
rldesign Root-locus design PLead Proportional-lead design p. 1

7. The 2πmodulo in these expressions is suppressed for clarity.

rldesign.PLead Proportional-lead design

Similar to how proportional-lag controllers can

be considered passively realizable PI

controllers, proportional-lead controllers can be

considered passively realizable PD controllers.

The idea is to choose a design point ψ through

which we construct the root locus to pass. As

with PD control, this point is chosen to meet

primarily transient response characteristics, and

the controller contributes the proper phase such

that the root locus passes through the point;

however, we have both a pole and a zero to set

in the compensator:

C(s) = K2
s− zc
s− pc

. (1)

We will “arbitrarily” choose either pc or zc and

the phase criterion for our design point ψwill

set the other. However, the “arbitrary” selection

of pc or zc in fact affects both the transient

response and the steady-state error (if it is

finite).

Let’s work out the details. A way to approach

designing a controller for a plant Gwith lead

compensator C is to consider the compensator

effects on the phase criterion, which must

always be satisfied at points on the root locus:

∠(G(s)C(s)) = π. (2)

In order for a desired point s = ψ to be on the

root locus, then,7

∠(G(ψ)C(ψ)) = π

∠G(ψ) + ∠C(ψ) = π⇒

∠C(ψ) = π− ∠G(ψ)⇒

∠(ψ− zc) − ∠(ψ− pc) = π− ∠G(ψ).

Let this angle ∠(ψ− zc) − ∠(ψ− pc), called the

compensator angle, be given the symbol

θc ≡ ∠(ψ− zc) − ∠(ψ− pc). (3)

rldesign Root-locus design PLead Proportional-lead design p. 1

So we can choose to arbitrarily set the location

of either zc or pc and the other will be set by the

phase criterion. Therefore we have either

∠(ψ− pc) = ∠(ψ− zc)︸ ︷︷ ︸
arbitrary

− θc or (4a)

∠(ψ− zc) = θc + ∠(ψ− pc)︸ ︷︷ ︸
arbitrary

. (4b)

And, from trigonometry,

pc = Re(ψ) − |Im(ψ)|/ tan(∠(ψ− zc) − θc) or

(5a)

zc = Re(ψ) − |Im(ψ)|/ tan(θc + ∠(ψ− pc)). (5b)

This result is to be used in the design procedure

that follows.

Design procedure

The following procedure provides a

starting-point for proportional-lead controller

design. Let’s assume the transient response

requirement is such that, according to the

second-order approximation, we desire a

closed-loop pole to be located at s = ψ.

1. Design a proportional controller to meet

transient response requirements by

choosing the gain K1 for the dominant

closed-loop poles to be as close as possible

to ψ.

2. Include a cascade lead compensator of the

form

K2
s− zc
s− pc

, (6)

where we arbitrarily set either zc or pc;

initially, K2 = 1. The other parameter must

be chosen to satisfy Eq. 5a or Eq. 5b. For

convenience, we repeat the key formulas:

θc = π− ∠G(ψ) and, after setting arbitrarily zc or pc,

pc = Re(ψ) − |Im(ψ)|/ tan(∠(ψ− zc) − θc) or

zc = Re(ψ) − |Im(ψ)|/ tan(θc + ∠(ψ− pc)).

rldesign Root-locus design PLead Proportional-lead design p. 1

8. See ricopic.one/control/source/plead_controller_design_example.m
for the source.

3. By construction ψ is on the root locus, so

the gain can be computed directly from

Eq. 2:

K2 =
1

|K1C(ψ)G(ψ)|
. (7)

4. Construct the closed-loop transfer

function with the controller

K1K2
s− zc
s− pc

. (8)

5. Simulate the time response to see if it

meets specifications. Tune.

A design example

Let a system have plant transfer function

37500

s4 + 70s3 + 1625s2 + 14000s+ 37500
. (9)

Design a P-lead controller such that the

closed-loop settling time is about 0.4 seconds

and the overshoot is about 10%.

Determining ψ

We use Matlab for the design.8 First, we must

determine what the specified transient response

criteria imply for the locations of our

closed-loop poles. Let one of these desired pole

locations be called ψ. The transient response

performance criteria are as follows.

