and proportional-lag
controllers (secondary design).

and moving the compensator pole and zero

leftward more aggressively to see if we can

speed things up a bit.

K2 = 1.45; % compensator gain
C_L3 = K2*zpk(2.8*z_c,2.8*p_c,1)
G_PL3 = feedback(K1*C_L3*G,1);
y_PL3 = step(G_PL3,t_a);

C_L3 =

1.45 (s+2.8)

(s+0.28)

Continuous-time zero/pole/gain model.

rldesign Root-locus design PD Proportional-lag controller design p. 5

0 0.5 1 1.5 2
0

0.5

1

time (s)

st
ep

re
sp
o
n
se

P control

PL control

PL2 control

PL3 control

Figure PLag.4: step responses for proportional and proportional-lag
controllers (tertiary design).

From Figure PLag.4, it appears to meet both

specifications. Let’s use stepinfo to investigate
the transient performance.

si_PL3 = stepinfo(y_PL3,t_a);
si_PL3.SettlingTime

ans =

0.2660

This more than meets our settling time

requirement of 0.4 seconds. The steady-state

error can be approximated as follows.

disp(...
sprintf(...
'steady-state error: %0.3g%%',...
100*(1-y_PL3(end))...

)...
)

steady-state error: 1.46%

This meets our goal of 1.8%. Further iteration

could be tighten-up the design.

rldesign Root-locus design PD Proportional-derivative (PD) controller design p. 1

−5 −4 −3 −2 −1 1 2
−2

2

Figure PD.1: root locus for a simple plant with two poles.

rldesign.PD Proportional-derivative (PD) controller

design

Thus far, our designs have been restricted to

closed-loop pole locations on the original root

locus. We could add integral or lag

compensation for steady-state error

performance and vary the gain for transient

response performance. But what if we desire

closed-loop poles p1,2 to be in a location that the

root locus does not intersect?

Among many possible methods to address this,

we pursue the following: a derivative

compensator with zero location zc chosen such

that the root locus intersects p1,2, with form

K(s− zc), (1)

where K ∈ R is a gain. This compensator is

called “derivative” because its primary effect on

the overall controller’s operation on the error e

is a new factor of s, yielding a scaling of the

term sE(s) = ė(t).

The effect of this zero is to pull the locus toward

it. Consider the simple plant of Fig. PD.1.

Suppose we would like to speed up the

closed-loop response, but cannot because, no

matter how much gain we use, the settling time

is fixed by the vertical asymptotes. If we use a

compensator zero at zc, we can pull the locus

leftward, as shown in Fig. PD.2. Varying zc

from −∞ to 0, we see that any location left of −2

can be intersected. In fact, if we consider both

positive and negative gains for this example, we

can place a desired closed-loop pole at any

location in the complex plane!

A way to approach designing a controller for a

plant Gwith a derivative compensator C is to

consider the compensator zero’s effect on the

phase criterion, which must always be satisfied

rldesign Root-locus design PD Proportional-derivative (PD) controller design p. 1

zc = −10 zc = −8 zc = −6 zc = −4 zc = −2 zc = 0

Figure PD.2: root locus (blue) for plant with poles (red) compensated with a zero (green) at zc. Note that varying zc yields root loci that can intersect any point in
the complex plane if negative gains are considered. An animation corresponding to this figure can be found at https://youtu.be/VZbT_2bT2xU.

3. The 2πmodulo in these expressions is suppressed for clarity.

4. See Lec. rldesign.multd for how to handle required angle
compensations beyond±π.

5. Note that θc ∈ [−π,0) is possible only when Imψ < 0 and
θc ∈ (0,π] is possible only when Imψ > 0.

at points on the root locus:

∠(G(s)C(s)) = π. (2)

In order for a desired point s = ψ to be on the

root locus, then,3

∠(G(ψ)C(ψ)) = π

∠G(ψ) + ∠C(ψ) = π⇒

∠C(ψ) = π− ∠G(ψ)⇒

∠(ψ− zc) = π− ∠G(ψ).

Let this angle ∠(ψ− zc), called the compensator

angle, be given the symbol

θc ≡ ∠(ψ− zc). (3)

Then

zc = Re(ψ) − Im(ψ)/ tan θc (θc ∈ [−π, π]), (4)

where we have limited the application of this

result to θc ∈ [−π, π] because a single zero can

contribute angles in this interval only.4,5 This

result is to be used in the design procedure that

follows. It can be understood geometrically as

the position of zc such that the angle of the

vector with tail at zc and head at ψ is θc.

Design procedure

The following procedure provides a

starting-point for proportional-derivative

controller design. Let’s assume the transient

https://youtu.be/VZbT_2bT2xU

rldesign Root-locus design PD Proportional-derivative (PD) controller design p. 1

6. See ricopic.one/control/source/pd_controller_design_example.m
for the source.

response specification is such that we desire a

closed-loop pole to be located at s = ψ.

1. Design a proportional controller to meet

transient response requirements by

choosing the gain K1 for the dominant

closed-loop poles to be as close as possible

to ψ.

2. Include a cascade derivative compensator

of the form

K2(s− zc), (5)

where, initially, K2 = 1 and zc is a real zero

that satisfies Eq. 4. For convenience, we

repeat the two key formulas:

θc = π− ∠G(ψ) and

zc = Re(ψ) − Im(ψ)/ tan θc (θc ∈ [−π, π]).

3. Use a new root locus to tune the gain K2

such that a closed-loop pole is at ψ.

4. Construct the closed-loop transfer

function with the controller

K1K2(s− zc). (6)

5. Simulate the time response to see if it

meets specifications. Tune.

A design example

Let a system have plant transfer function

1

(s+ 2)(s+ 6)(s+ 11)
. (7)

Design a PD controller such that the closed-loop

settling time is about 0.8 seconds and the

overshoot is about 15%.

Determining ψ

We use Matlab for the design.6 First, we must

determine what the specified transient response

criteria imply for the locations of our

http://ricopic.one/control/source/pd_controller_design_example.m

rldesign Root-locus design PD Proportional-derivative (PD) controller design p. 1

closed-loop poles. Let one of these desired pole

locations be called ψ. The transient response

performance criteria are as follows.

Ts = .8; % sec ... spec settling time
OS = 15; % percent ... spec overshoot

The second-order approximation from

Chapter trans tells us that the settling time

specification implies a specific Re(ψ) and the

overshoot a specific angle ∠ψ. The real part is

found from the expressions

Ts =
4

ζωn
and Re(ψ) = −ζωn ⇒ (8)

Re(ψ) = −
4

Ts
. (9)

The angle is found via the equations

ζ =
− ln(%OS/100)√
π2 + ln2(%OS/100)

, (10)

tan(∠ψ) =
√
1− ζ2

ζ
, and tan(∠ψ) = − Im(ψ)/Re(ψ).

(11)

A remarkably simple expression results:

Im(ψ) = −Re(ψ)
√
1− ζ2

ζ
(12a)

Im(ψ) = −Re(ψ) π

ln(100/%OS) . (12b)

So, in the final analysis, the desired pole location

ψ (assuming the second-order approximation is

valid) is given by the expression

ψ = −
4

Ts

(
1− j

π

ln(100/%OS)

)
. (13)

This formula holds beyond the scope of this

problem. We define it as an anonymous

function.

psi_fun = @(Ts,pOS) -4/Ts*(1-1j*pi/log(100/pOS));
psi = psi_fun(Ts,OS);
disp(sprintf('psi = %0.3g + j %0.3g',real(psi),imag(psi)))

psi = -5 + j 8.28

rldesign Root-locus design PD Proportional-derivative (PD) controller design p. 1

−20 −15 −10 −5 5

−20

−10

10

20

Figure PD.3: root locus without compensation.

P control

We design a proportional controller that gets us

as close as possible to ψ. The root locus is

shown in Figure PD.3.

G = zpk([],[-2,-6,-11],1);
figure
rlocus(G)

Although we cannot get close to ψ on the root

locus, we can at least meet our %OS
specification by choosing a gain of about

K1 = 240. (14)

Let’s construct the compensator and

corresponding closed-loop transfer function GP

for gain control.

K1 = 240;
G_P = feedback(K1*G,1);

Derivative compensation

Now, we use cascade derivative compensation

with compensator

K2(s− zc). (15)

For now, we set K2 = 1. From Equation 4, we

compute the compensator zero

zc = Re(ψ) − |Im(ψ)|/ tan θc and θc = π− ∠G(ψ).

rldesign Root-locus design PD Proportional-derivative (PD) controller design p. 1

−20 −15 −10 −5 5

−20

−10

10

20

Figure PD.4: root locus with compensation.

theta_c = pi - angle(evalfr(G,psi));
z_c = real(psi) - abs(imag(psi))/tan(theta_c);
disp(sprintf('theta_c = %0.3g deg',rad2deg(theta_c)))
disp(sprintf('z_c = %0.3g',z_c))

theta_c = 67.1 deg
z_c = -8.5

Let’s construct the compensator sans tuned gain

K2 and tune it up using another root locus.

C_sans = zpk(z_c,[],1);
figure
rlocus(K1*C_sans*G)

The resulting root locus of Figure PD.4 intersects

ψ! (I mean, we knew it would, but we had our

doubts.) The corresponding gain is, from

Equation 2 (or we could use the data cursor),

K2 =
1

|(ψ− zc)G(ψ)|
. (16)

Let’s compute it, the controller CPD, and the

closed-loop transfer function GPD.

K2 = 1/abs(evalfr(K1*C_sans*G,psi));
C = K1*K2*C_sans;
G_PD = feedback(C*G,1);

Simulate

Our placement of the ψ depended on the

second-order approximation’s accuracy, which

rldesign Root-locus design PD Proportional-derivative (PD) controller design p. 2

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

time (s)

st
ep

re
sp
o
n
se

P control

PD control

Figure PD.5: step responses for proportional and proportional-derivative
controllers.

in this case is questionable, due to the proximity

of a third closed-loop pole. In any case, we

simulate the step response to test the efficacy of

the PD controller design and to compare it with

the P controller.

t_a = linspace(0,2.5,200); % s ... sim time
y_P = step(G_P,t_a); % P controlled step response
y_PD = step(G_PD,t_a); % PD controlled step response

figure
plot(t_a,y_P);
hold on;
plot(t_a,y_PD);
xlabel('time (s)');
ylabel('step response');
grid on
legend('P control','PD control','location','southeast');

The responses, shown in Figure PLag.3, suggest

the PD controller is at least close to meeting the

transient specifications. It is a happy accident

that the steady-state error also improved;

derivative compensation does not always do

this. Let’s use stepinfo to compute more

accurate transient response characteristics of the

PD-controlled system.

rldesign Root-locus design PLead Proportional-derivative (PD) controller design p. 3

si_PD = stepinfo(y_PD,t_a);
disp(sprintf('settling time: %0.3g',si_PD.SettlingTime))
disp(sprintf('percent overshoot: %0.3g',si_PD.Overshoot))

settling time: 0.82
percent overshoot: 16.2

This is quite close to the specification. If desired,

the gain K2 and the zero location zc could be

tuned, iteratively.

rldesign Root-locus design PLead Proportional-lead design p. 1

7. The 2πmodulo in these expressions is suppressed for clarity.

rldesign.PLead Proportional-lead design

Similar to how proportional-lag controllers can

be considered passively realizable PI

controllers, proportional-lead controllers can be

considered passively realizable PD controllers.

The idea is to choose a design point ψ through

which we construct the root locus to pass. As

with PD control, this point is chosen to meet

primarily transient response characteristics, and

the controller contributes the proper phase such

that the root locus passes through the point;

however, we have both a pole and a zero to set

in the compensator:

C(s) = K2
s− zc
s− pc

. (1)

We will “arbitrarily” choose either pc or zc and

the phase criterion for our design point ψwill

set the other. However, the “arbitrary” selection

of pc or zc in fact affects both the transient

response and the steady-state error (if it is

finite).

Let’s work out the details. A way to approach

designing a controller for a plant Gwith lead

compensator C is to consider the compensator

effects on the phase criterion, which must

always be satisfied at points on the root locus:

∠(G(s)C(s)) = π. (2)

In order for a desired point s = ψ to be on the

root locus, then,7

∠(G(ψ)C(ψ)) = π

∠G(ψ) + ∠C(ψ) = π⇒

∠C(ψ) = π− ∠G(ψ)⇒

∠(ψ− zc) − ∠(ψ− pc) = π− ∠G(ψ).

Let this angle ∠(ψ− zc) − ∠(ψ− pc), called the

compensator angle, be given the symbol

θc ≡ ∠(ψ− zc) − ∠(ψ− pc). (3)

rldesign Root-locus design PLead Proportional-lead design p. 1

So we can choose to arbitrarily set the location

of either zc or pc and the other will be set by the

phase criterion. Therefore we have either

∠(ψ− pc) = ∠(ψ− zc)︸ ︷︷ ︸
arbitrary

− θc or (4a)

∠(ψ− zc) = θc + ∠(ψ− pc)︸ ︷︷ ︸
arbitrary

. (4b)

And, from trigonometry,

pc = Re(ψ) − |Im(ψ)|/ tan(∠(ψ− zc) − θc) or

(5a)

zc = Re(ψ) − |Im(ψ)|/ tan(θc + ∠(ψ− pc)). (5b)

This result is to be used in the design procedure

that follows.

Design procedure

The following procedure provides a

starting-point for proportional-lead controller

design. Let’s assume the transient response

requirement is such that, according to the

second-order approximation, we desire a

closed-loop pole to be located at s = ψ.

1. Design a proportional controller to meet

transient response requirements by

choosing the gain K1 for the dominant

closed-loop poles to be as close as possible

to ψ.

