
trans Transient response performance sim Simulation p. 1

trans.sim Simulation

Many control systems are not in the class of

those we have described, analytically: first- or

second-order and without zeros. In order to

evaluate their transient performance, regardless

of how well they are approximated by the

analytic solutions from before, we will simulate

their step responses.

Matlab has several built-in and Control Systems

Toolbox functions for analyzing the transient

response of a system represented by a transfer

function system model. We’ll explore a few,

here.

Consider, for instance, a closed-loop system

with transfer function

F(s) =
ω2n(−s/z+ 1)

s2 + 2ζωn +ω2n
, (1)

where z is some real zero we’ll move around,

later; ωn = 20π rad/s is the natural frequency;

and ζ = 0.3 is the damping ratio.

Let’s explore this system’s transient response.

Clearly, for large negative values of z, the

response should be approximately congruent

with the exact analytic solutions of

Lecture trans.exact. Specifically, the rise time Tr

will be described by Figure exact.2, the peak

time Tp = π/ωd, the percent overshoot will be

%OS = 100 exp −ζπ√
1− ζ2

, (2)

and the settling time Ts will be

Ts =
4

ζωn
. (3)

Let’s compute these analytic values.

z = 0.3;
w_n = 20*pi;
w_d = w_n*sqrt(1-z^2);

T_r_an = 1.39/w_n % s ... analytic, from Figure 03.3
T_p_an = pi/w_d % s ... analytic



trans Transient response performance sim Simulation p. 2

OS_an = 100*exp(-z*pi/sqrt(1-z^2)) % %, analytic
T_s_an = 4/(z*w_n) % s ... analytic

T_r_an =
0.0221

T_p_an =
0.0524

OS_an =
37.2326

T_s_an =
0.2122

Now, let’s define the transfer function object.

z_a = -z*w_n*[1.5,3,5];
n_z = length(z_a);
F = stack(1,tf(1,1)); % init model array
for i = 1:n_z % for each zero!

F(:,:,i) = tf(... % tf def transfer func object
w_n^2*[-1/z_a(i),1],... % num. polyn. coef's
[1,2*z*w_n,w_n^2]... % den. polyn. coef's

);
end

For a step input u(t) = us(t) and initial value

y(0) = 0, let’s simulate. The step function
would be the easiest way to solve for the step

response. However, we choose the

more-general lsim for demonstration purposes.

We must do so for each zero location z.

t_a = linspace(0,.3,100); % time array
u = @(t) ones(size(t)); % input for t>=0
y_0 = 0; % initial condition
y_t = NaN*ones(n_z,length(t_a)); % preallocate
for i = 1:n_z

y_t(i,:) = lsim(F(:,:,i),u(t_a),t_a,y_0);
end

This total solution is shown in Fig. sim.1.

figure;
for i = 1:n_z

p(i) = plot(t_a,y_t(i,:),...
'displayname', ...
['z \approx ', sprintf('%0.2g',z_a(i))], ...
'linewidth',1.5);hold on

end
hold off
xlabel('time (s)');



trans Transient response performance exe Simulation p. 3

ylabel('step response');
grid on
l = legend(p);

0 0.05 0.1 0.15 0.2 0.25 0.3
0

1

2

time (s)
st
ep

re
sp
o
n
se

z ≈ −28

z ≈ −57

z ≈ −94

Figure sim.1: step response for different zero locations, from lsim.

Now, this indicates that the zero location

definitely matters, and that the deviation is

worse the closer the zero gets to the poles.

Quantifying the response characteristics is

tedious, visually, but Matlab has a built-in tool

that helps: stepinfo.

for i = 1:n_z
si(i) = stepinfo(y_t(i,:),t_a); % struct
rt(i) = 1e3*si(i).RiseTime;
pt(i) = 1e3*si(i).PeakTime;
os(i) = si(i).Overshoot;
st(i) = 1e3*si(i).SettlingTime;
row_names{i} = sprintf('z @ %0.2g',z_a(i));

end
labels = {'T_r','T_p','OS','T_s'};
disp('Time in ms:')
disp(table(rt',pt',os',st',...

'variablenames',labels,...
'rownames',row_names ...

))

Time in ms:
T_r T_p OS T_s

______ ______ ______ ______
z @ -28 6.09 30.303 125.86 251.63
z @ -57 11.395 36.364 64.707 205.52
z @ -94 15.635 42.424 47.35 203.21

So that zero location drastically affects the

overshoot and rise time, but has relatively little

effect on settling and peak times. The takeaway

here is not so much this specific result, but the

tools one can use to find such results and the

importance of doing so.


