
rldesign Root-locus design PD Proportional-derivative (PD) controller design p. 1

−5 −4 −3 −2 −1 1 2
−2

2

Figure PD.1: root locus for a simple plant with two poles.

rldesign.PD Proportional-derivative (PD) controller

design

Thus far, our designs have been restricted to

closed-loop pole locations on the original root

locus. We could add integral or lag

compensation for steady-state error

performance and vary the gain for transient

response performance. But what if we desire

closed-loop poles p1,2 to be in a location that the

root locus does not intersect?

Among many possible methods to address this,

we pursue the following: a derivative

compensator with zero location zc chosen such

that the root locus intersects p1,2, with form

K(s− zc), (1)

where K ∈ R is a gain. This compensator is

called “derivative” because its primary effect on

the overall controller’s operation on the error e

is a new factor of s, yielding a scaling of the

term sE(s) = ė(t).

The effect of this zero is to pull the locus toward

it. Consider the simple plant of Fig. PD.1.

Suppose we would like to speed up the

closed-loop response, but cannot because, no

matter how much gain we use, the settling time

is fixed by the vertical asymptotes. If we use a

compensator zero at zc, we can pull the locus

leftward, as shown in Fig. PD.2. Varying zc

from −∞ to 0, we see that any location left of −2

can be intersected. In fact, if we consider both

positive and negative gains for this example, we

can place a desired closed-loop pole at any

location in the complex plane!

A way to approach designing a controller for a

plant Gwith a derivative compensator C is to

consider the compensator zero’s effect on the

phase criterion, which must always be satisfied

rldesign Root-locus design PD Proportional-derivative (PD) controller design p. 1

zc = −10 zc = −8 zc = −6 zc = −4 zc = −2 zc = 0

Figure PD.2: root locus (blue) for plant with poles (red) compensated with a zero (green) at zc. Note that varying zc yields root loci that can intersect any point in
the complex plane if negative gains are considered. An animation corresponding to this figure can be found at https://youtu.be/VZbT_2bT2xU.

3. The 2πmodulo in these expressions is suppressed for clarity.

4. See Lec. rldesign.multd for how to handle required angle
compensations beyond±π.

5. Note that θc ∈ [−π,0) is possible only when Imψ < 0 and
θc ∈ (0,π] is possible only when Imψ > 0.

at points on the root locus:

∠(G(s)C(s)) = π. (2)

In order for a desired point s = ψ to be on the

root locus, then,3

∠(G(ψ)C(ψ)) = π

∠G(ψ) + ∠C(ψ) = π⇒

∠C(ψ) = π− ∠G(ψ)⇒

∠(ψ− zc) = π− ∠G(ψ).

Let this angle ∠(ψ− zc), called the compensator

angle, be given the symbol

θc ≡ ∠(ψ− zc). (3)

Then

zc = Re(ψ) − Im(ψ)/ tan θc (θc ∈ [−π, π]), (4)

where we have limited the application of this

result to θc ∈ [−π, π] because a single zero can

contribute angles in this interval only.4,5 This

result is to be used in the design procedure that

follows. It can be understood geometrically as

the position of zc such that the angle of the

vector with tail at zc and head at ψ is θc.

Design procedure

The following procedure provides a

starting-point for proportional-derivative

controller design. Let’s assume the transient

https://youtu.be/VZbT_2bT2xU

rldesign Root-locus design PD Proportional-derivative (PD) controller design p. 1

6. See ricopic.one/control/source/pd_controller_design_example.m
for the source.

response specification is such that we desire a

closed-loop pole to be located at s = ψ.

1. Design a proportional controller to meet

transient response requirements by

choosing the gain K1 for the dominant

closed-loop poles to be as close as possible

to ψ.

2. Include a cascade derivative compensator

of the form

K2(s− zc), (5)

where, initially, K2 = 1 and zc is a real zero

that satisfies Eq. 4. For convenience, we

repeat the two key formulas:

θc = π− ∠G(ψ) and

zc = Re(ψ) − Im(ψ)/ tan θc (θc ∈ [−π, π]).

3. Use a new root locus to tune the gain K2

such that a closed-loop pole is at ψ.

4. Construct the closed-loop transfer

function with the controller

K1K2(s− zc). (6)

5. Simulate the time response to see if it

meets specifications. Tune.

A design example

Let a system have plant transfer function

1

(s+ 2)(s+ 6)(s+ 11)
. (7)

Design a PD controller such that the closed-loop

settling time is about 0.8 seconds and the

overshoot is about 15%.

Determining ψ

We use Matlab for the design.6 First, we must

determine what the specified transient response

criteria imply for the locations of our

http://ricopic.one/control/source/pd_controller_design_example.m

rldesign Root-locus design PD Proportional-derivative (PD) controller design p. 1

closed-loop poles. Let one of these desired pole

locations be called ψ. The transient response

performance criteria are as follows.

