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2. There are more precise ways to compute a location of zc based on
a specified factor α of steady-state error improvement that depend on
the system type and command. However, given the complex tradeoffs
among steady-state error, its speed, and transient response performance,
we often will re-adjust the gain in any case, making optimization, here,
premature.

rldesign.PLag Proportional-lag controller design

PI control can be approximated by

proportional-lag control. Instead of adding a

true integrator and increasing the system type,

which the integral compensator does, yielding

zero steady-state error for a system and input

combination with finite steady-state error, the

lag compensator reduces the steady-state error

by some finite factor in the same instance. An

advantage of using a lag compensator instead of

an integrator is that it can be instantiated in a

passive circuit.

Design procedure

The following procedure provides a

starting-point for proportional-lag controller

design. Let’s assume the steady-state error

design specification is to improve a finite

steady-state error by a factor of α.

1. Design a proportional controller to meet

transient response requirements by

choosing the gain K1 for the dominant

closed-loop poles to be p1,2.

2. Include a cascade lag compensator of the

form

K2
s− zc
s− pc

, (1)

where pc < 0 is a real pole near the origin;

zc is a real zero near αpc;2 and, initially,

K2 = 1. For minimal effect on the original

transient response design, Re(p1,2)� zc,

but this is often violated for faster

steady-state error compensation.

3. Use a new root locus to tune the gain K2

such that the closed-loop poles are as

desirable as possible. This step can often

be omitted.
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4. Construct the closed-loop transfer

function with the controller

K1K2
s− zc
s− pc

. (2)

5. Simulate the time response to see if it

meets specifications. Tune. If the

steady-state compensation is too slow, try

moving zc and/or pc leftward. If it is too

large, increase the ratio zc/pc.

A design example

Let a system have plant transfer function

s+ 10

s2 + 8s+ 25
. (3)

Design a proportional-lag controller such that

the closed-loop settling time is less than 0.4

seconds and the step response has steady-state

error 10 times less than with a proportional

controller, alone.

We use Matlab for the design. First, we design a

proportional controller to meet the transient

response performance criterion that the the

settling time Ts is less than 0.4 seconds. The root

locus is shown in Figure PLag.1.

G = tf([1,10],[1,8,25]);
figure
rlocus(G)

Let’s use the second-order approximation that

Ts ≈
4

ζωn
=

4

−Re(p1,2)
, (4)

where p1,2 are the closed-loop pole locations.

For Ts = 0.4, Re(p1,2) = −10. This corresponds

to a gain of about

K1 = 12. (5)
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Figure PLag.1: root locus for proportional controller design.

Let’s construct the compensator and

corresponding closed-loop transfer function GP

for gain control.

K1 = 12;
G_P = feedback(K1*G,1)

G_P =

12 s + 120
----------------
s^2 + 20 s + 145

Continuous-time transfer function.

Now, we use cascade lag compensation with

compensator

K2
s− zc
s− pc

. (6)

For now, we set K2 = 1. Our steady-state error

specification is a 10-fold factor of decrease in

steady-state error, so we set α = 10. If we begin,

somewhat arbitrarily, with pc = −0.1, then

zc = αpc = −1, which is still comfortably distant

from p1,2. Let’s construct the compensator and

closed-loop transfer function GPL.

alpha = 10;
p_c = -0.1;
z_c = alpha*p_c;
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C_L = zpk(z_c,p_c,1)
G_PL = feedback(K1*C_L*G,1);

C_L =

(s+1)
-------
(s+0.1)

Continuous-time zero/pole/gain model.

We could check out the root locus, but as along

as we haven’t botched something, it should be

quite similar to the original. Let’s simulate the

step responses for the proportional and

proportional-lag controllers.

t_a = linspace(0,2,100); % simulation time
y_P = step(G_P,t_a); % p control step response
y_PL = step(G_PL,t_a); % p-lag control step response

Let’s look at the simulation results, shown in

Figure PLag.2. The settling time for the

proportional controller looks about right, but

the steady-state error is about 18%. We’d like it

to be about 1.8%. The lag compensator has a

similar transient and a slow steady-state error

decrease. It’s so slow that we can’t really

evaluate its size after two seconds. Rather than

extend the simulation, we choose to speed up

the steady-state error compensation by moving

the compensator pole and zero leftward.

C_L2 = zpk(2*z_c,2*p_c,1)
G_PL2 = feedback(K1*C_L2*G,1);
y_PL2 = step(G_PL2,t_a);

C_L2 =

(s+2)
-------
(s+0.2)

Continuous-time zero/pole/gain model.

From Figure PLag.3, we see that there’s

improvement. Let’s try increasing the gain K2
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Figure PLag.2: step responses for proportional and proportional-lag
controllers (initial design).
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Figure PLag.3: step responses for proportional and proportional-lag
controllers (secondary design).

and moving the compensator pole and zero

leftward more aggressively to see if we can

speed things up a bit.

K2 = 1.45; % compensator gain
C_L3 = K2*zpk(2.8*z_c,2.8*p_c,1)
G_PL3 = feedback(K1*C_L3*G,1);
y_PL3 = step(G_PL3,t_a);

C_L3 =

1.45 (s+2.8)
------------
(s+0.28)

Continuous-time zero/pole/gain model.
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Figure PLag.4: step responses for proportional and proportional-lag
controllers (tertiary design).

From Figure PLag.4, it appears to meet both

specifications. Let’s use stepinfo to investigate
the transient performance.

si_PL3 = stepinfo(y_PL3,t_a);
si_PL3.SettlingTime

ans =

0.2660

This more than meets our settling time

requirement of 0.4 seconds. The steady-state

error can be approximated as follows.

disp(...
sprintf(...
'steady-state error: %0.3g%%',...
100*(1-y_PL3(end))...

)...
)

steady-state error: 1.46%

This meets our goal of 1.8%. Further iteration

could be tighten-up the design.