2. Include a cascade lead compensator of the

form

K2
s− zc
s− pc

, (6)

where we arbitrarily set either zc or pc;

initially, K2 = 1. The other parameter must

be chosen to satisfy Eq. 5a or Eq. 5b. For

convenience, we repeat the key formulas:

θc = π− ∠G(ψ) and, after setting arbitrarily zc or pc,

pc = Re(ψ) − |Im(ψ)|/ tan(∠(ψ− zc) − θc) or

zc = Re(ψ) − |Im(ψ)|/ tan(θc + ∠(ψ− pc)).

rldesign Root-locus design PLead Proportional-lead design p. 1

8. See ricopic.one/control/source/plead_controller_design_example.m
for the source.

3. By construction ψ is on the root locus, so

the gain can be computed directly from

Eq. 2:

K2 =
1

|K1C(ψ)G(ψ)|
. (7)

4. Construct the closed-loop transfer

function with the controller

K1K2
s− zc
s− pc

. (8)

5. Simulate the time response to see if it

meets specifications. Tune.

A design example

Let a system have plant transfer function

37500

s4 + 70s3 + 1625s2 + 14000s+ 37500
. (9)

Design a P-lead controller such that the

closed-loop settling time is about 0.4 seconds

and the overshoot is about 10%.

Determining ψ

We use Matlab for the design.8 First, we must

determine what the specified transient response

criteria imply for the locations of our

closed-loop poles. Let one of these desired pole

locations be called ψ. The transient response

performance criteria are as follows.

Ts = .4; % sec ... spec settling time
OS = 10; % percent ... spec overshoot

The second-order approximation from

Chapter trans tells us that the settling time

specification implies a specific Re(ψ) and the

overshoot a specific angle ∠ψ. From previous

results, the desired pole location ψ (assuming

the second-order approximation is valid) is

given by the expression

ψ = −
4

Ts

(
1− j

π

ln(100/%OS)

)
. (10)

http://ricopic.one/control/source/plead_controller_design_example.m

rldesign Root-locus design PLead Proportional-lead design p. 1

−40 −30 −20 −10

−20

−10

10

20

Figure PLead.1: root locus without compensation.

This formula holds beyond the scope of this

problem. We define it as an anonymous

function.

psi_fun = @(Ts,pOS) -4/Ts*(1-1j*pi/log(100/pOS));
psi = psi_fun(Ts,OS);
disp(sprintf('psi = %0.3g + j %0.3g',real(psi),imag(psi)))

psi = -10 + j 13.6

P control

We design a proportional controller that gets us

as close as possible to ψ. The root locus is

shown in Figure PLead.1.

G = tf([37500],[1,70,1625,14000,37500]);
figure
rlocus(G)

Although we cannot get close to ψ on the root

locus, we can at least meet our %OS
specification by choosing a gain of about

K1 = 1.1. (11)

Let’s construct the compensator and

corresponding closed-loop transfer function GP

for gain control.

K_1 = 1.1;
G_P = feedback(K_1*G,1);

rldesign Root-locus design PLead Proportional-lead design p. 2

Lead compensation

Now, we use cascade lead compensation with

compensator

K2
s− zc
s− pc

. (12)

For now, we set K2 = 1. Let’s also set

pc = −40,−100, and −400 to see how we fair

with different “arbitrary” choices. From Eq. 5b,

we compute the compensator zero

θc = π− ∠G(ψ) and zc = Re(ψ) − |Im(ψ)|/ tan(θc + ∠(ψ− pc)).

p_c = [-40,-100,-400];
theta_c = pi - angle(evalfr(G,psi));
theta_p_c = angle(psi*ones(size(p_c))-p_c);
z_c = real(psi) - abs(imag(psi))./tan(theta_c + theta_p_c);
disp(sprintf('theta_c = %0.3g deg',rad2deg(theta_c)))
for i = 1:length(p_c)

disp(sprintf(...
'pole phase contribution = %0.3g deg',...
rad2deg(theta_p_c(i))...

))
disp(sprintf('z_c = %0.3g',z_c(i)))

end

theta_c = 96.7 deg
pole phase contribution = 24.5 deg
z_c = -1.75
pole phase contribution = 8.62 deg
z_c = -6.26
pole phase contribution = 2 deg
z_c = -7.91

By construction, ψ is on the root locus, so we

can find K2 directly from Eq. 2.

C_sans = stack(1,tf(1,1)); % initialize model array
C = stack(1,tf(1,1)); % initialize model array
for i = 1:length(p_c)

C_sans(i) = zpk(z_c(i),p_c(i),1); % without gain
K_2(i) = 1/abs(evalfr(K_1*C_sans(i)*G,psi));
C(i) = K_1*K_2(i)*C_sans(i);
disp(sprintf('K_2 = %0.3g',K_2(i)))

end

K_2 = 4.88
K_2 = 15.2
K_2 = 66.7

rldesign Root-locus design PLead Proportional-lead design p. 1

Let’s compute the closed-loop controller Clead,

and the closed-loop transfer function Glead.

G_Plead = stack(1,tf(1,1));
for i = 1:length(p_c)

G_Plead(i) = feedback(C(i)*G,1);
end

Simulate

Our placement of the ψ depended on the

second-order approximation’s accuracy, which

in this case is questionable. In any case, we

simulate the step response to test the efficacy of

the P-lead controller design and to compare it

with the P controller.

t_a = linspace(0,2.5,200); % s ... sim time
y_P = step(G_P,t_a); % P controlled step response
for i = 1:length(p_c)

y_Plead(:,i) = step(G_Plead(i),t_a); % P-lead step resp.
end

figure
plot(t_a,y_P);
hold on;
for i = 1:length(p_c)

plot(t_a,y_Plead(:,i));
end
xlabel('time (s)');
ylabel('step response');
grid on
legend(...

'P control','P-lead 1','P-lead 2','P-lead 3',...
'location','southeast'...

);

The responses, shown in Figure PLead.2,

suggest the lead-compensated controllers are at

least close to meeting the transient

specifications. The steady-state error is worse

for compensator locations that are less-negative

and better for those that are more-negative. For

this reason, we remember that our “arbitrary”

choice of one of our compensator parameters

still affects the steady-state (and sometimes

transient) response. Let’s use stepinfo to

rldesign Root-locus design PLead Proportional-lead design p. 2

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

time (s)

st
ep

re
sp
o
n
se

P control

P-lead 1

P-lead 2

P-lead 3

Figure PLead.2: step responses for proportional and proportional-lead
controllers.

compute more accurate transient response

characteristics for the different controllers.

disp('P control')
si_P = stepinfo(y_P,t_a);
disp(sprintf('settling time: %0.3g',si_P.SettlingTime))
disp(sprintf('percent overshoot: %0.3g\n',si_P.Overshoot))
for i = 1:length(p_c)

si_Plead = stepinfo(y_Plead(:,i),t_a);
disp(sprintf('p_c: %0.3g',p_c(i)))
disp(sprintf(...
'settling time: %0.3g',si_Plead.SettlingTime ...

))
disp(sprintf(...
'percent overshoot: %0.3g\n',si_Plead.Overshoot...

))
end

P control
settling time: 0.906
percent overshoot: 13.6

p_c: -40
settling time: 1.28
percent overshoot: 66.2

p_c: -100
settling time: 0.371
percent overshoot: 6.95

p_c: -400
settling time: 0.37
percent overshoot: 7.31

We see that most of the P-lead controllers meet

the settling time and percent overshoot

rldesign Root-locus design PID Proportional-lead design p. 3

requirements. However, the first one is

problematic. This is mostly due to the

second-order approximation being significantly

violated in this case. We see from the time

response that the initial overshoot happens

quickly, but the return to steady-state is slow. If

desired, the gain K2 and compensator pole and

zero locations could be tuned, iteratively.

rldesign Root-locus design PID Prop-integral-derivative controller design p. 1

rldesign.PID Prop-integral-derivative controller

design

We have designed P, PI, and PD controllers.

Now we include all three terms in a single PID

controller. With this, we can design for both

steady-state and transient response.

A PID controller transfer function will have one

pole and two zeros. One zero zI and the pole

will be specified by an integral compensator

and the other zero zD will be specified by a

derivative compensator.

Our design process will yield a PID controller

with transfer function

K1︸︷︷︸
P design

· K2(s− zD)︸ ︷︷ ︸
D compensation

· K3
(s− zI)

s︸ ︷︷ ︸
I compensation

= KP + KI/s+ KDs,

(1)

where the named gains are called proportional

KP, integral KI, and derivative KD. The design

procedure below will yield numbered gains K1

(P design), K2 (D compensation), and K3 (I

compensation). They are related as follows:

KP = −K1K2K3(zD + zI) (2)

KI = K1K2K3zIzD (3)

KD = K1K2K3. (4)

Our design procedure is as follows.

1. Check that the integral compensation of a

PID controller is necessary and sufficient

to meet the steady-state performance

criteria.

2. From the transient performance criteria

and using the second-order

approximation, determine the region of

the s-plane in which the dominant

closed-loop poles of the root locus should

appear.

3. Design a P controller and evaluate its

transient response performance.

rldesign Root-locus design PID Prop-integral-derivative controller design p. 1

9. See ricopic.one/control/source/pid_controller_design_example_01.m
for the source.

4. Apply derivative (D) compensation to

improve the transient response. Simulate

to verify the transient response

performance.

5. Apply integrator (I) compensation to

improve the steady-state error

performance.

6. Check all performance criteria and adjust

gains and zero locations, as-needed.

7. Determine gains: proportional KP, integral

KI, and derivative KD.

A design example

Let a system have plant transfer function

s+ 40

s2 + 10s+ 200
. (5)

Design a PID controller with unity feedback

such that the closed-loop rise time is about 0.05

seconds, the overshoot is less than 5%, and the

steady-state error is zero for a step command.

Determining ψ

We use Matlab for the design.9 First, we see that

the plant is Type 0, so integral compensation is

required to yield zero steady-state error for a

step command and therefore a PID controller is

a good choice. Second, we must determine what

the specified transient response criteria imply

for the locations of our closed-loop poles. Let

one of these desired pole locations be called ψ.

The transient response performance criteria are

as follows.

Tr = .05; % sec ... spec rise time
OS = 5; % percent ... spec overshoot max

The second-order approximation from

Chapter trans tells us, via Fig. exact.2, that the

rise time specification implies a specific ratio

http://ricopic.one/control/source/pid_controller_design_example_01.m

rldesign Root-locus design PID Prop-integral-derivative controller design p. 2

between ωn and the implicit function f(ζ)

defined in Fig. exact.2:

Trωn = f(ζ)⇒ (6a)

Tr =
f(ζ)

ωn
(6b)

= 0.05. (spec)

The minimum angle is determined from the

overshoot specification via the relations

∠ψ = π− arccos ζ and (7)

ζ =
− ln(%OS/100)√
π2 + ln2(%OS/100)

. (8)

zeta = -log(OS/100)/sqrt(pi^2+log(OS/100)^2)
psi_angle_min = pi - acos(zeta)

zeta =

0.6901

psi_angle_min =

2.3324

With ζ in-hand, we use Fig. exact.2 to determine

f(ζ) and apply Eq. 6a to determine |ψ| = ωn:

psi_mag = 2.1/Tr % also = omega_n

psi_mag =

42

So the target magnitude |ψ| and minimum angle

∠ψ are determined. Let’s convert this to

rectangular coordinates:

psi_real = psi_mag*cos(psi_angle_min);
psi_imag = psi_mag*sin(psi_angle_min);
psi = psi_real+i*psi_imag

psi =

-28.9845 +30.3957i

rldesign Root-locus design PID Prop-integral-derivative controller design p. 1

−100 −80 −60 −40 −20

−40

−20

20

40

← ψ

Figure PID.1: root locus without compensation.

So this is our design target for the dominant

closed-loop poles. As usual, it depends on the

second-order approximation, so we will need to

simulate to determine the actual performance.

P control

We design a proportional controller that gets us

as close as possible to ψ. The root locus is

shown in Figure PID.1.

G = tf([1,40],[1,10,200]);
figure
rlocus(G);hold on
plot(psi,'kx','MarkerSize',5,'LineWidth',2)
text(real(psi),imag(psi),' \leftarrow \psi')

Although we cannot get quite to ψ on the root

locus, we can at least try to meet our %OS
specification by choosing a conservative gain of

about

K1 = 64. (9)

Let’s construct the compensator and

corresponding closed-loop transfer function GP

for gain control.

K1 = 64;
G_P = feedback(K1*G,1); % closed loop transfer func

rldesign Root-locus design PID Prop-integral-derivative controller design p. 2

Derivative compensation

Now, we try cascade derivative compensation

with compensator

K2(s− zc). (10)

For now, we set K2 = 1. From Equation 4, we

compute the compensator zero angle

contribution

θc = π− ∠G(ψ).

theta_c = pi - angle(evalfr(G,psi));
disp(sprintf('theta_c = %0.3g deg',rad2deg(theta_c)))

theta_c = 13.1 deg

We try using the zero compensator:

K2(s− zc). (11)

where

zc = Re(ψ) − |Im(ψ)|/ tan(θc) (12)

z_c = real(psi) - abs(imag(psi))/tan(theta_c);
disp(sprintf('z_c = %0.3g',z_c))

z_c = -159

Let’s construct the compensator sans tuned gain

K2 and construct the corresponding root locus.

C_sans = zpk(z_c,[],1);
figure
rlocus(K1*C_sans*G);hold on
plot(psi,'kx','MarkerSize',5,'LineWidth',2)
text(real(psi),imag(psi),' \leftarrow \psi')

By construction, the resulting root locus of

Fig. PID.2 intersects ψ. The corresponding gain

is, from Eq. 2 (or we could use the data cursor),

K2 =
1

|K1(ψ− zc)G(ψ)|
. (13)

Let’s compute it, the controller CPD, and the

closed-loop transfer function GPD.

rldesign Root-locus design PID Prop-integral-derivative controller design p. 1

−160 −140 −120 −100 −80 −60 −40 −20

−40

−20

20

40

← ψ

Figure PID.2: root locus with derivative compensation.