Ts = .8; % sec ... spec settling time
OS = 15; % percent ... spec overshoot

The second-order approximation from

Chapter trans tells us that the settling time

specification implies a specific Re(ψ) and the

overshoot a specific angle ∠ψ. The real part is

found from the expressions

Ts =
4

ζωn
and Re(ψ) = −ζωn ⇒ (8)

Re(ψ) = −
4

Ts
. (9)

The angle is found via the equations

ζ =
− ln(%OS/100)√
π2 + ln2(%OS/100)

, (10)

tan(∠ψ) =
√
1− ζ2

ζ
, and tan(∠ψ) = − Im(ψ)/Re(ψ).

(11)

A remarkably simple expression results:

Im(ψ) = −Re(ψ)
√
1− ζ2

ζ
(12a)

Im(ψ) = −Re(ψ) π

ln(100/%OS) . (12b)

So, in the final analysis, the desired pole location

ψ (assuming the second-order approximation is

valid) is given by the expression

ψ = −
4

Ts

(
1− j

π

ln(100/%OS)

)
. (13)

This formula holds beyond the scope of this

problem. We define it as an anonymous

function.

psi_fun = @(Ts,pOS) -4/Ts*(1-1j*pi/log(100/pOS));
psi = psi_fun(Ts,OS);
disp(sprintf('psi = %0.3g + j %0.3g',real(psi),imag(psi)))

psi = -5 + j 8.28

rldesign Root-locus design PD Proportional-derivative (PD) controller design p. 1

−20 −15 −10 −5 5

−20

−10

10

20

Figure PD.3: root locus without compensation.

P control

We design a proportional controller that gets us

as close as possible to ψ. The root locus is

shown in Figure PD.3.

G = zpk([],[-2,-6,-11],1);
figure
rlocus(G)

Although we cannot get close to ψ on the root

locus, we can at least meet our %OS
specification by choosing a gain of about

K1 = 240. (14)

Let’s construct the compensator and

corresponding closed-loop transfer function GP

for gain control.

K1 = 240;
G_P = feedback(K1*G,1);

Derivative compensation

Now, we use cascade derivative compensation

with compensator

K2(s− zc). (15)

For now, we set K2 = 1. From Equation 4, we

compute the compensator zero

zc = Re(ψ) − |Im(ψ)|/ tan θc and θc = π− ∠G(ψ).

rldesign Root-locus design PD Proportional-derivative (PD) controller design p. 1

−20 −15 −10 −5 5

−20

−10

10

20

Figure PD.4: root locus with compensation.

theta_c = pi - angle(evalfr(G,psi));
z_c = real(psi) - abs(imag(psi))/tan(theta_c);
disp(sprintf('theta_c = %0.3g deg',rad2deg(theta_c)))
disp(sprintf('z_c = %0.3g',z_c))

theta_c = 67.1 deg
z_c = -8.5

Let’s construct the compensator sans tuned gain

K2 and tune it up using another root locus.

C_sans = zpk(z_c,[],1);
figure
rlocus(K1*C_sans*G)

The resulting root locus of Figure PD.4 intersects

ψ! (I mean, we knew it would, but we had our

doubts.) The corresponding gain is, from

Equation 2 (or we could use the data cursor),

K2 =
1

|(ψ− zc)G(ψ)|
. (16)

Let’s compute it, the controller CPD, and the

closed-loop transfer function GPD.

K2 = 1/abs(evalfr(K1*C_sans*G,psi));
C = K1*K2*C_sans;
G_PD = feedback(C*G,1);

Simulate

Our placement of the ψ depended on the

second-order approximation’s accuracy, which

rldesign Root-locus design PD Proportional-derivative (PD) controller design p. 2

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

time (s)

st
ep

re
sp
o
n
se

P control

PD control

Figure PD.5: step responses for proportional and proportional-derivative
controllers.

in this case is questionable, due to the proximity

of a third closed-loop pole. In any case, we

simulate the step response to test the efficacy of

the PD controller design and to compare it with

the P controller.

t_a = linspace(0,2.5,200); % s ... sim time
y_P = step(G_P,t_a); % P controlled step response
y_PD = step(G_PD,t_a); % PD controlled step response

figure
plot(t_a,y_P);
hold on;
plot(t_a,y_PD);
xlabel('time (s)');
ylabel('step response');
grid on
legend('P control','PD control','location','southeast');

The responses, shown in Figure PLag.3, suggest

the PD controller is at least close to meeting the

transient specifications. It is a happy accident

that the steady-state error also improved;

derivative compensation does not always do

this. Let’s use stepinfo to compute more

accurate transient response characteristics of the

PD-controlled system.

rldesign Root-locus design PLead Proportional-derivative (PD) controller design p. 3

si_PD = stepinfo(y_PD,t_a);
disp(sprintf('settling time: %0.3g',si_PD.SettlingTime))
disp(sprintf('percent overshoot: %0.3g',si_PD.Overshoot))

settling time: 0.82
percent overshoot: 16.2

This is quite close to the specification. If desired,

the gain K2 and the zero location zc could be

tuned, iteratively.

