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2. For more on Python, see python.org.

3. For more on Jupyter, see jupyter.org.
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Figure pidi.1: a unity feedback control loop.

3. Python code in this section was generated from a Jupyter notebook
named pid_interactive_design_python.ipynb with a python3
kernel.

intro.pidi An interactive PID controller design

1 In this lecture, we will build an interactive

PID control design tool in Python. However,

you need not install Python2 to try the design

tool: it is available at the following web page.

click to launch interactive page in browser

It may take a few minutes to load the Jupyter

notebook.3 Once it does, click Cell Run All . This will

run the Python code that comprises the

remainder of this lecture. Scroll to the bottom of

the webpage to interact with the PID gains that

update the closed-loop step response plot!

2 For the unity feedback block diagram of

Fig. pidi.1, we will design a PID controller C(s).

Design requirements are (a) less than 20 percent

overshoot, (b) an initial peak in less than 0.2

seconds, and (c) zero steady-state error for a

step response.

First, load some general-purpose Python

packages.

import numpy as np # for numerics
import sympy as sp # for symbolics
import control as c # the Control Systems module
import matplotlib as mpl # for plots
import matplotlib.pyplot as plt # also for plots
from IPython.display import display, Markdown, Latex

The following Python packages are specific for

the interactive widget.

from ipywidgets import *
%matplotlib widget

Symbolic transfer functions

Let’s investigate the transfer functions

symbolically. We begin by defining the Laplace

s and gain symbolic variables.

s,K_p,K_i,K_d = sp.symbols('s K_p K_i K_d')

http://python.org
http://jupyter.org
https://mybinder.org/v2/gh/ricopicone/control-systems/master?filepath=pid_interactive_design_python_web.ipynb
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We will design a PID controller for a plant with

the following transfer function.

G_sym = 15000/(s**4+50*s**3+875*s**2+6250*s+15000)
display(G_sym)

15000

s4 + 50s3 + 875s2 + 6250s+ 15000
The controller has the following symbolic

transfer function.

C_sym = K_p + K_i/s + K_d*s
display(C_sym)

Kds+
Ki
s

+ Kp

The closed-loop transfer function for the unity

feedback system is as follows.

T_sym = sp.simplify(
C_sym*G_sym/(1+C_sym*G_sym)

)
T_num, T_den = list( # for simplifying

map(
lambda x: sp.collect(x,s),
sp.fraction(T_sym)

)
)
T_sym = T_num/T_den
display(T_sym)

15000Ki + s (15000Kds+ 15000Kp)

15000Ki + s (15000Kds+ 15000Kp + s4 + 50s3 + 875s2 + 6250s+ 15000)

Symbolic to control transfer functions

The control package has objects of type
TransferFunction that will be useful for

simulation in the next section. We begin by

defining a function to convert a symbolic

transfer function to a control
TransferFunction object.

def sym_to_tf(tf_sym,s_var):
global s # changes s globally!
S = s_var
s = sp.symbols('s')
tf_sym = tf_sym.subs(S,s)
tf_str = str(tf_sym)
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s = c.TransferFunction.s
ldict = {}
exec('tf_out = '+tf_str,globals(),ldict)
tf_out = ldict['tf_out']
return tf_out

This isn’t smooth, but it works. Note that

tf_symmust have no symbolic variables besides

s_var, the Laplace s. We can apply this to

G_sym, then, but not yet C_sym.

type(sym_to_tf(G_sym,s))

control.xferfcn.TransferFunction

Defining the closed-loop function

We need to create a function that specifies the

gains, substitutes them into the symbolic

closed-loop transfer function, then converts it to

a control package TransferFunction object via
sym_to_tf.

def pid_CL_tf(CL_sym,Kp=0,Ki=0,Kd=0):
sp.symbols('K_p K_i K_d')
s = c.TransferFunction.s
CL_subs = CL_sym.subs({K_p: Kp, K_i: Ki, K_d: Kd})
return sym_to_tf(CL_subs,s)

For instance, we can let Kp = 1 and Ki = Kd = 0.

display(
pid_CL_tf(T_sym,Kp=1)

)

1.5× 104

s4 + 50s3 + 875s2 + 6250s+ 3× 104

Step response

It is straightforward to use the control
package’s step_response function to get a step
response for a single set of gains.
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gains = {'Kp':2, 'Ki':1, 'Kd':0.1}
sys_CL = pid_CL_tf(T_sym,**gains)
t_step = np.linspace(0,3,200)
t_step,y_step = c.step_response(sys_CL, t_step)

Now let’s plot it. The result is shown in

Fig. pidi.2.

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
line, = ax.plot(t_step, y_step)
plt.xlabel('time (s)')
plt.ylabel('step response')
plt.show()
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Figure pidi.2: step response with Kp, Ki, Kd = 2, 1, 0.1.
Interactive step response

The following essentially repeats the same

process of

1. setting the PID gains with pid_CL_tf,
2. simulating with step_response, and
3. plotting the response.

The caveat is that this happens with a GUI

interaction callback function update that sets
new gains (based on the GUI sliders), simulates,

and replaces the old line on the plot. The final
plot is shown in ??. It appears to meet our

performance requirements.

%matplotlib widget
# simulate
t_step = np.linspace(0,3,200)
sys_CL = pid_CL_tf(T_sym,Kp=1)
t_step,y_step = c.step_response(sys_CL, t_step)

# initial plot
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
line, = ax.plot(t_step, y_step)
plt.xlabel('time (s)')
plt.ylabel('step response')
plt.show()
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# GUI callback function
def update(Kp = 1.0, Ki = 0.0, Kd = 0.0):

global t_step, kp, ki, kd
kp,ki,kd = Kp,Ki,Kd
sys_CL = pid_CL_tf(T_sym,Kp=Kp,Ki=Ki,Kd=Kd)
t_step,y_step = c.step_response(sys_CL, t_step)
line.set_ydata(y_step)
ax.relim()
ax.autoscale_view()
fig.canvas.draw_idle()
plt.show()

# interaction definition
interact(

update,
Kp=(0.0,10.0),
Ki=(0.0,20.0),
Kd=(0.0,1.0)

);
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Figure pidi.3: step response from interaction with Kp, Ki, Kd =
3.1, 6.2, 0.8.

The sliders appear as shown in Fig. pidi.4.

Figure pidi.4: this is how the sliders should look.


