
steady Steady-state response performance error Steady-state error for unity feedback systems p. 1

1. For more details, see N. S. Nise (2011, Section 7.6).

Figure error.1: unity feedback block diagram with controller G1(s) and
plantG2(s).

steady.error Steady-state error for unity feedback

systems

It is uncommon for a feedback system to be

truly “unity.” However nonunity feedback

systems can be re-written and evaluated in

terms of unity feedback counterparts.1 For this

reason, we will focus on unity feedback systems.

First we recall the final value theorem. Let f(t)

be a function of time that has a “final value”

f(∞) = limt→∞ f(t). Then, from the Laplace

transform of f(t), F(s), the final value is

f(∞) = lims→0 sF(s).
Let’s consider the unity feedback system of

Figure error.1 with command R, controller

transfer function G1, plant transfer function G2,

and error E. Recall that we call e(t) or (its

Laplace transform) E(s) the error. We want to

know the steady-state error, which, from the

final value theorem, is

e(∞) = lim
s→0

sE(s). (1)

Now all we need is to express E(s) in more

convenient terms. For the analysis that follows,

we combine the controller and plant:

G(s) = G1(s)G2(s). From the block diagram, we

can develop the transfer function from the

command R to the error E.

Equation 2 error transfer function

Given a specific command R and forward-path

transfer function G, we could take inverse

Laplace transform of E(s) to find e(t) and take

the limit. However, it is much easier to use the

final value theorem:



steady Steady-state response performance error Steady-state error for unity feedback systems p. 2

e(∞) = lim
s→0

sE(s)

= lim
s→0

s

1+G(s)
R(s).

This last expression is the best we can do

without a specific command R. Three different

commands are typically considered canonical.

The first is now developed in detail, and the

results of the other two are given below. First,

consider a unit step command, which has

Laplace transform R(s) = 1/s.

where we let Kp = lims→0G(s). We call Kp the

position constant. If Kp is large, the steady-state

error is small. If Kp is infinitely large, the

steady-state error is zero. If Kp is small, the

steady-state error is a finite constant.

The form of G(s) has implications for Kp. G(s)

has a factor 1/sn where n is some nonnegative

integer. Since we are concerned about what

happens to G(s) when we take its limit as s→ 0,

this factor is of particular importance. If n > 0,

Kp = lims→0G(s) = ∞. We call the transfer

function 1/s an integrator, which is the inverse

of the transfer function s, the differentiator.

We needn’t solve for E explicitly, then. All we

need to know is the command R and the number

of integrators n in the forward-path transfer

function G(s) (we call this the system type).

The steady-state error for other commands and

system type can be derived in the same manner.

The results for the canonical inputs are shown

in Table error.1.



steady Steady-state response performance exe Steady-state error for unity feedback systems p. 3

Example steady.error-1 re: steady-state error

Let a system have forward-path transfer

function

G(s) =
10(s+ 3)(s+ 4)

s(s+ 1)(s2 + 2s+ 5)
.

For commands r1(t) = 2us(t), r2(t) = 6tus(t),

and r3(t) = 7t2us(t), what are the steady-state

errors?

Table error.1: the static error constants and steady-state error for canonical commands r(t) and systems of Types 0, 1, 2, and n (the general case). Note that
the faster the command changes, the more integrators are required for finite or zero steady-state error.

Type n Type 0 Type 1 Type 2

r(t)
error
const.

e(∞)
error
const.

e(∞)
error
const.

e(∞)
error
const.

e(∞)

us(t) Kp = lim
s→0

G(s)
1

1+ Kp
Kp

1

1+ Kp
∞ 0 ∞ 0

tus(t) Kv = lim
s→0

sG(s)
1

Kv

1

2
t2us(t) Ka = lim

s→0
s2G(s)

1

Ka


