intro.block Feedback control system block diagrams

1 As we have already seen, a useful tool for designing control systems is the block diagram. The plant and the controller are represented as blocks. Usually a transfer function (or transfer function matrix) can describe the function of each block. A typical block diagram is shown in [Fig. def.1.](#page--1-0)

2 In this configuration, a command function $R(s)$ is provided to the control system. The feedback $H(s)Y(s)$ is subtracted from $R(s)$ to give the error $E(s)$. This is fed to the controller $C(s)$. The output of the controller is the control effort $U(s)$, which is the input of the plant $G(s)$. The output $Y(s)$, after being fed back as $H(s)Y(s)$, is what the control system is attempting to make equal to the command $R(s)$, therefore, ideally $E(s) = 0.$

3 Block diagrams express algebraic

relationships. (The blocks do not dynamically "load" each other.) In the case of [Fig. def.2,](#page--1-1) the relationships are

$$
U(s) = C(s)E(s) \tag{1b}
$$

$$
Y(s) = G(s)U(s) \tag{1c}
$$

$$
F(s) = H(s)Y(s). \tag{1d}
$$

The closed-loop tranfer function is defined as $Y(s)/R(s)$. This important transfer function shows how the system should respond to commands, of key importance for most performance criteria.

Given the feedback block diagram of [Fig. def.1](#page--1-0) (left), solve for the closed loop transfer function $Y(s)/R(s)$.

Figure block.1: a block diagram for a controller C(s).

C(s)G(s)	
$+ C(s)G(s)H(s)$	

Figure block.2: a block diagram with the corresponding closed-loop transfer function block, derived in [Example intro.block-1.](#page-0-0)

Example intro.block-1 re: Closed-loop transfer function