
rldesign Root-locus design PI Proportional-integral (PI) controller design p. 1

rldesign.PI Proportional-integral (PI) controller design

When studying steady-state error, we

discovered that the more integrators (s−1) in the

open-loop transfer function, the better the

steady-state error. PI control includes integrator

compensation to a proportional controller

without significantly affecting the transient

response. Later, we will deal with how to

design for transient response.

Here’s the plan: include an integrator (i.e. pole

at the origin) in the controller and a nearby zero

to counter the pole’s (slowing) effects on the

transient response.

Why does the integrator affect the transient

response? Adding a pole at the origin

completely changes the root locus, and therefore

the location of the closed-loop poles, and

therefore the transient response.

In order to mitigate this, we place a zero near

the origin, which nearly cancels the integrator’s

effect on the root locus. To see this, recall that

the root locus must meet the phase criterion

(Lec. rlocus.def). Let us meditate on Fig. PI.1, in

which a system is presented that initially

contained the three left half-plane poles and no

zeros. Including the integral pole at the origin

(integrator) and zero nearby, we obtain the root

locus shown. From the phase criterion,

−θ1 + θ2 − θ3 − θ4 − θ5 = π± 2πm (m ∈ Z).
(1)

If the compensator zero is placed close to the

pole, then θ2 − θ1 ≈ 0 and the root locus is

mostly unchanged from its pre-compensation

state.

Design procedure

The following design procedure can guide us

through this typically straightforward controller

design.

rldesign Root-locus design PI Proportional-integral (PI) controller design p. 2ψ|ψ− p1|

|ψ− p2|

θ1

θ2
θ3θ4θ5 <(s)

=(s)

Figure PI.1: the effect of the integral compensator on the root locus’s
angle condition.

1. Design a proportional controller to meet

transient response requirements by

choosing the gain K for the dominant

closed-loop poles to be p1,2.

2. Include cascade integral compensation

and a real zero near Re(p1,2)/10.
3. Tune the gain K such that the close-loop

poles are as desirable as possible.

4. Simulate the time response to see if it

meets specs. Tune. If the steady-state

compensation is too slow, try moving the

zero leftward.

Example rldesign.PI-1 re: PI control for percent overshoot

For a plant with transfer function

10

(s+ 2)(s+ 5)

design a unity feedback PI controller such that

the system has %OS = 20 and zero steady-state

error for step inputs.

We will use MATLAB. First, let us observe

that with no integrators in the plant (Type

0 system), the system will have a finite

steady-state error to step inputs. Therefore, we

require integral compensation. Let’s define the

transfer function.

rldesign Root-locus design PI Proportional-integral (PI) controller design p. 3

sys1 = zpk([],[-2,-5],10);

The desired closed-loop pole location is along

the ray corresponding to 20 percent overshoot.

Since this is available with the data cursor in

the rlocus plot, there is no need to compute the

damping ratio or the angle of the ray. Let us

consider the root locus.

figure;
rlocus(sys1,sort([0,.225,4:.1:10,Inf])

);
ylim([-10,10])
grid on

−8 −6 −4 −2 2

−5

5

%
O
S
=
20

K1 = 4.9

Re (s)

Im (s)

From the figure, we can see that when the

gain is K1 = 4.9, according to the second-order

approximation, the %OS is 20. This occurs at

the test point stp = −3.5 + j6.84. If we were

designing simply a P controller, we would

now simulate the closed-loop response with

this gain. Before we simulate, let’s apply

integral compensation. We put a pole at the

origin as the integrator and compensate with

a nearby zero. We start with that zero at

Re(stp)/10 = −0.35. Our compensator has the

transfer function

s+ 0.35

s

and can be applied to the open-loop transfer

function as follows.

rldesign Root-locus design PI Proportional-integral (PI) controller design p. 4

sReal = -3.5;
zeroc = sReal/10;
comp = zpk([zeroc],[0],1); %

compensator
sys2 = K1*comp*sys1; % controlled open

-loop tf

Now a new root locus analysis is required in

order to determine the new gain required to get

back near the test point. This is shown below.

−8 −6 −4 −2 2

−5

5

%
O
S
=
20

K2 = 0.94

Re (s)

Im (s)

We see that the cascade gain required to return

to the overshoot ray is K2 = 0.94.

Now we must find the closed-loop transfer

functions for each controller design, which can

be found as follows.

sys1cl = feedback(K1*sys1,1);
sys2cl = feedback(K2*sys2,1);

Now we are ready to simulate the closed-loop

step response to evaluate the actual step

response for each controller design.

tvec = 0:.01:8;
y1 = step(sys1cl,tvec);
y2 = step(sys2cl,tvec);
stepinfo(y1,tvec)

The command stepinfo computes the

simulated transient response characteristics.

The result is %OS = 20.0, good! Note that we

used the P controller for this evaluation. The

strict definition of this gives a skewed value

due to the steady-state error compensation.

rldesign Root-locus design PLag Proportional-integral (PI) controller design p. 5

Let’s take a look at a plot comparing the two

step responses.

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

time (s)

un
it

st
ep

re
sp

on
se

P controller

PI controller

Note that the PI-controlled system has

steady-state error approaching zero and

that the two systems have similar transient

response characteristics, per our expectation.

The steady-state error does respond relatively

“slowly” because the third closed-loop pole

introduced by the integral compensator is

relatively close to the imaginary axis. Moving

the compensator zero leftward can speed

this response, but transient responses will

be increasingly effected. In this case, the

settling time determined by the complex

closed-loop poles (we could call this the

“transient settling time”) will increase as

we move the zero leftward. However, the

settling time determined by the integrator

(we could call this the “steady-state settling

time”) will simultaneously decrease. Specific

system requirements would determine how we

balance these considerations.

Our final controller design has transfer function

K1K2 ·
s+ 0.35

s
= 4.61 · s+ 0.35

s
.