K2 = 1/abs(evalfr(K1*C_sans*G,psi))
C = K1*K2*C_sans;
G_PD = feedback(C*G,1);

K2 =

0.0053

Simulate Our placement of the ψ depended on

the second-order approximation’s accuracy,

which in this case is questionable, due to the

proximity of a third closed-loop pole. In any

case, we simulate the step response to test the

efficacy of the PD controller design and to

compare it with the P controller.

t_a = linspace(0,.7,200); % s ... sim time
y_P = step(G_P,t_a); % P controlled step response
y_PD = step(G_PD,t_a); % PD controlled step response

figure
plot(t_a,y_P);
hold on;
plot(t_a,y_PD);
xlabel('time (s)');
ylabel('step response');
grid on
legend('P control','PD control','location','southeast');

The responses, shown in Figure PID.3, suggest

the PD controller is probably not meeting the

transient performance specifications. Let’s use

stepinfo to compute more accurate transient

rldesign Root-locus design PID Prop-integral-derivative controller design p. 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

time (s)

st
ep

re
sp
o
n
se

P control

PD control

Figure PID.3: step responses for proportional and proportional-derivative
controllers.

response characteristics of the PD-controlled

system.

si_PD = stepinfo(y_PD,t_a);
disp(sprintf('rise time: %0.3g',si_PD.RiseTime))
disp(sprintf('percent overshoot: %0.3g',si_PD.Overshoot))

rise time: 0.022
percent overshoot: 13.6

It’s too fast and overshoots too much. Our

second-order approximation that led to this

design is not very accurate. Before we start

tuning this design, let’s fix the steady-state error

by including an integral compensator. Perhaps

this compensator’s zero can “help” us with our

fix.

Integral compensation

The integral compensator has its usual form

K3
s− zI
s

. (14)

We’re less concerned than usual about affecting

our transient response with this compensator

because we need some help doing so in any

case. Let’s start with zI = −5.

z_I = -5;
C_I_sans = zpk(z_I,0,1);

rldesign Root-locus design PID Prop-integral-derivative controller design p. 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

time (s)

st
ep

re
sp
o
n
se

P control

PD control

PID control

Figure PID.4: step responses for proportional and proportional-derivative
controllers.

Now, a root locus wouldn’t be particularly

helpful here, since our second-order

approximation is poor and getting worse by the

minute. Instead, we proceed directly to

simulation.

G_PID1 = feedback(C_I_sans*C*G,1);
y_PID1 = step(G_PID1,t_a); % PID controlled step response

The responses, shown in Figure PID.4, show

that the steady-state error has improved with

integral compensation, and so has the transient

response, but not enough.

figure
plot(t_a,y_P);
hold on;
plot(t_a,y_PD);
hold on;
plot(t_a,y_PID1);
xlabel('time (s)');
ylabel('step response');
grid on
legend('P control','PD control','PID control',...

'location','southeast');

Let’s take a look at the stepinfo.

si_PID = stepinfo(y_PID1,t_a);
disp(sprintf('rise time: %0.3g',si_PID.RiseTime))
disp(sprintf('percent overshoot: %0.3g',si_PID.Overshoot))

rldesign Root-locus design PID Prop-integral-derivative controller design p. 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

time (s)

st
ep

re
sp
o
n
se

P control

PD control

PID control

tweaked PID control

Figure PID.5: step responses for proportional and proportional-derivative
controllers.

rise time: 0.0246
percent overshoot: 8.98

It’s still too fast and overshoots too much. At

this point we can directly tweak our

compensator zeros and the overall gain to try to

meet our specifications.

K3 = 4;
z_D = -25;
z_I = -8;
C_D_sans = zpk(z_D,[],1);
C_I_sans = zpk(z_I,0,1);
G_PID2 = feedback(K1*K2*K3*C_I_sans*C_D_sans*G,1);
y_PID2 = step(G_PID2,t_a); % PID controlled step response

figure
plot(t_a,y_P);hold on;
plot(t_a,y_PD);hold on;
plot(t_a,y_PID1);hold on;
plot(t_a,y_PID2);
xlabel('time (s)');
ylabel('step response');
grid on
legend('P control','PD control','PID control',...

'tweaked PID control','location','southeast');

si_PID = stepinfo(y_PID2,t_a);
disp(sprintf('rise time: %0.3g',si_PID.RiseTime))
disp(sprintf('percent overshoot: %0.3g',si_PID.Overshoot))

rise time: 0.0422
percent overshoot: 0.391

rldesign Root-locus design PLeLa Prop-integral-derivative controller design p. 4

It turns out to be difficult to meet both

specifications, even with the massively tweaked

controller design. Whenever one attempts to

increase the rise time, the overshoot also

increases. However, we’ve done a serviceable

job, considering.

Compute the PID gains.

KP = -K1*K2*K3*(z_D+z_I)
KI = K1*K2*K3*z_D*z_I
KD = K1*K2*K3

KP =

44.8013

KI =

271.5228

KD =

1.3576

rldesign Root-locus design PLeLa Proportional-lead-lag controller design p. 1

10. See ricopic.one/control/source/plaglead_controller_design_example.m
for the source.

rldesign.PLeLa Proportional-lead-lag controller

design

Proportional-lead-lag controller design is much

like PID controller design, but the resulting

controller does not require active compensation.

With our techniques of cascade compensation

for lead and lag compensators, one can simply

apply both lead and lag compensation in the

usual manner. The order of application can be

somewhat important because lead

compensation can impact steady-state error. A

way to proceed is as follows.

1. Design a P controller and evaluate its

transient response performance.

2. Apply lead compensation to improve the

transient response. Simulate to verify the

transient response performance.

3. Apply lag compensation to improve the

steady-state error performance.

4. Check all performance criteria and adjust

gains and zero locations, as-needed.

A design example

Let a system have plant transfer function

200

s3 + 29s2 + 170s− 200
. (1)

Design a P-lead-lag controller such that the

closed-loop overshoot is less than 20%, settling

time is less than 0.7 seconds, and the

steady-state error is less than 3%.

Determining ψ

We use Matlab for the design.10 First, we must

determine what the specified transient response

criteria imply for the locations of our

closed-loop poles. Let one of these desired pole

locations be called ψ. The transient response

performance criteria are as follows.

http://ricopic.one/control/source/plead_controller_design_example.m

rldesign Root-locus design PLeLa Proportional-lead-lag controller design p. 1

Ts = .7; % sec ... spec settling time
OS = 20; % percent ... spec overshoot
sse = .03; % fraction of 1

The second-order approximation from

Chapter trans tells us that the overshoot

requirement implies a specific damping ratio ζ,

or, equivalently, ∠ψ:

∠ψ = π− arccos ζ. (2)

Additionally, the settling time requirement

implies a specific Re(ψ) via

TS = −4/Re(ψ). (3)

zeta = -log(OS/100)/sqrt(pi^2+(log(OS/100))^2);
psi_angle = pi - acos(zeta);
psi_re = -4/Ts;
psi_im = psi_re*tan(psi_angle);
psi = psi_re + j*psi_im;
disp(sprintf('psi = %0.3g + j %0.3g',real(psi),imag(psi)))

psi = -5.71 + j 11.2

P control

We design a proportional controller that gets us

as close as possible to ψ. The root locus is

shown in Figure multd.2.

G = tf([200],[1,29,170,-200]);
figure
rlocus(G)

Although we cannot get close to ψ on the root

locus, we can at least meet our %OS
specification by choosing a gain of about

K1 = 5. (4)

Let’s construct the compensator and

corresponding closed-loop transfer function GP

for gain control.

K_1 = 5;
G_P = feedback(K_1*G,1);

rldesign Root-locus design PLeLa Proportional-lead-lag controller design p. 2

−40 −30 −20 −10

−20

−10

10

20

Figure PLeLa.1: root locus without compensation.

Lead compensation

Now, we use cascade lead compensation with

compensator

K2
s− zld
s− pld

. (5)

For now, we set K2 = 1. Let’s also set,

arbitrarily, pld = −30. From Eq. 5b, we compute

the compensator zero

θc = π− ∠G(ψ) and zc = Re(ψ) − |Im(ψ)|/ tan(θc + ∠(ψ− pc)).

p_ld = -30;
theta_ld = pi - angle(evalfr(G,psi));
theta_p_ld = angle(psi-p_ld);
z_ld = real(psi) - abs(imag(psi))/tan(theta_ld + theta_p_ld);
disp(sprintf('theta_ld = %0.3g deg',rad2deg(theta_c)))
disp(sprintf(...

'pole phase contribution = %0.3g deg',...
rad2deg(theta_p_c)...

))
disp(sprintf('z_ld = %0.3g',z_ld))

theta_ld = 48 deg
pole phase contribution = 24.7 deg
z_ld = -9.19

By construction, ψ is on the root locus, so we

can find K2 directly from Eq. 2.

C_sans = zpk(z_ld,p_ld,1); % without gain
K_2 = 1/abs(evalfr(K_1*C_sans*G,psi));
C_ld = K_1*K_2*C_sans;
disp(sprintf('K_2 = %0.3g',K_2))

rldesign Root-locus design PLeLa Proportional-lead-lag controller design p. 1

K_2 = 6.45

Let’s compute the closed-loop controller Clead,

and the closed-loop transfer function Glead.

G_Plead = feedback(C_ld*G,1);

Lag compensation

Now, we use cascade lag compensation with

compensator

K3
s− zlg

s− plg
. (6)

For now, we set K3 = 1.

The steady-state error for the lead compensated

system is given by the following.

Kp_ld = evalfr(C_ld*G,0);
ess_ld = 1/(1+Kp_ld);
disp(sprintf('steady-state error = %0.3g',ess_ld))

steady-state error = -0.113

The negative value implies the output is larger

than the input. Reducing this to the given

requirement implies an approximate ratio of

compensator zero to pole α, as follows.

alpha = abs(ess_ld)/sse

alpha =

3.7533

If we begin, somewhat arbitrarily, with plg and

zlg = αplg. Let’s construct the compensator and

closed-loop transfer function GPLL.

p_lg = -.1;
z_lg = alpha*p_lg;
C_sans = zpk(z_lg,p_lg,1);
G_PLL = feedback(C_sans*C_ld*G,1);

rldesign Root-locus design PLeLa Proportional-lead-lag controller design p. 2

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

time (s)

st
ep

re
sp
o
n
se

P control

P-lead

P-lead-lag

Figure PLeLa.2: step responses for proportional, proportional-lead, and
proportional-lead-lag controllers.

Simulate

Our placement of the ψ depended on the

second-order approximation’s accuracy. In any

case, we simulate the step response to test the

efficacy of the P-lead and P-lead-lag controller

designs and compare them with the P controller.

t_a = linspace(0,2.5,200); % s ... sim time
y_P = step(G_P,t_a); % P controlled step response
y_Plead = step(G_Plead,t_a); % P-lead step resp.
y_PLL = step(G_PLL,t_a); % P-lead-lag step resp.

figure
plot(t_a,y_P);hold on;
plot(t_a,y_Plead);
plot(t_a,y_PLL);
xlabel('time (s)');
ylabel('step response');
grid on
legend(...

'P control','P-lead','P-lead-lag',...
'location','southeast'...

);

The responses, shown in Figure multd.3,

suggest the lead and lead-lag compensated

controllers nearly meet the transient

requirements. Let’s use stepinfo to compute

more accurate transient response characteristics

for the different controllers.

rldesign Root-locus design PLeLa Proportional-lead-lag controller design p. 3

disp('P control')
si_P = stepinfo(y_P,t_a);
disp(sprintf('settling time: %0.3g',si_P.SettlingTime))
disp(sprintf('percent overshoot: %0.3g\n',si_P.Overshoot))
si_Plead = stepinfo(y_Plead,t_a);
disp('P-lead control')
disp(sprintf(...

'settling time: %0.3g',si_Plead.SettlingTime ...
))
disp(sprintf(...

'percent overshoot: %0.3g\n',si_Plead.Overshoot...
))
si_PLL = stepinfo(y_PLL,t_a);
disp('P-lead-lag control')
disp(sprintf(...

'settling time: %0.3g',si_PLL.SettlingTime ...
))
disp(sprintf(...

'percent overshoot: %0.3g\n',si_PLL.Overshoot...
))

P control
settling time: 1.41
percent overshoot: 16

P-lead control
settling time: 0.689
percent overshoot: 17.2

P-lead-lag control
settling time: 1.57
percent overshoot: 25.1

The stepinfo results are not very precise for the
P-lead-lag controller due to the slow

steady-state compensation, which isn’t

completely finished by the end of the

simulation. Adjusting compensator zeros and

poles may improve things, but a trade-off

emerges between overshoot and steady-state

compensation: speeding up the latter increases

the overshoot rather sharply.

The steady-state requirement can be checked

analytically.

Kp_PLL = evalfr(C_sans*C_ld*G,0);
ess_PLL = 1/(1+Kp_PLL);
disp(sprintf('steady-state error = %0.3g',ess_PLL))

rldesign Root-locus design multd Proportional-lead-lag controller design p. 4

steady-state error = -0.0277

This is less than 3%, per the requirement;

however, the compensation does take a

relatively long time to approach this small error.

rldesign Root-locus design multd Multiple derivative compensators p. 1

11. The phase criterion was defined in Lec. rlocus.def, Eq. 6.

Algorithm multd.1 the multiple derivative
compensator algorithm.

function d_comp_m(ψ,GH(s))
θc ← π− ∠GH(ψ) . required phase comp
m← ceiling(θc/π) . zeros needed
θm ← θc/m . divide contributions
zm ← Re(ψ) − Im(ψ)/ tan θm . trig
C ′
m ← (s− zm)m . comp sans gain
Km ← |C ′

m(ψ)GH(ψ)|−1 . angle criterion
Cm ← KmC

′
m . comp with gain

return Cm
end function

12. The function d·e is called the ceiling function and rounds up to the
nearest integer.

13. Note that if θc ∈ [−π,π], the multiplicity m = 1 and the
compensator is a regular derivative compensator.

rldesign.multd Multiple derivative compensators

Lec. rldesign.PD shows how to design a

derivative compensator such that the

compensated root locus of a control system can

be made to include some test point ψ ∈ Cwhere

the designer would like a closed-loop pole

(typically to satisfy transient response

requirements). This derivative compensator has

the form

CD = K(s− zc), (1)

for gain K ∈ R and zero zc ∈ R. The crux of the
design procedure is to compute via the root

locus phase criterion11 the required

compensator phase contribution:

θc = π− ∠GH(ψ) (2)

for open-loop transfer function GH(s). A

trigonometric analysis shows that, for

θc ∈ [−π, π], the compensator zero must be

zc = Re(ψ) − Im(ψ)/ tan θc. (3)

The obvious limitation here is that if the

required compensation θc is beyond ±π, the
derivative compensator of Eq. 1 cannot

contribute sufficient phase. The strategy we

adopt here is to augment the derivative

compensator to include as many (equal) zeros as

we need:

Cm = K(s− zm)m, (4)

where zm is a zero of multiplicitym. We call

this a multiple derivative compensator or

m-derivative compensator.

