
intro Introduction pid Introducing PID control p. 1

Table pid.1: occasionally true generalities about PID controller terms.

Proportional Integral Derivative

• is the workhorse
• speeds up responses •
can lead to instability when too
large

• improves or eliminates steady-
state error • slows down the
response • becomes a liability
when it can’t forget (integral
windup)

• speeds up the response • can
yield jitter when measurement
noise is large • can lead to
instability when measurement
noise is large

intro.pid Introducing PID control

1 One of the most ubiquitous types is the

proportional-integral-derivative (PID)

controller. It has a transfer function with real

constants KP, KI, and KD:

C(s) = KP︸︷︷︸
proportional

+ KI/s︸︷︷︸
integral

+ KDs︸︷︷︸
derivative

. (1)

Remember: the controller operates on the error

E(s), so the PID controller effectively sums

terms proportional to the error, its integral, and

its derivative. Inspecting this in the time

domain with error e(t) by taking the inverse

Laplace transform of the output U(s) = C(s)E(s),

u(t) = KPe(t)︸ ︷︷ ︸
proportional

+KI

ˆ t
0

e(θ)dθ︸ ︷︷ ︸
integral

+ KDė(t)︸ ︷︷ ︸
derivative

. (2)

2 So the control effort u is responsive to:

P the amount and direction of error (reactive, spring-like),

I the accumulation of error over time (memoried, mass-like), and

D the time rate of change of the error (anticipatory, damper-like).
Although the mechanical spring-mass-damper

analog above has its limitations, it is helpful for

our intuition. More generally, we can consider

the three constants KP, KI, and KD to be “knobs”

with which we can include more or less of each

term.

3 Just how a controller will affect the

closed-loop response is significantly dependent

on the plant dynamics. Therefore, there is no

way to make fully general statements about the

impact of each of the PID terms. This is why we

need the detailed analytic design tools of

Chapter rldesign and the intervening chapters

hence. However, for some simple systems, we

can make the assertions of Table pid.1.

4 There are many methods of tuning a PID

controller: selecting KP, KI, and KD to meet

certain performance criteria. The root locus

design method of Chapter rldesign and the

intro Introduction pid Introducing PID control p. 1

1. This can be the impulse, step, or free response. Furthermore, it can be
oscillatory.

frequency response design method of

Chapter freqd allow us to precisely design for

specific performance criteria. However, there

are times when specific performance criteria

and involved analysis are not available or

convenient. In these cases, hand-tuning is

possible via several algorithms. One such

algorithm is presented in the following section.

Ziegler–Nichols tuning method

5 The Ziegler–Nichols method of tuning a PID

controller is presented in the following

algorithm.

1. Set KP, KI, KD = 0.

2. Increase KP until a marginally stable

response1 is observed.

3. Record this ultimate gain Ku and the

oscillation period Tu.

4. Set the controller gains:

KP = 0.6Ku KI = 1.2Ku/Tu KD = 3KuTu/40.

(3)

Example intro.pid-1 re: hand-tuning a PID controller

C(s) G(s)
R E U Y

−

Figure pid.1: block diagram for Example intro.pid-1.

For the block diagram of Fig. pid.1, with the

plant

G(s) =
15000

s4 + 50s3 + 875s2 + 6250s+ 15000

use the Ziegler–Nichols method to design a PID

controller C(s).

We proceed with Matlab, symbolically at first.

Let’s define the transfer functions.
syms S kp ki kd % S is the laplace transform s
G_sym = 15000/(S^4+50*S^3+875*S^2+6250*S+15000); % plant
C_sym = kp + ki/S + kd*S; % PID controller transfer fun

From the preceding lecture’s ??, the closed-loop

transfer function is as follows.

CL_sym = simplify(...
C_sym*G_sym/(1+C_sym*G_sym) ...

intro Introduction pid Introducing PID control p. 2

)

CL_sym =

(15000*kd*S^2 + 15000*kp*S + 15000*ki)/(15000*S +
15000*ki + 15000*S*kp + 15000*S^2*kd + 6250*S^2
+ 875*S^3 + 50*S^4 + S^5)

↪→

↪→

I have created a function sym_to_tf that creates
a tf object, which we’ll need for simulation.a

type sym_to_tf.m

function tf_obj = sym_to_tf(sym_tf,s_var)
% TODO test to make sure s_var is in

symvar(sym_tf) ...↪→

syms(symvar(sym_tf))
syms s
sym_tf = subs(sym_tf,s_var,s);
tf_str = char(sym_tf);
s = tf([1,0],[1]);
eval(['tf_obj = ',tf_str,';']);

Let’s wrap it in a function of our own K_sub,
which will create a closed-loop tf object from

our CL_symwith the PID gains included.

K_sub = @(Kp,Ki,Kd) sym_to_tf(...
subs(...

CL_sym, ...
{kp,ki,kd}, ...
{Kp,Ki,Kd} ...

), ...
S ...

);
K_sub(1,0,0) % e.g.

ans =

15000 s

s^5 + 50 s^4 + 875 s^3 + 6250 s^2 + 30000 s

Continuous-time transfer function.

Now let’s use impulse to simulate the response

starting with a small proportional gain.

[y,t] = impulse(K_sub(1,0,0));

intro Introduction pid Introducing PID control p. 3

0 0.5 1 1.5 2

time (s)

-0.5

0

0.5

1

1.5

2

im
pu
lse

res
po
ns
e

Figure pid.2: impulse response with (small) KP = 1.

Now, we should plot the result – see Fig. pid.2.

figure
plot(t,y)
grid on
xlabel('time (s)')
ylabel('impulse response')

If we iteratively increase KP = 1 → 3 → 5.25

(the response for each of these values is plotted

in Fig. pid.3), we find that around the last

value, the system becomes marginally stable

and therefore

Ku = 5.25. (4)

The oscillation period appears to be around

Tu = 0.56 seconds. Defining these quantities,

we can now compute KI and KD from Eq. 3.

0 1 2 3 4 5

time (s)

-10

-5

0

5

10

im
pu
lse

res
po
ns
e

K P = 1

K P = 3

K P = 5.25

Figure pid.3: impulse responses with KI = KD = 0 and KP as shown.

Ku = 5.25;
Tu = 0.56;
KP = 0.6*Ku;
KI = 1.2*Ku/Tu;
KD = 3*Ku*Tu/40;
disp(sprintf(...

'KP = %0.2f, KI = %0.2f, KD = %0.2f', ...
KP,KI,KD ...

))

KP = 3.15, KI = 11.25, KD = 0.22

Let’s try out this controller for step response

and see how it looks.

[y,t] = step(K_sub(KP,KI,KD));
figure
plot(t,y)
xlabel('time (s)')
ylabel('step response')

The resulting step response is plotted in

Fig. pid.4. We didn’t have specific expectations

for performance, here, but this result is a nice,

average-looking step response with some

overshoot and a decent settling time.

0 0.5 1 1.5 2

time (s)

0

0.5

1

1.5

ste
pr
es
po
ns
e

Figure pid.4: closed-loop step response with the PID controller tuned by the
Ziegler-Nichols method.

a. The function is available in the repo: github.com/
ricopicone/matlab-rico.

http://github.com/ricopicone/matlab-rico
http://github.com/ricopicone/matlab-rico