How do we select the compensator zero zm and

multiplicitym for a given θc? First, we

determinem by determining how many π (or

−π) contributions are required:12,13

m =

⌈
|θc|

π

⌉
. (5)

rldesign Root-locus design exe Multiple derivative compensators p. 1

14. It gets complicated when considering relativity and quantum
mechanics, which we do not, here.

15. Non-causal system models are useful for digital signal post-
processing, but these are always a posteriori—i.e. “future” time is known
because it is in the analytic past. Controllers do not have this luxury.

Algorithm multd.2 the multiple derivative
compensator algorithm with ι integrators.

function d_comp_mi(ψ,GH(s), ι)
θc ← π− ∠GH(ψ)/sι . required phase

comp
m← ceiling(θc/π) . zeros needed
θm ← θc/m . divide contributions
zm ← Re(ψ) − Im(ψ)/ tan θm . trig
C ′
m ← (s− zm)m/sι . comp sans gain
Km ← |C ′

m(ψ)GH(ψ)|−1 . angle criterion
Cm ← KmC

′
m . comp with gain

return Cm
end function

With this, we can divide-up the the required

phase contribution θc among them zeros:

θm = θc/m. (6)

By construction, θm ∈ [−π, π], so the

compensator zeros should be located at

zm = Re(ψ) − Im(ψ)/ tan θm. (7)

This is summarized in Algorithm multd.1.

Causality

A complication can arise when derivative

compensation yields a closed-loop transfer

function with more zeros than poles—a type of

system called non-causal (non-non-causal

systems are called causal). Non-causal systems

are those that depend on future states,

something classically14 impossible to instantiate

in real-time, and therefore a controller that

creates such a control system is of no practical

use.15 Adding multiple zeros to a controller can

easily yield such undesirable systems.

To mitigate this, we can include ι pure

integrators 1/s into the compensator. They will

obviously affect the root locus, so their effects

must be taken into account during the zero

compensator calculations. This is done by

treating the open-loop transfer function as if it

already had the compensator integrators 1/sι.

Algorithm multd.2 summarizes this approach.

Example rldesign.multd-1

Design a controller to meet the

rldesign Root-locus design exe Exercises for Chapter rldesign p. 1

C(s) G(s)

H(s)

R E U Y

F

−

Figure exe.1: a block diagram with a controller C(s).

rldesign.exe Exercises for Chapter rldesign

Exercise rldesign.quixotism

Given the design methods we’ve learned,

comment on how the transient response of a

system with P-control differs with the inclusion

of integral compensation.

Exercise rldesign.arval

How do P-, PI-, PD-, and PID-control affect a

system’s performance. (Limit your response to

one sentence per controller.)

Exercise rldesign.22

Let a system have plant transfer function

10(s+ 20)

(s+ 10)(s+ 4)(s+ 1)
. (1)

Design a PD controller such that the closed-loop

rise time is about 0.2 seconds and the overshoot

is just under 25%.

Exercise rldesign.23

Let a system have plant transfer function

1

s3 + 22s2 + 156s+ 232
. (2)

Design a PID controller such that the

closed-loop settling time is less than 0.5 seconds,

the overshoot is less than 10%, and the

steady-state error is zero for a step command.

Exercise rldesign.diurnation

Let a control system have the block diagram in

Fig. exe.1, unity feedback H(s) = 1, and plant

transfer function

G(s) =
160

s(s2 + 16s+ 160)
. (3)

rldesign Root-locus design exe Exercises for Chapter rldesign p. 1

/25 p.

/25 p.

1. Design a PID controller C(s) such that the

closed-loop overshoot is less than 30%,

peak time is close to 0.25 seconds, and the

steady-state error is zero for a ramp

command.

2. Demonstrate the controller performance

by simulating and plotting both a step

response and a ramp response.

3. Compute the simulated overshoot and

peak time (via the step response).

Exercise rldesign.sebatical

For the system shown below a proporitional

controller is desired which will provide a 15%

overshoot. Using Matlab please,

1. find the required damping ratio ζ,

2. plot the root locus,

3. design a proportional controller, and

4. simulate the step response to check your

work.

s2−4s+13
s2+7s+10

R E Y

F

−

Exercise rldesign.sleep

For the system shown below a proporitional-lag

controller is desired which will provide a

settling time of 0.5 second, and will reduce the

steady state error by a factor of 5. Using Matlab

please,

1. determine where on the root locus the

closed loop poles should lie,

2. plot the root locus,

3. design a proportional controller,

4. design a cascade lag compensator, and

rldesign Root-locus design multd Exercises for Chapter rldesign p. 1

16. See ricopic.one/control/source/plaglead_controller_design_example.m
for the source.

5. simulate the step response to check your

design with proportional control alone

and with your proportional-lag

compensator.

s+5
(s+1)(s+2)

R E Y

F

−

Proportional-lead-lag controller design is much

like PID controller design, but the resulting

controller does not require active compensation.

With our techniques of cascade compensation

for lead and lag compensators, one can simply

apply both lead and lag compensation in the

usual manner. The order of application can be

somewhat important because lead

compensation can impact steady-state error. A

way to proceed is as follows.

1. Design a P controller and evaluate its

transient response performance.

2. Apply lead compensation to improve the

transient response. Simulate to verify the

transient response performance.

3. Apply lag compensation to improve the

steady-state error performance.

4. Check all performance criteria and adjust

gains and zero locations, as-needed.

A design example

Let a system have plant transfer function

200

s3 + 29s2 + 170s− 200
. (4)

Design a P-lead-lag controller such that the

closed-loop overshoot is less than 20%, settling

time is less than 0.7 seconds, and the

steady-state error is less than 3%.

http://ricopic.one/control/source/plead_controller_design_example.m

rldesign Root-locus design multd Exercises for Chapter rldesign p. 1

Determining ψ

We use Matlab for the design.16 First, we must

determine what the specified transient response

criteria imply for the locations of our

closed-loop poles. Let one of these desired pole

locations be called ψ. The transient response

performance criteria are as follows.

Ts = .7; % sec ... spec settling time
OS = 20; % percent ... spec overshoot
sse = .03; % fraction of 1

The second-order approximation from

Chapter trans tells us that the overshoot

requirement implies a specific damping ratio ζ,

or, equivalently, ∠ψ:

∠ψ = π− arccos ζ. (5)

Additionally, the settling time requirement

implies a specific Re(ψ) via

TS = −4/Re(ψ). (6)

zeta = -log(OS/100)/sqrt(pi^2+(log(OS/100))^2);
psi_angle = pi - acos(zeta);
psi_re = -4/Ts;
psi_im = psi_re*tan(psi_angle);
psi = psi_re + j*psi_im;
disp(sprintf('psi = %0.3g + j %0.3g',real(psi),imag(psi)))

psi = -5.71 + j 11.2

P control

We design a proportional controller that gets us

as close as possible to ψ. The root locus is

shown in Figure multd.2.

G = tf([200],[1,29,170,-200]);
figure
rlocus(G)

rldesign Root-locus design multd Exercises for Chapter rldesign p. 1

−40 −30 −20 −10

−20

−10

10

20

Figure multd.2: root locus without compensation.

Although we cannot get close to ψ on the root

locus, we can at least meet our %OS
specification by choosing a gain of about

K1 = 5. (7)

Let’s construct the compensator and

corresponding closed-loop transfer function GP

for gain control.

K_1 = 5;
G_P = feedback(K_1*G,1);

Lead compensation

Now, we use cascade lead compensation with

compensator

K2
s− zld
s− pld

. (8)

For now, we set K2 = 1. Let’s also set,

arbitrarily, pld = −30. From Eq. 5b, we compute

the compensator zero

θc = π− ∠G(ψ) and zc = Re(ψ) − |Im(ψ)|/ tan(θc + ∠(ψ− pc)).

p_ld = -30;
theta_ld = pi - angle(evalfr(G,psi));
theta_p_ld = angle(psi-p_ld);
z_ld = real(psi) - abs(imag(psi))/tan(theta_ld + theta_p_ld);
disp(sprintf('theta_ld = %0.3g deg',rad2deg(theta_c)))
disp(sprintf(...

'pole phase contribution = %0.3g deg',...
rad2deg(theta_p_c)...

rldesign Root-locus design multd Exercises for Chapter rldesign p. 1

))
disp(sprintf('z_ld = %0.3g',z_ld))

theta_ld = 48 deg
pole phase contribution = 24.7 deg
z_ld = -9.19

By construction, ψ is on the root locus, so we

can find K2 directly from Eq. 2.

C_sans = zpk(z_ld,p_ld,1); % without gain
K_2 = 1/abs(evalfr(K_1*C_sans*G,psi));
C_ld = K_1*K_2*C_sans;
disp(sprintf('K_2 = %0.3g',K_2))

K_2 = 6.45

Let’s compute the closed-loop controller Clead,

and the closed-loop transfer function Glead.

G_Plead = feedback(C_ld*G,1);

Lag compensation

Now, we use cascade lag compensation with

compensator

K3
s− zlg

s− plg
. (9)

For now, we set K3 = 1.

The steady-state error for the lead compensated

system is given by the following.

Kp_ld = evalfr(C_ld*G,0);
ess_ld = 1/(1+Kp_ld);
disp(sprintf('steady-state error = %0.3g',ess_ld))

steady-state error = -0.113

The negative value implies the output is larger

than the input. Reducing this to the given

requirement implies an approximate ratio of

compensator zero to pole α, as follows.

alpha = abs(ess_ld)/sse

rldesign Root-locus design multd Exercises for Chapter rldesign p. 1

alpha =

3.7533

If we begin, somewhat arbitrarily, with plg and

zlg = αplg. Let’s construct the compensator and

closed-loop transfer function GPLL.

p_lg = -.1;
z_lg = alpha*p_lg;
C_sans = zpk(z_lg,p_lg,1);
G_PLL = feedback(C_sans*C_ld*G,1);

Simulate

Our placement of the ψ depended on the

second-order approximation’s accuracy. In any

case, we simulate the step response to test the

efficacy of the P-lead and P-lead-lag controller

designs and compare them with the P controller.

t_a = linspace(0,2.5,200); % s ... sim time
y_P = step(G_P,t_a); % P controlled step response
y_Plead = step(G_Plead,t_a); % P-lead step resp.
y_PLL = step(G_PLL,t_a); % P-lead-lag step resp.

figure
plot(t_a,y_P);hold on;
plot(t_a,y_Plead);
plot(t_a,y_PLL);
xlabel('time (s)');
ylabel('step response');
grid on
legend(...

'P control','P-lead','P-lead-lag',...
'location','southeast'...

);

The responses, shown in Figure multd.3,

suggest the lead and lead-lag compensated

controllers nearly meet the transient

requirements. Let’s use stepinfo to compute

more accurate transient response characteristics

for the different controllers.

disp('P control')
si_P = stepinfo(y_P,t_a);

rldesign Root-locus design multd Exercises for Chapter rldesign p. 2

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

time (s)

st
ep

re
sp
o
n
se

P control

P-lead

P-lead-lag

Figure multd.3: step responses for proportional, proportional-lead, and
proportional-lead-lag controllers.

disp(sprintf('settling time: %0.3g',si_P.SettlingTime))
disp(sprintf('percent overshoot: %0.3g\n',si_P.Overshoot))
si_Plead = stepinfo(y_Plead,t_a);
disp('P-lead control')
disp(sprintf(...

'settling time: %0.3g',si_Plead.SettlingTime ...
))
disp(sprintf(...

'percent overshoot: %0.3g\n',si_Plead.Overshoot...
))
si_PLL = stepinfo(y_PLL,t_a);
disp('P-lead-lag control')
disp(sprintf(...

'settling time: %0.3g',si_PLL.SettlingTime ...
))
disp(sprintf(...

'percent overshoot: %0.3g\n',si_PLL.Overshoot...
))

P control
settling time: 1.41
percent overshoot: 16

P-lead control
settling time: 0.689
percent overshoot: 17.2

P-lead-lag control
settling time: 1.57
percent overshoot: 25.1

The stepinfo results are not very precise for the
P-lead-lag controller due to the slow

steady-state compensation, which isn’t

rldesign Root-locus design exe Exercises for Chapter rldesign p. 3

completely finished by the end of the

simulation. Adjusting compensator zeros and

poles may improve things, but a trade-off

emerges between overshoot and steady-state

compensation: speeding up the latter increases

the overshoot rather sharply.

The steady-state requirement can be checked

analytically.

Kp_PLL = evalfr(C_sans*C_ld*G,0);
ess_PLL = 1/(1+Kp_PLL);
disp(sprintf('steady-state error = %0.3g',ess_PLL))

steady-state error = -0.0277

This is less than 3%, per the requirement;

however, the compensation does take a

relatively long time to approach this small error.

rldesign Root-locus design exe Exercises for Chapter rldesign p. 1

C(s) G(s)

H(s)

R E U Y

F

−

Figure exe.1: a block diagram with a controller C(s).

rldesign.exe Exercises for Chapter rldesign

Exercise rldesign.quixotism

Given the design methods we’ve learned,

comment on how the transient response of a

system with P-control differs with the inclusion

of integral compensation.

Exercise rldesign.arval

How do P-, PI-, PD-, and PID-control affect a

system’s performance. (Limit your response to

one sentence per controller.)

Exercise rldesign.29

Let a system have plant transfer function

10(s+ 20)

(s+ 10)(s+ 4)(s+ 1)
. (1)

Design a PD controller such that the closed-loop

rise time is about 0.2 seconds and the overshoot

is just under 25%.

Exercise rldesign.30

Let a system have plant transfer function

1

s3 + 22s2 + 156s+ 232
. (2)

Design a PID controller such that the

closed-loop settling time is less than 0.5 seconds,

the overshoot is less than 10%, and the

steady-state error is zero for a step command.

Exercise rldesign.diurnation

Let a control system have the block diagram in

Fig. exe.1, unity feedback H(s) = 1, and plant

transfer function

G(s) =
160

s(s2 + 16s+ 160)
. (3)

rldesign Root-locus design exe Exercises for Chapter rldesign p. 1

/25 p.

/25 p.

1. Design a PID controller C(s) such that the

closed-loop overshoot is less than 30%,

peak time is close to 0.25 seconds, and the

steady-state error is zero for a ramp

command.

2. Demonstrate the controller performance

by simulating and plotting both a step

response and a ramp response.

3. Compute the simulated overshoot and

peak time (via the step response).

Exercise rldesign.sebatical

For the system shown below a proporitional

controller is desired which will provide a 15%

overshoot. Using Matlab please,

1. find the required damping ratio ζ,

2. plot the root locus,

3. design a proportional controller, and

4. simulate the step response to check your

work.

s2−4s+13
s2+7s+10

R E Y

F

−

Exercise rldesign.sleep

For the system shown below a proporitional-lag

controller is desired which will provide a

settling time of 0.5 second, and will reduce the

steady state error by a factor of 5. Using Matlab

please,

1. determine where on the root locus the

closed loop poles should lie,

2. plot the root locus,

3. design a proportional controller,

4. design a cascade lag compensator, and

freq Root-locus design Exercises for Chapter rldesign p. 2

5. simulate the step response to check your

design with proportional control alone

and with your proportional-lag

compensator.

s+5
(s+1)(s+2)

R E Y

F

−

freq

Frequency response analysis

freq Frequency response analysis intro Introduction p. 1

freq.intro Introduction

The frequency response function H(jω) is a

complex function that relates a system’s input u

to its output y in terms of the input’s frequency

content. Given a transfer function H(s) (which

also relates u to y), the frequency response

function can be found by the substitution

H(jω) = H(s)|s→jω . (1)

It can be shown that, for a system with input

u(t) = A sin (ωt+ψ), with A,ω,ψ ∈ R being the

amplitude, angular frequency, and phase of the

input, and frequency response function H(jω),

the steady-state output is

Equation 2 frequency-dependent

sinusoidal response

where |H(jω)| and ∠H(jω) are the magnitude

(i.e. norm) and phase of H(jω), respectively.

There are three striking aspects of this equation:

1. the output is also a sinusoid at the same

frequency as the input;

2. the output amplitude is the input

amplitude scaled by |H(jω)|; and

3. the output phase is the input phase plus

∠H(jω).

With Fourier Series and Fourier Transform

representations of signals, we can consider the

input to be composed of sinusoids. For LTI

systems, the principle of superposition allows

us to construct a corresponding output

representation.

In Lec. freq.bode and Lec. freq.nyquist, we

introduce the two primary ways H(jω) is

plotted. Lec. freq.nystab explores what we can

learn about system stability from H(jω) and its

freq Frequency response analysis bode Introduction p. 2

plots. Finally, we learn how the different

time-domain and frequency-domain

representations of a system are related

Lec. freq.freqtime.

The frequency response methods of this chapter

were actually developed before root locus

methods, and are equivalent in many ways. We

learn these methods for two reasons: first, they

give us a deeper understanding of control

systems and second there are a few situations

for which frequency response methods are

preferred:

1. when constructing a transfer function

from measurement data,

2. when designing a controller for transient

and steady-state response characteristics

with lead compensation (sans lag

compensation), and

3. when determining the stability of a

nonlinear system.

freq Frequency response analysis bode Bode plots p. 1

freq.bode Bode plots

1 Given Eq. 2, we are often most-interested in

the magnitude |H(jω)| and phase ∠H(jω) of the

frequency response function. Each of these is a

function of angular frequency ω, so plotting

|H(jω)| vs. ω and ∠H(jω) vs. ω is quite useful.

Bode plots are such plots with axes scaled in a

specific manner.

2 A Bode plot is a useful graphical

representation of the frequency response of a

system. Let |U(ω)| and |Y(ω)| be the complex

amplitudes of the input and the output,

respectively. Recall that the magnitude of the

frequency response function |H(jω)| can be

expressed as

Equation 1 frequency response

function as an amplitude ratio

3 This is a ratio of amplitudes, and so it is akin

to amplitude ratios commonly expressed in

decibels (dB). However, the magnitude ratio of

Eq. 1 is not dimensionless, and therefore cannot

be expressed as decibel in the strict sense.

Nevertheless, it is standard usage in system

dynamics and control theory use the familiar

formula to compute the logarithmic magnitude

Equation 2 logarithmic magnitude

of H(jω) in “dB”

4 The phase is usually plotted in degrees, and

the ω-axis is logarithmic in both plots. The two

plots are typically tiled vertically with the

magnitude plot above the phase. We now work

a simple example.

freq Frequency response analysis bodesimp Bode plots p. 2

Example freq.bode-1 re: A simple Bode plot

Let a system have transfer function H(s) = s,

a single zero at the origin. Find the frequency

response function and draw the Bode plot for

the system.

freq Frequency response analysis bodesimp Bode plots for simple transfer functions p. 1

freq.bodesimp Bode plots for simple transfer functions

1 Although we have defined Bode plots in

terms of the frequency response function H(jω),

it turns out that, due to its similarity, we can just

as easily talk about the Bode plot of a transfer

function. Since this is common convention, we

proceed in kind.

2 It turns out that bode plots, both magnitude

and phase, given their logarithmic scale (recall

that the ω-axes are also plotted logarithmically),

are quite asymptotic to straight-lines for first-

and second-order systems. Furthermore,

higher-order system transfer functions can be

re-written as the product of those of first-and

second-order. For instance,

H(s) =
s+

s3 + s2 + s+
(1a)

= · (s+ 1) · 1

s+ 1
· 1

s2 + s+

(1b)

3 Recall (from, for instance, phasor

representation) that for products of complex

numbers, phases φi add and magnitudesMi

multiply. For instance,

M1∠φ1 ·
1

M2∠φ2
· 1

M3∠φ3
=

M1

M2M3
∠(φ1 − φ2 − φ3).

(2)

And if one takes the logarithm of the

magnitudes, they add; for instance,

log M1

M2M3
= logM1 − logM2 − logM3. (3)

There is only one more link in the chain: first-

and second-order Bode plots depend on a

handful of parameters that can be found

directly from transfer functions. There is no

need to compute |H(jω0)| and ∠H(jω0)!

4 In a manner similar to Example freq.bode-1,

we construct Bode plots for several simple

transfer functions in this lecture. Once we have

freq Frequency response analysis bodesimp Bode plots for simple transfer functions p. 1

these simple “building blocks,” we will be able

to construct sketches of higher-order systems by

graphical addition because logarithmic

magnitudes and phases combine by summation,

as shown in Lec. freq.bodesketch.

Constant gain

5 For a transfer function that is simply a

constant real gain H(s) = K, the frequency

response function is trivially H(jω) = K. Its

magnitude |H(jω)| = |K|. For positive gain K, the

phase is ∠H(jω) = 0, and for negative K, the

phase is ∠H(jω) = 180deg.

Pole and zero at the origin

6 In Example freq.bode-1, we have already

demonstrated how to derive from the transfer

function H(s) = s, a zero at the origin, the

frequency response function plotted in

Fig. bodesimp.1. Similarly, for H(s) = 1/s, a pole

at the origin, the frequency response function

plotted in Fig. bodesimp.1.

10−2 10−1 100 101 102
−40

−20

0

20

40

|H
(jω

)|,
dB

10−2 10−1 100 101 102
−90

−45

0

angular frequency ω, rad/s

∠
H

(jω
),

de
g

(a) H(s) = 1/s.

10−2 10−1 100 101 102
−40

−20

0

20

40

|H
(jω

)|,
dB

10−2 10−1 100 101 102
0

45

90

angular frequency ω, rad/s

∠
H

(jω
),

de
g

(b) H(s) = s.

Figure bodesimp.1: Bode plots for (a) a pole at the origin and (b) a zero at the origin.

freq Frequency response analysis bodesketch Bode plots for simple transfer functions p. 1

Real pole and real zero

7 The derivations for real poles and zeros are

not included, but the resulting Bode plots are

shown in Fig. bodesimp.2.

10−2 10−1 100 101 102
−40

−30

−20

−10

0

|H
(jω

)|,
dB

10−2 10−1 100 101 102
−90

−45

0

normalized angular frequency τω

∠
H

(jω
),

de
g

(a) H(s) = 1/(τs+ 1).

10−2 10−1 100 101 102
0

10

20

30

40

|H
(jω

)|,
dB

10−2 10−1 100 101 102
0

45

90

normalized angular frequency τω

∠
H

(jω
),

de
g

(b) H(s) = τs+ 1.

Figure bodesimp.2: Bode plots for (a) a single real pole and (b) a single real zero.

Complex conjugate pole pairs and zero pairs

8 The derivations for complex conjugate pole

pairs and zero pairs are not included, but the

resulting Bode plots are shown in

Fig. bodesimp.3.

freq Frequency response analysis bodesketch Bode plots for simple transfer functions p. 2

10−1 100 101
−40

−20

0

20

|H
(j
ω

)|
,

dB

10−1 100 101
−180

−135

−90

−45

0

normalized angular frequency ω/ωn

∠
H
(j
ω

),
de

g ζ= 0.1

ζ= 0.3

ζ= 0.5

ζ= 0.7

ζ= 0.9

(a) H(s) =ω2n/(s
2 + 2ζωns+ω

2
n).

10−1 100 101
−20

0

20

40

|H
(j
ω

)|
,

dB

10−1 100 101
0

45

90

135

180

normalized angular frequency ω/ωn

∠
H
(j
ω

),
de

g

ζ= 0.1

ζ= 0.3

ζ= 0.5

ζ= 0.7

ζ= 0.9

(b) H(s) =
(
s2 + 2ζωns+ω

2
n

)
/ω2n .

Figure bodesimp.3: Bode plots for (a) a complex conjugate pole pair and (b) a complex conjugate zero pair.

freq Frequency response analysis bodesketch Sketching Bode plots p. 1

freq.bodesketch Sketching Bode plots

1 We can use MATLAB’s bode command to

create Bode plots from LTI system models.

However, we must understand how these plots

relate to their transfer functions. In this section,

we learn to sketch Bode plots in order to deepen

our intuition of this relationship.

2 Let H(s) =
∏
iHi(s); that is, let H(s) be the

product of several factors Hi(s). The magnitude

and phase are

|H(s)| =
∏
i

|Hi(s)| and ∠H(s) =
∑
i

∠Hi(s).

(1)

The Bode plot consists of plots of 20 log10|H(s)|
and ∠H(s) with s 7→ jω. The magnitude and

phase expressions, become

20 log10|H(jω)| =
∑
i

20 log10|Hi(jω)| and ∠H(jω) =
∑
i

∠Hi(jω).

(2)

This result means we can graphically sum both

the magnitude and phase Bode plots of the

individual factors of H(s), as long as we are

adding magnitudes in dB.

Example freq.bodesketch-1 re: a transfer function under analysis

Given the transfer function

H(s) =
200000(s+ 1)

s3 + 110s2 + 11000s+ 100000

answer the following questions and

imperatives.

a Sketch a Bode plot on Fig. bodesketch.1.

b Confirm the accuracy of the sketch in

Matlab, using the functions bode and tf.
c If the input to a system with this transfer

function is 5 sin(ωt + π/7), what is the

output amplitude and phase for

freq Frequency response analysis bodesketch Sketching Bode plots p. 2

i ω = 1 rad/s,

ii ω = 10 rad/s, and

iii ω = 1000 rad/s?

Use Matlab’s function evalfr to perform

the calculations.

a

To sketch the transfer function, we must

decompose the transfer function into multiple

simple factors. First, we can find the poles:

−10,−50+ j86.6,−50− j86.6,

which tells uswe have a complex conjugate pair

and a single real pole. Factoring, accordingly,

H(s) = 200000(s+ 1) · 1

s+ 1
· 1

s2 + 100s+ 10000

= 2(s+ 1) · 1

s/10+ 1
· 1002

s2 + 2 · 0.5 · 100s+ 1002
.

The sketch is shown in Fig. bodesketch.1.

10−1 100 101 102 103
−20

0

20

40

|H
(j
ω

)|
,
d
B

10−1 100 101 102 103
−180

−135

−90

−45

0

45

90

frequencyω, rad/s

∠
H
(j
ω

),
d
eg

Figure bodesketch.1: a Bode plot for Example freq.bodesketch-1.

b

See the code listing below.

sys = 2e5*...
tf(...
[1,1],...
[1,110,11000,1e5]...

);
bode(sys);

c

The output amplitude is always 5|H(jω)| and

output phase is always π/7+∠H(jω). We could

estimate them from the Bode plot sketch, butwe

instead choose to evaluate the Matlab transfer

function, as in the listing below.

in_amp = 5;
in_phase = pi/7; % rad
omega_a = [1,10,1e3]; % rad/s
for i = 1:length(omega_a)

freq Frequency response analysis nyquist Sketching Bode plots p. 3

H_eval = evalfr(sys,j*omega_a(i));
H_mag = abs(H_eval);
H_phase = angle(H_eval);
out_amp = 5*H_mag;
out_phase = in_phase + H_phase;
sprintf(...

['For input angular freq %0.2g,\n',...
' input amplitude %0.2g,\n',...
' input phase %0.2g,\n',...
' H magnitude %0.2g, and\n',...
' H phase %0.2g,\n',...
' the output amplitude is %0.2g and\n',...
' the output phase is %0.2g.\n'...

],...
omega_a(i),...
in_amp,...
in_phase,...
H_mag,...
H_phase,...
out_amp,...
out_phase...

)
end

The output amplitudes are 14, 71, and 1 and the

output phases are 1.1, 1, −2.6 rad.

freq Frequency response analysis nyquist Nyquist criterion p. 1

∞

-∞

∞

Figure nyquist.1: contour ΓN to be mapped by transfer function.

freq.nyquist Nyquist criterion

Introduction

Consider a feedback control system. Let G(s) be

the forward-loop transfer function and let H(s)

be the feedback transfer function. The Nyquist

plot is a parametric plot of the frequency

response function G(jω)H(jω) of the open-loop

transfer function G(s)H(s).

The Nyquist criterion allows us to gain insight

about closed-loop stability from the open-loop

frequency response (Nyquist and Bode plots)

and open-loop pole location. Additionally,

insight into transient response and steady-state

error response characteristics can be determined

from Nyquist plots. In this sense, the Nyquist

plot is analogous to the root-locus plot.

A description of the Nyquist criterion

A rigorous derivation of the Nyquist criterion is

beyond the scope of this work. However, a

motivating description is included. Before we

begin, please review complex functions, as

described in Appendix A.01.

The full Nyquist plot is the mapping of a

contour ΓN that contains the right-half plane and

is defined as beginning at the origin, moving

vertically along the jω-axis “to infinity,”

encircling the right-half-plane with a semicircle

“to negative infinity,” and returning vertically

to the origin, as shown in Fig. nyquist.1.

The Nyquist plot is now defined, but what

remains is describing the Nyquist criterion and

why it works. There are several important

insights required to understand it.

encirclements of the origin give us a clue

It turns out that whenever we map ΓN

with a transfer function F, we find out a

relationship between the number of poles

freq Frequency response analysis nyquist Nyquist criterion p. 2

P inside ΓN, the number of zeros Z inside

ΓN, and the number of counterclockwise

encirclements N of the origin by the

contour F(ΓN). The primary insight is that

when a pole or zero is encircled by ΓN, it

contributes an entire ±2π in phase around
the contour, whereas when a pole or zero

is not encircled by ΓN, its net contribution

to phase is zero. This yields the following

relationship:

N = P − Z. (1)

the open-loop transfer function mapping is close to what we want

We know the poles and zeros of the

open-loop transfer function G(s)H(s). We

want to know information about the

closed-loop pole locations. The

closed-loop transfer function (without

compensation) is

T(s) =
G(s)

1+G(s)H(s)
. (2)

Let’s rewrite G(s) and H(s) in terms of

numerators and denominators, as follows:

G(s) =
Gn(s)

Gd(s)
and H(s) =

Hn(s)

Hd(s)
. (3)

Let’s see what our closed-loop transfer

function looks like now:

T(s) =
Gn(s)Hd(s)

Gd(s)Hd(s) +Gn(s)Hn(s)
. (4)

Finally, let’s consider the denominator

Eq. 2 for a moment:

1+G(s)H(s) =
Gd(s)Hd(s) +Gn(s)Hn(s)

Gd(s)Hd(s)
,

(5)

which, combined with Eq. 3 and Eq. 4,

allows us to see two important

obervations:

1. the poles of 1+G(s)H(s) equal the

poles of G(s)H(s) and

freq Frequency response analysis nyquist Nyquist criterion p. 1

2. the zeros of 1+G(s)H(s) equal the

poles of T(s).

We are so close! We know the poles of

G(s)H(s), therefore we know the poles of

1+G(s)H(s). We want to know the poles

of T(s), which are related to the zeros of

1+G(s)H(s), which we don’t have, but we

have something related: the open loop

transfer function mapping G(ΓN)H(ΓN).

a sidestep for all the money What if we just

map with the open-loop transfer function

G(ΓN)H(ΓN)? That gives us almost exactly

the same image as 1+G(ΓN)H(ΓN), but

shifted one unit to the left. This means

that if we plot G(ΓN)H(ΓN) and interpret it

as 1+G(ΓN)H(ΓN), we can determine

stability of the closed loop transfer

function! Let’s redefine our N-P-Z

relationships for the mapping G(ΓN)H(ΓN).

1. Let N be the number of

counterclockwise encirclements of

−1.

2. Let P be the number of open-loop

poles in the right-half plane.

3. Let Z be the number of closed-loop

poles in the right-half plane.

If we have a plot of G(ΓN)H(ΓN), we have

the first two and the third is given by the

Nyquist criterion:

Z = P −N. (6)

We will use this to determine stability in

Lec. freq.nystab. However, even now, we know

that the existence of right-half-plane closed-loop

poles implies closed-loop instability, so we can

already identify that much. Before exploring

stability further, we will learn to sketch the

Nyquist plot. Not because we don’t have

MATLAB, but rather to gain intuition.

freq Frequency response analysis nyquist Nyquist criterion p. 2

Sketching Nyquist plots

We now begin sketching Nyquist plots.

Remember that we are first-of-all interested in

the number of counterclockwise encirclements

of −1, which will help us determine stability via

the Nyquist criterion. We proceed by example.

Example freq.nyquist-1 re: a stable open-loop system

Let an open-loop transfer function be defined

by

G(s)H(s) =
30

(s+ 4)(s+ 7)
.

Sketch its Nyquist plot and apply the Nyquist

criterion to determine the number of closed-

loop poles in the right-half plane.

Figure nyquist.2:

Let’s sketch the contour ΓN in Fig. nyquist.2.

So the magnitude and phase of the mapped

contour are

|G(ΓN)H(ΓN)| =
30

L1L2
and

∠G(ΓN)H(ΓN) = −θ1 − θ2.

We begin at point A and map the orange

contour, which is the positive jω-axis. At A,

θ1 = θ2 = 0, so ∠G(A)H(A) = 0, and L1 = 4

and L2 = 7, so |G(A)H(A)| = 30/28 ≈ 1.07. In

the Fig. nyquist.3, we sketch G(ΓN)H(ΓN) with

point A′ = G(A)H(A).

Figure nyquist.3:

As we move to B on the

orange contour, the angle becomes increasingly

negative and the magnitude decreases. Finally,

at C, the angle approaches −180deg and the

magnitude approaches 0. Note that in the

sketch we don’t go quite to zero because we

want to leave space to represent what occurs at

zero.

What occurs at zero is that the green contour

“at infinity” is mapped. The angle changes

from +180deg to −180deg and the magnitude

freq Frequency response analysis nyquist Nyquist criterion p. 3

stays at 0. We sketch this by showing a 360deg
rotation back to +180deg = −180deg at C′.

This doesn’t always happen. Sometimes the

angle with which the origin is approached is

different than the angle with which it leaves.

In this case, the blue contour exits at 180deg
with increasing amplitude, only to “mirror” the

orange contour’s return to A′. This does always

occur: The Nyquist plot is always symmetric

about the real axis and the jω-axis image is

essentially a mirroring of the −jω-axis image.

Examining the Nyquist plot sketch, there are no

counterclockwise encirclements of −1, i.e. N =

0. The open-loop transfer function has no poles

in the right-half-plane, i.e. P = 0. Therefore,

from the Nyquist criterion,

Z = P −N = 0− 0 = 0.

So there are no closed-loop in the right-half-

plane and the closed-loop system is stable.

What if there’s an open-loop pole on the contour

ΓN? The magnitude of the contour G(ΓN)H(ΓN)

becomes infinite, but we cannot determine at

which phase it does so. Therefore, in these cases

we take an infinitesimal detour around the pole

so that we can keep track of the phase. The

magnitude still approaches infinity, but the

phase information is retained. Let’s consider

another example that illustrates this.

Example freq.nyquist-2 re: a system with open-loop poles on the

Nyquist contour

Let an open-loop transfer function be defined

by

G(s)H(s) =
10(s+ 1)

s2 + 1
.

Sketch its Nyquist plot and apply the Nyquist

criterion to determine the number of closed-

freq Frequency response analysis nyquist Nyquist criterion p. 4

loop poles in the right-half plane.

Figure nyquist.4:

Let’s sketch the contour ΓN in Fig. nyquist.4.

So the magnitude and phase of the mapped

contour are

|G(ΓN)H(ΓN)| =
10L1
L2L3

and

∠G(ΓN)H(ΓN) = θ1 − θ2 − θ3.

We begin at point A and map the orange

contour, which is the positive jω-axis. At A,

θ1 = 0 and θ2 = −θ3, so ∠G(A)H(A) = 0,

and L1 = L2 = L3 = 1, so |G(A)H(A)| = 10.

In Fig. nyquist.5, we sketch G(ΓN)H(ΓN) with

point A′ = G(A)H(A). As we move to B on

the orange contour, θ1 → +45deg and still

θ2 = −θ3, so ∠G(A)H(A) → +45deg. But the

magnitude approaches infinity because L2 → 0.

Figure nyquist.5:

The infinitesimal detour from B to C doesn’t

change the magnitude, but it does change the

phase by −180deg. Finally, from C to D the

only angle that changes is θ1 by +45deg, which

yields ∠G(A)H(A) → −90deg as the magnitude

approaches zero due to the denominator of the

magnitude approaching infinity faster than

the numerator. What occurs at zero is that the

green contour “at infinity” is mapped. The

angle changes from −90deg to +90deg and

the magnitude stays at 0. We sketch this by

showing a 180deg rotation back to +90deg
at C′.The blue contour exits at +90deg with

increasing amplitude, only to “mirror” the

orange contour’s return to A′.

Examining the Nyquist plot sketch, there are no

counterclockwise encirclements of −1, i.e. N =

0. The open-loop transfer function has no poles

in the right-half-plane, i.e. P = 0. Therefore,

from the Nyquist criterion,

freq Frequency response analysis nystab Nyquist criterion p. 5

Z = P −N = 0− 0 = 0.

So there are no closed-loop in the right-half-

plane and the closed-loop system is stable.

freq Frequency response analysis nystab Stability from the Nyquist plot p. 1

freq.nystab Stability from the Nyquist plot

The Nyquist stability criterion has established

closed-loop stability for unity controller gain.

Of course, we would like to learn about the

stability for any value of gain K and closed-loop

transfer function

T(s) =
G(s)

1+ KG(s)H(s)
. (1)

The Nyquist plot is of G(ΓN)H(ΓN), and if we

include the gain it becomes KG(ΓN)H(ΓN). This

simply scales the magnitude by K, which

“stretches” the image by a factor of K. Recall

that, for stability, we are concerned with

encirclements of −1. So scaling K can change the

number of encirclements.

For instance, let’s consider a system with

open-loop transfer function

G(s)H(s) =
(s− 1)(s− 2)

(s+ 3)(s+ 5)
. (2)

This system has P = 0 open-loop poles in the

right-half-plane, thus for no encirclements of

−1, the closed-loop system is stable by the

Nyquist criterion. Fig. nystab.1 shows the

Nyquist plot for three different values of gain K:

(K = 1.00) this is the Nyquist plot we have thus

far considered, and N = 0, so Z = 0 and the

closed-loop system is stable;

(K = 4.00) this stretches the previous plot by a

factor of 4, N = −2, so Z = +2 and the

closed-loop system is unstable;

(K = 2.67) scales the original plot such that it

intersects −1, at which point the system is

marginally stable.

Stability from the positive jω-axis image, alone

It turns out we can determine stability from the

image of the positive jω-axis, alone. Due to the

freq Frequency response analysis nystab Stability from the Nyquist plot p. 1

−2 −1 0 1 2 3 4
−4

−2

0

2

4
K = 1.00

K = 2.67

K = 4.00

Figure nystab.1:

1. This is true for poles and zeros on the jω axis as long as we draw the
infinitesimal detour into the right-half-plane, as we are accustomed to
doing.

Figure nystab.2:

real-axis symmetry of the poles and zeros of

transfer functions, the image of the negative

jω-axis is simply a reflection about the real axis

of the image of the positive jω-axis. Nothing

that occurs at zero magnitude affects stability.

The same is true for that which occurs at infinite

magnitude, which never intersects the negative

real axis.1

Gain margin and phase margin

Let us consider a system with a Nyquist plot for

which smaller values of gain K yield a stable

closed-loop system and higher values of K that

yield one that is unstable. It turns out that these

types of systems are very common. We know

that the key to stability in such systems is the

number of encirclements of −1. We are now

ready to define two key quantities, the gain

margin and the phase margin. For a given gain

K, these parameters quantify “how stable” a

given system is. The gain margin GM is a

logarithm of the distance from −1 to the

Nyquist plot’s negative real-axis intercept −1/a,

as shown in Fig. nystab.2. Specifically, in dB

freq Frequency response analysis nybode Stability from the Nyquist plot p. 2

(the typical manner of expressing GM),

GM = 20 log10 a. (3)

The phase margin ΦM is defined as the angle at

which the magnitude is unity as the Nyquist

plot approaches its negative real-axis intercept

−1/a. This is typically difficult to find,

mathematically, from a Nyquist plot. Primarily

for this reason, in a moment we will switch to a

Bode plot representation, in which both GM and

ΦM are easily found.

As already mentioned, GM and ΦM can be

considered measures of stability. We can

consider this to mean that higher GM and ΦM

correspond to greater confidence that the

closed-loop system will remain stable, even

under small changes to its system parameters.

freq Frequency response analysis nybode Stability, GM, and PM from Bode plots p. 1

Figure nybode.1:

freq.nybode Stability, GM, and PM from Bode plots

Bode plots are an alternative representation of

the positive jω-axis Nyquist plot. As we

established in Lec. freq.nystab, this is sufficient

information for stability via the Nyquist

criterion. In a similar fashion, the gain and

phase margins can also be found from the

positive jω-axis Nyquist plot.

For these reasons, the stability, gain margin, and

phase margin can all be found from the Bode

plot. In fact, this is the preferred method for

finding the gain and phase margins.

It is common, but somewhat risky, practice to

simply use the Bode plot to determine stability,

gain margin, and phase margin. Here is why it

is risky: when we use it, we assume that the

system

1. is open-loop stable;

2. with sufficient gain, has only clockwise

encirclements of −1; and

3. has a single negative-real-axis crossing.

Although these are all commonly met, there are

plenty of systems for which they are not. For

this reason, we encourage caution with this

common practice. We proceed by describing the

method.

Recall that the gain margin GM is defined by the

distance between the negative-real-axis

intercept of a Nyquist plot and −1. This occurs

at −180deg. On a Bode plot, such as that of
Fig. nybode.1, it is easy to determine the dB

magnitude difference from the magnitude at

−180deg and 1 = 0dB.
Similarly, recall that the phase margin ΦM is

defined as the difference between the angle at

magnitude 1 = 0dB and −180deg as the Nyquist
plot approaches −180deg. On a Bode plot, such
as that of Fig. nybode.1, the magnitude 0dB

freq Frequency response analysis freqtime Stability, GM, and PM from Bode plots p. 2

point near −180deg corresponds to the phase
from which ΦM can be determined.

Example freq.nybode-1 re: Gain and phase margin from a Bode plot

Let the open-loop transfer function GH(s) be

defined as

GH(s) =
1

s3 + 2s2 + 5s+ 6
.

Determine closed-loop stability, gain margin,

and phasemargin from an open-loop Bode plot.

freq Frequency response analysis freqtime Relations among time and frequency domain reps p. 1

freq.freqtime Relations among time and frequency

domain reps

The second-order assumption

As in root locus design, our transient response

characteristics—such as percent overshoot %OS,
settling time Ts, and peak time Tp—can be

related exactly to second-order response

characteristics ζ and ωn, which have their own

interpretations in the frequency domain and are

related to key features of the Bode plot. This

often gets us close enough that small iterations

on the initial design can achieve the desired

transient response.

The second-order approximation assumes an

open-loop transfer function of the form

G(s) =
ω2n

s(s+ 2ζωn)
(1)

which yields a closed-loop transfer function

T(s) =
ω2n

s2 + 2ζωns+ω2n
, (2)

which has a familiar frequency response.

Bandwidth

The term bandwidth appears in many contexts,

but in control theory when using the

second-order assumption it has a very specific

definition.

Definition freq.1: bandwidth

et a system have a transfer function G(s)

and frequency response function G(jω). The

bandwidth ωBW of the system is the angular

frequency at which |G(jω)| is 3 dB less than

|G(j0)|.

Closed-loop percent overshoot from the closed-loop bandwidth

It is straightforward to show that the bandwidth

of the second-order closed-loop transfer of Eq. 2

freq Frequency response analysis freqtime Relations among time and frequency domain reps p. 1

is related to its natural frequency ωn and

damping ratio ζ by the expression

ωBW = ωn

((
1− 2ζ2

)
+
(
4ζ4 − 4ζ2 + 2

)1/2)1/2
.

(3)

So if a system behaves approximately like this

second-order system, Eq. 3 relates the

closed-loop frequency response characteristic

ωBW and the closed-loop time response

characteristics ωn and ζ. This is a big step, but

we often design the speed of response in terms

of settling time Ts, peak time Tp, and rise time

Tr. We already have relationships for these

quantities and ωn and ζ, the consequences of

two of which when applied to Eq. 3 are shown

below:

ωBW =
4

Tsζ

((
1− 2ζ2

)
+
(
4ζ4 − 4ζ2 + 2

)1/2)1/2
(4a)

ωBW =
π

Tp
√
1− ζ2

((
1− 2ζ2

)
+
(
4ζ4 − 4ζ2 + 2

)1/2)1/2
.

(4b)

Furthermore, it can be shown that, when it

exists (which it does for 0 < ζ < 1/
√
2), the peak

magnitudeMp = maxω|H(jω)| is

Mp =
1

2ζ
√
1− ζ2

. (5)

Of course, percent overshoot %OS is directly
related to ζ by the equations

%OS = 100 exp −ζπ√
1− ζ2

⇐⇒ ζ =
− ln(%OS/100)√
π2 + ln2(%OS/100)

(6)

soMp can be directly related to %OS.

Closed-loop percent overshoot and damping ratio from the open-loop
phase margin

From closed-loop considerations of the

frequency response, we have learned to

freq Frequency response analysis freqtime Relations among time and frequency domain reps p. 1

10 20 30 40 50 60 70 80
phase margin

20

40

60

80

100

percent overshoot

Figure freqtime.1: percent overshoot %OS versus phase marginΦM.

10 20 30 40 50 60 70 80 90
phase margin

0.5

1.0

1.5

2.0
damping ratio

Figure freqtime.2: damping ratio ζ versus phase marginΦM.

determine some closed-loop time response

characteristics. Now we learn to determine one

of these characteristics—percent overshoot

%OS—from open-loop frequency response.

From the transfer function of Eq. 1, it is

straightforward to relate the phase margin ΦM

of the open-loop transfer function to the

damping ratio ζ via the expressions

ΦM = arctan 2ζ√
−2ζ2 +

√
1+ 4ζ4

⇐⇒ (7)

ζ =
tanΦM

2(1+ tan2ΦM)1/4
. (8)

As we know from Eq. 6, percent overshoot %OS
is directly related to ζ, so ΦM can be directly

related to %OS, as shown in Fig. freqtime.1.

Closed-loop settling and peak times from the open-loop frequency
response

We introduced the concept of bandwidth in

above and related the closed-loop bandwidth

ωBW to settling time Ts and peak time Tp in

Eq. 4. There is a method, which we present but

leave underived, that allows us to find the

closed-loop bandwidth of many systems from

the open-loop frequency response, allowing us

to relate the open-loop frequency response to Ts

and Tp. The method is based on the following

insight: the closed-loop bandwidth is

approximately equal to the frequency at which

the magnitude of the open-loop frequency

response is in the interval [−6,−7.5]dB if the

phase of the open-loop frequency response is in

the interval [−135,−225]deg.
This gives us a method to approximate

closed-loop Ts and Tp by inspecting the

open-loop frequency response. Here’s the

method:

1. estimate the closed-loop bandwidth ωBW

by finding the frequency at which the

freq Frequency response analysis exe Relations among time and frequency domain reps p. 2

magnitude of the open-loop frequency

response is in the interval [−6,−7.5]dB;

2. verify that open-loop phase at ωBW is in

the interval [−135,−225]deg;
3. determine ζ via the phase margin (Eq. 7,

Fig. freqtime.2); and

4. estimate Ts and Tp via Eq. 4.

freqd Frequency response analysis Exercises for Chapter freq p. 1

freq.exe Exercises for Chapter freq

freqd

Frequency response design

The analytical techniques of Chapter freq allow

us to develop design procedures for controllers

in the frequency domain. There are few

advantages to frequency response design over

root locus design. Frequency response design

proceeds primarily from the easily-sketched

bode plot, which makes it easier to execute

by-hand than root locus design. One clear

advantage is that, when designing a lead

controller, it is possible with frequency response

design to not only tune %OS and response time,

but desirable steady-state error can also be

achieved, something for which root locus design

is not conducive.

freqd Frequency response design exe Transient response design by adjusting the gain p. 1

freqd.gain Transient response design by adjusting the

gain

The following design procedure allows us to

design for a desired percent overshoot. A

similar procedure could be followed to design

for a desired damping ratio.

1. Generate open-loop Bode plots with some

convenient initial gain Ki.

2. Use either Fig. freqtime.1 or Eq. 6 and

Eq. 7 to find the desired phase marginΦM.

3. From the Bode phase plot, determine the

frequency ωΦM at which (180 deg minus

the absolute value of) the phase is equal to

the desired phase margin.

4. Change the gain to be such that the

magnitude plot would intersect 0 dB at

ωΦM .

Example freqd.gain-1 re: Percent overshoot design by adjusting the

gainDesign a unity feedback gain controller for a

system with the plant

G(s) =
10

(s+ 90)(s+ 30)

such that the percent overshoot %OS is

approximately 20%.

ss Frequency response design Exercises for Chapter freqd p. 1

C(s) G(s)

H(s)

R E U Y

F

−

Figure exe.1: a block diagram with a controller C(s).

freqd.exe Exercises for Chapter freqd

Exercise freqd.libricide

Let a control system have the block diagram in

Fig. exe.1, unity feedback H(s) = 1, and plant

transfer function

G(s) =
1

s3 + 11s2 + 39s+ 29
. (1)

1. Use frequency response methods to

design a gain controller such that the unity

feedback closed-loop overshoot is about

10%.

2. Demonstrate the controller performance

by simulating and plotting a step

response.

3. Compute the simulated overshoot (via the

step response).

ss

State-space design

Root-locus and frequency-domain design

techniques have their own strengths, but they

cannot be applied to broad classes of systems,

including nonlinear systems and multiple-input

multiple-output (MIMO) systems. Moreover,

these techniques can only attempt to specify the

locations of the dominant closed-loop poles.

Therefore, those systems for which higher-order

poles significantly affect the response do not

respond well to these techniques.

These are some of the reasons why “modern”

control theory uses state-space design

techniques. Drawbacks of these techniques are

limited, but include that less insight can be

gained from them and that closed-loop zeros

cannot be specified directly.

For an n-th order plant, n poles must be placed.

This requires n adjustable parameters, which

are gains. We will learn a technique in this

chapter for placing these n poles with n gains

for a certain class of systems.

ss State-space design sfdbck Controller design method p. 1

B
∑ ∫

C
∑

D

A

u ẋ x y

Figure sfdbck.1: the plant state model of Eq. 1 written in block diagram form.

N
∑

B
∑ ∫

C
∑

D

A

K

r u ẋ x y

−

Figure sfdbck.2: the state feedback control block diagram.

ss.sfdbck Controller design method

We will consider single-input single-output

(SISO) control plants that can be written with

input u; state vector x; output y; state model

matrices A, B, C, and D; and state and output

equations

ẋ = Ax+ Bu (1a)

y = Cx+Du. (1b)

Plants of this form can be written in block

diagram form, as illustrated in Fig. sfdbck.1. In

general, SISO systems are of order nwith n

state variables.

Let us consider the following feedback control

method called state feedback control. We will

feed back the state vector x, operate on it with a

1× n vector of gains K ∈ Rn, and subtract the

result from the command r, the result of which

becomes the input u, as shown in Fig. sfdbck.2.

The control problem for state feedback control is

to determine the n gains in K such that the

closed-loop poles are located in desirable

positions. The gain N ∈ R is provided for

steady-state error considerations, which will be

addressed in Lec. ss.sfdbck. A new state model

can be derived for the closed-loop system as

follows. Let us consider the command r to be

our new “input,” instead of u, which is now the

control effort. From the block diagram,

u = Nr− Kx, (2)

which can be substituted into Eq. 1 to define the

new state model

ẋ = (A− BK)x+NBr (3a)

y = (C−DK)x+NDr. (3b)

The eigenvalues of A− BK, which can be found

from equating zero and the closed-loop

characteristic polynomial

PK = det (sI−A+ BK), (4)

ss State-space design sfdbck Controller design method p. 1

1. We leave the following as an open question: under what conditions is
K invertible?

are equal to the closed-loop poles, which we

would like to place in specific locations. Those

specific locations can be specified by the design

characteristic polynomial Pd. PK depends on the

n gains Ki, and n equations can be found by

equating the polynomial coefficients of PK and

Pd.

Solving for Ki is straightforward but can be very

tedious in the general case. Let the coefficients

of Pd be δi and those of PK be denoted κi. Then

the n× 1 vector containing κi can be expressed
as a linear combination of Ki as

κ = KKᵀ, (5)

where K is an n× nmatrix of coefficients that

were derived from A and B. Let δ be the n× 1
vector of components δi. Since the vector δ is

specified by our design requirements, we can

solve for K as follows.

κ = δ, (6)

and therefore,

KKᵀ = δ =⇒

Kᵀ = K−1 δ =⇒

K =
(
K−1 δ

)ᵀ
. (7)

Eq. 7 is valid for all cases in which K is

invertible.1 However, there is a special form of

the original state-space model that always yields

a simple solution for K: the phase-variable

canonical form (see Appendix B.02).

Solving for the gain via the phase-variable canonical form

The phase-variable canonical form of the

original system is:

ẋc = Acxc + Bcu (8a)

y = Ccxc +Dcu (8b)

ss State-space design sfdbck Controller design method p. 2

where

Ac =

0 1 0 · · · 0 0

0 0 1 0 0
...

...
. . .

...

0 0 0 1 0

0 0 0 · · · 0 1

−a0 −a1 −a2 · · · −an−2 −an−1

, Bc =

0

0
...

0

0

1

,

(8c)

Cc =
[
c1 c2 · · · cn

]
, and Dc =

[
d1

]
,

(8d)

where the components ai are defined by the

original characteristic polynomial

P = det(sI−A) = sn + an−1s
n−1 + · · ·+ a1s+ a0.

(9)

With Ac defined, the form of the feedback state

model with feedback row vector Kc is:

A′
c = Ac − BcKc, B′

c = Bc, (10a)

C′
c = Cc −DcKc, and D′

c = Dc. (10b)

A′
c deserves further attention. The special

canonical form of Ac and Bc makes the

expression for A′
c simply

A′
c =

0 1 · · · 0

0 0 0
...

...
. . .

...

0 0 0

0 0 · · · 1

−(a0 + K
′
1) −(a1 + K

′
2) · · · −(an−1 + K

′
n)

,

(11)

where K′
i is the row vector of gains in the

phase-variable canonical basis. The design

characteristic polynomial coefficients δi must

equal the characteristic polynomial coefficients

δi = ai + K
′
i+1, (12)

ss State-space design sfdbck Controller design method p. 1

which gives

K′
i = δi−1 − ai−1. (13)

This yields K′. If we equate the feedback

Kx = K′xc =⇒

K = K′Tc. (14)

Let U and Uc be the controllability matrices for

the original basis and the phase-variable

canonical basis, respectively. From

Appendix B.02, we can compute the

transformation matrix to be

Tc = UcU
−1. (15)

Steady-state error

We can use the gain N to drive the closed-loop

steady-state error to zero for step inputs. The

idea is that we can scale the input by the

reciprocal of the closed-loop steady-state error.

Let GCL(s) be the closed-loop transfer function.

From the final value theorem for a unit step

input,

N = lim
s→0,N→1

1/GCL(s). (16)

If N is nonzero and finite, the response will have

zero steady-state error. Although it is derived

from unit step inputs, we can apply this formula

to slowly varying inputs as well.

Example ss.sfdbck-1 re: state feedback pole placement design

Given the state-space model

A =

−1 0 −1

−1 −1 0

0 −1 −1

 B =

10
0

C =

[
0 0 1

]
D =

[
0
]
,

design a controller with 15% overshoot and a

settling time of 1 sec.

ss State-space design sfdbck Controller design method p. 2

ss State-space design sfdbck Controller design method p. 3

ss State-space design exe Controller design method p. 4

State-space design Exercises for Chapter ss p. 1

ss.exe Exercises for Chapter ss

A

Mathematical topics

AMathematical topics A.01 Complex functions p. 1

Figure A.01.1: illustrating the definition of a complex contour Γ .

Figure A.01.2: a representation of a complex function f mapping a contour.

A.01 Complex functions

A complex function fmaps a subset of the

complex plane to the complex plane (i.e.

f : C→ C). For instance, a complex function f

can map a single complex number s0 to another

s1 = f(s0).

A curve in the complex plane is defined as a

continuous function mapping a closed interval

of the reals to the complex plane. A contour is

defined as a directed curve consisting of a finite

set of directed smooth curves, the final endpoint

of which is identical to the starting point

(Fig. A.01.1 shows a plot of a contour Γ).

A contour can be mapped by a complex

function, and this is our primary concern. The

image of a contour Γ mapped by a complex

function f is itself a contour f(Γ), as shown in

Fig. A.01.2.

Complex functions are of interest in control

theory because transfer functions, one of the

central mathematical objects of control theory,

are complex functions. The utility of evaluating

and mapping contours with complex functions

arises especially in root-locus design and

frequency response design (especially for the

Nyquist stability criterion).

Example A.01-1 re: transfer function mapping a single point

Map the complex point s = 1 + j3 with the

transfer (complex) function

H(s) =
s+ 4

s− 1
.

Sometimes we say that we are “evaluating” the

transfer function at the point s = 1+ j3.

AMathematical topics Complex functions p. 2

−4 −2 2 4

−4i

−2i

+2i

+4i
ψ

z1

p2

p1

Re(s)

Im(s)

Figure A.01.3: an example of a geometric interpretation of the evaluation of
a complex function with poles p1,2 and zero z1 at a complex value s = ψ.

A geometric interpretation of complex functions

It is often helpful to interpret the complex

mapping of a point or a contour geometrically.

Let us consider a transfer (complex) function

H(s) with complex zeros zi, complex poles pj,

and real scaling factor k. Considering each

factored term of the transfer function in terms of

its magnitude and phase, we can write the

magnitude and phase of the transfer function as

follows.

Equation 1 magnitude and phase of

a transfer function

We can interpret this geometrically as follows.

Let us consider the evaluation of Eq. 1 at a

specific complex value ψ. The differences ψ− zi

and ψ− pi can be thought of as vectors in the

complex plane with tails at zi and pi and heads

at ψ. Fig. A.01.3 shows this geometric

interpretation with p1,2 = −3± j3, z1 = 1, and
ψ = 3+ j4.

Example A.01-2 re: transfer function mapping a contour

Let I = [0, 2π]. Let the contour Γ : I → C be

defined parametrically, with t ∈ I, as

Γ(t) = sin t+ j cos t.

Map Γ with the transfer function

H(s) =
s

s2 + 2s+ 2

and plot the result.

AMathematical topics Complex functions p. 3

1 \[CapitalGamma][t_] := {Sin[t], Cos[t]}
2 H[s_] := (s + 1)/(s^2 + 2*s + 2);
3
4 ps = {Blue, Arrowheads[{0, .05, .05, .05}]};
5 mappingcontour = Animate[
6 {
7 ParametricPlot[
8 \[CapitalGamma][t], {t, 0, T},
9 PlotRange -> {-1, 1},
10 PlotStyle -> ps,
11 PlotLabel -> "\[CapitalGamma]"
12] /.
13 Line -> Arrow,
14 ParametricPlot[
15 H[Complex @@ \[CapitalGamma][t]] // {Re[#], Im[#]} &,
16 {t, 0.001, T},
17 PlotRange -> {-1.5, 1.5},
18 PlotStyle -> ps,
19 PlotLabel -> "H(\[CapitalGamma])"
20] /.
21 Line -> Arrow
22 } // GraphicsRow ,
23 {T, 0, 2*\[Pi]}
24]

Figure A.01.5: a basic Mathematica script for visualizing the transfer function mapping of Example A.01-2. A more thorough notebook is available here.

http://ricopic.one/resources/ex_mappingcontour.nb

B

Linear systems theory topics

B Linear systems theory topics B.01 Controllability, observability, and stabilizability p. 1

B.01 Controllability, observability, and stabilizability

The three topics controllability, observability,

and stabilizability are three topics of central

concern to linear systems theory.

Controllability

Controllability is defined as follows.

Definition B.1: controllable and uncontrollable
f there exists some input to a linear system

such that any initial state in its state space

can be evolved in finite time to any final state

in its state space, the system is controllable.

Otherwise, the system is uncontrollable.

A given system’s controllability can be

determined from the following.

Definition B.2: controllability matrix

et a linear system of order n and number of

inputs r have state space {A,B,C,D}. We define

the n× nr controllability matrix to be

U =
[
B |AB |A2B | . . . |An−1B

]
.

The following well-known theorem, left

unproven here, allows us to easily determine

the controllability of a given system.

Theorem B.3: controllability

linear system is controllable if its controllability

matrix has full rank. If it is less than full rank,

the linear system is uncontrollable.

B Linear systems theory topics B.02 Canonical forms of the state model p. 1

1. There are phase-variable canonical forms for MIMO systems as well,
but these are less standardized.

B.02 Canonical forms of the state model

There are several canonical forms for the state

equations, all of which can be found via basis

transformations from other forms.

Phase-variable canonical form

The phase-variable canonical form is

represented by the SISO1 state model

ẋc = Acxc + Bcu (1a)

y = Ccxc +Dcu (1b)

where

Ac =

0 1 0 · · · 0 0

0 0 1 0 0
...

...
. . .

...

0 0 0 1 0

0 0 0 · · · 0 1

−a0 −a1 −a2 · · · −an−2 −an−1

, Bc =

0

0
...

0

0

1

,

(1c)

Cc =
[
c1 c2 · · · cn

]
, and Dc =

[
d1

]
.

(1d)

In order to transform a SISO system {A,B,C,D}

with state vector x to phase-variable canonical

form, we change bases via the substitution of

x = Tcxc into the original system, which gives

Ac = T
−1
c ATc, Bc = T

−1
c B, (2a)

Cc = CTc, and Dc = D. (2b)

The special form of Equation 1 yields the

following characteristic polynomial:

sn + an−1s
n−1 + · · ·+ a1s+ a0. (3)

Recall that eigenvalues of a system are invariant

to basis change, and therefore so is its

characteristic polynomial. From this we can

conclude that Ac can be completely determined

by finding the characteristic polynomial of the

B Linear systems theory topics Canonical forms of the state model p. 1

original matrix A. Bc is already fully

determined, but Cc and Dc remain

undetermined. They may be found by

discovering the transformation matrix Tc and

substituting it into Equation 2.

Finding the phase-variable canonical

transformation

The phase-variable canonical transformation

matrix Tc can be found by relating the

controllability matrices of the original form and

the canonical form.

Theorem B.4: phase-variable canonical

transformation
he transformation matrix from a system

representation with controllability matrix U to

a phase-variable canonical transformation with

controllability matrix Uc is

Tc = UcU
−1. (4)

By the Definition of the controllability matrix,

the original controllability matrix is

U =
[
B |AB |A2B | . . . |An−1B

]
(5)

and that of the canonical form is

Uc =
[
Bc |AcBc |A

2
cBc | . . . |A

n−1
c Bc

]
. (6)

Note that U and Uc are both known from above.

We relate the two forms by applying Equation 2

to Equation 6 to yield

Uc =
[
T−1c B | T−1c AB | T−1c A2B | . . . | T−1c An−1B

]
(7a)

= TcU, (7b)

to yield

Tc = UcU
−1.

C

Physical topics

C Physical topics Decibels p. 1

C.01 Decibels

Bibliography

Agarwal, A. and J. Lang (2005). Foundations of

Analog and Digital Electronic Circuits. The

Morgan Kaufmann Series in Computer

Architecture and Design. Elsevier Science.

isbn: 9780080506814.

Authority, Tennessee Valley and Tomia (2018).

Hydroelectric dam—Wikipedia, The Free

Encyclopedia. [Online; accessed

13-February-2018].

Baldursson, Stefán (2005). ?BLDC Motor

Modelling and Control – A

Matlab®/Simulink®Implementation?

mathesis. Chalmers University.

Booton, Richard C. and Simon Ramo (july 1984).

?The development of systems engineering?

inIEEE Transactions on Aerospace and

Electronic Systems: AES–20, pages 306–9.

Brogan, William L (1991). Modern Control

Theory. Third. Prentice Hall.

Evans, W. R. (january 1948). ?Graphical Analysis

of Control Systems? inTransactions of the

American Institute of Electrical Engineers:

67.1, pages 547–551. issn: 0096-3860. doi:

10.1109/T-AIEE.1948.5059708.

— (january 1950). ?Control System Synthesis by

Root Locus Method? inTransactions of the

American Institute of Electrical Engineers:

69.1, pages 66–69. issn: 0096-3860. doi:

10.1109/T-AIEE.1950.5060121.

https://doi.org/10.1109/T-AIEE.1948.5059708
https://doi.org/10.1109/T-AIEE.1950.5060121

Physical topics Bibliography p. 3

Horowitz, P and W Hill (2015). The Art of

Electronics. Cambridge University Press.

isbn: 9780521809269.

Hsu, H.P. (1967). Fourier Analysis. Simon &

Schuster. isbn: 9780671270377.

Nise, N.S. (2015). Control Systems Engineering,

7th Edition. Wiley. isbn: 9781118800829.

Nise, Norman S. (2011). Control Systems

Engineering. Sixth. John Wiley & Sons, Inc.

NOAA (august 2017). Mothly Average

Precipitation 1951–2008 Olympia Regional

Airport—NOAA Station.

Picone, Rico A.R. (2018). State.

https://github.com/ricopicone/state.

Rowell, Derek and David N. Wormley (1997).

System Dynamics: An Introduction. Prentice

Hall.

https://github.com/ricopicone/state

	Introduction
	Performance
	Stability
	Transient Response
	Steady-State Response
	Others

	Feedback control system block diagrams
	Introducing PID control
	Zieglerâ•ﬁNichols tuning method

	An interactive PID controller design
	Symbolic transfer functions
	Symbolic to transfer functions
	Defining the closed-loop function
	Step response
	Interactive step response

	Exercises for Chapter intro
	Exe. intro.tabernacle
	Exe. intro.psalmody
	Exe. intro.calvous
	Exe. intro.telesis
	Exe. intro.postulant
	Exe. intro.mascaron
	Exe. intro.

	Stability performance
	Introduction
	Stability defined by the free response
	Stability defined by the forced response

	Stability from the transfer function
	Stability from the poles of a closed-loop transfer function
	Stability from the form of a closed-loop transfer function

	Routh-Hurwitz criterion
	An algorithm for applying the Routh-Hurwitz criterion

	Exercises for Chapter stab
	Exe. stab.saginate
	Exe. stab.spleniculus
	Exe. stab.break
	Exe. stab.relax

	Transient response performance
	Transient response characteristics
	Exact analytical trans response char of first- and second-order sys
	First-order systems without zeros
	Second-order systems without zeros

	Approx analytical transient response characteristics
	Simulation
	Exercises for Chapter trans
	Exe. trans.apiarian
	Exe. trans.pericentral
	Exe. trans.rest

	Steady-state response performance
	Steady-state error for unity feedback systems
	Exercises for Chapter steady
	Exe. steady.hypnomancy
	Exe. steady.nap

	Root locus analysis
	Root locus definition
	Closed-loop poles are hard to find
	Definition
	The magnitude and phase criteria
	What about negative gains and positive feedback?

	Sketching the root locus
	Generating the root locus via a computer
	Matlab
	Python

	Exercises for Chapter rlocus
	Exe. rlocus.burritosteve
	Exe. rlocus.dunnage
	Exe. rlocus.respite

	Root-locus design
	Gain from the root locus
	Gain, analytically and geometrically
	Gain, the easy way

	Proportional controller design (P)
	Example using Python

	Beyond proportional design
	Proportional-integral (PI) controller design
	Design procedure

	Proportional-lag controller design
	Design procedure
	A design example

	Proportional-derivative (PD) controller design
	Design procedure
	A design example

	Proportional-lead design
	Design procedure
	A design example

	Prop-integral-derivative controller design
	A design example

	Proportional-lead-lag controller design
	A design example

	Multiple derivative compensators
	Causality

	Exercises for Chapter rldesign
	Exe. rldesign.quixotism
	Exe. rldesign.arval
	Exe. rldesign.22
	Exe. rldesign.23
	Exe. rldesign.diurnation
	Exe. rldesign.sebatical
	Exe. rldesign.sleep
	A design example

	Exercises for Chapter rldesign
	Exe. rldesign.quixotism
	Exe. rldesign.arval
	Exe. rldesign.29
	Exe. rldesign.30
	Exe. rldesign.diurnation
	Exe. rldesign.sebatical
	Exe. rldesign.sleep

	Frequency response analysis
	Introduction
	Bode plots
	Bode plots for simple transfer functions
	Sketching Bode plots
	Nyquist criterion
	Introduction
	A description of the Nyquist criterion
	Sketching Nyquist plots

	Stability from the Nyquist plot
	Stability from the positive j-axis image, alone
	Gain margin and phase margin

	Stability, GM, and PM from Bode plots
	Relations among time and frequency domain reps
	The second-order assumption
	Closed-loop percent overshoot from the closed-loop bandwidth
	Closed-loop %OS and from M
	Closed-loop Ts and Tp from the open-loop system

	Exercises for Chapter freq

	Frequency response design
	Transient response design by adjusting the gain
	Exercises for Chapter freqd
	Exe. freqd.libricide

	State-space design
	Controller design method
	Solving for the gain via the phase-variable canonical form
	Steady-state error

	Exercises for Chapter ss

	Mathematical topics
	Complex functions
	A geometric interpretation of complex functions

	Linear systems theory topics
	Controllability, observability, and stabilizability
	Controllability

	Canonical forms of the state model
	Phase-variable canonical form

	Physical topics
	Decibels

	Bibliography