Ts = .4; % sec ... spec settling time
OS = 10; % percent ... spec overshoot

The second-order approximation from

Chapter trans tells us that the settling time

specification implies a specific Re(ψ) and the

overshoot a specific angle ∠ψ. From previous

results, the desired pole location ψ (assuming

the second-order approximation is valid) is

given by the expression

ψ = −
4

Ts

(
1− j

π

ln(100/%OS)

)
. (10)

http://ricopic.one/control/source/plead_controller_design_example.m

rldesign Root-locus design PLead Proportional-lead design p. 1

−40 −30 −20 −10

−20

−10

10

20

Figure PLead.1: root locus without compensation.

This formula holds beyond the scope of this

problem. We define it as an anonymous

function.

psi_fun = @(Ts,pOS) -4/Ts*(1-1j*pi/log(100/pOS));
psi = psi_fun(Ts,OS);
disp(sprintf('psi = %0.3g + j %0.3g',real(psi),imag(psi)))

psi = -10 + j 13.6

P control

We design a proportional controller that gets us

as close as possible to ψ. The root locus is

shown in Figure PLead.1.

G = tf([37500],[1,70,1625,14000,37500]);
figure
rlocus(G)

Although we cannot get close to ψ on the root

locus, we can at least meet our %OS
specification by choosing a gain of about

K1 = 1.1. (11)

Let’s construct the compensator and

corresponding closed-loop transfer function GP

for gain control.

K_1 = 1.1;
G_P = feedback(K_1*G,1);

rldesign Root-locus design PLead Proportional-lead design p. 2

Lead compensation

Now, we use cascade lead compensation with

compensator

K2
s− zc
s− pc

. (12)

For now, we set K2 = 1. Let’s also set

pc = −40,−100, and −400 to see how we fair

with different “arbitrary” choices. From Eq. 5b,

we compute the compensator zero

θc = π− ∠G(ψ) and zc = Re(ψ) − |Im(ψ)|/ tan(θc + ∠(ψ− pc)).

p_c = [-40,-100,-400];
theta_c = pi - angle(evalfr(G,psi));
theta_p_c = angle(psi*ones(size(p_c))-p_c);
z_c = real(psi) - abs(imag(psi))./tan(theta_c + theta_p_c);
disp(sprintf('theta_c = %0.3g deg',rad2deg(theta_c)))
for i = 1:length(p_c)

disp(sprintf(...
'pole phase contribution = %0.3g deg',...
rad2deg(theta_p_c(i))...

))
disp(sprintf('z_c = %0.3g',z_c(i)))

end

theta_c = 96.7 deg
pole phase contribution = 24.5 deg
z_c = -1.75
pole phase contribution = 8.62 deg
z_c = -6.26
pole phase contribution = 2 deg
z_c = -7.91

By construction, ψ is on the root locus, so we

can find K2 directly from Eq. 2.

C_sans = stack(1,tf(1,1)); % initialize model array
C = stack(1,tf(1,1)); % initialize model array
for i = 1:length(p_c)

C_sans(i) = zpk(z_c(i),p_c(i),1); % without gain
K_2(i) = 1/abs(evalfr(K_1*C_sans(i)*G,psi));
C(i) = K_1*K_2(i)*C_sans(i);
disp(sprintf('K_2 = %0.3g',K_2(i)))

end

K_2 = 4.88
K_2 = 15.2
K_2 = 66.7

rldesign Root-locus design PLead Proportional-lead design p. 1

Let’s compute the closed-loop controller Clead,

and the closed-loop transfer function Glead.

G_Plead = stack(1,tf(1,1));
for i = 1:length(p_c)

G_Plead(i) = feedback(C(i)*G,1);
end

Simulate

Our placement of the ψ depended on the

second-order approximation’s accuracy, which

in this case is questionable. In any case, we

simulate the step response to test the efficacy of

the P-lead controller design and to compare it

with the P controller.

t_a = linspace(0,2.5,200); % s ... sim time
y_P = step(G_P,t_a); % P controlled step response
for i = 1:length(p_c)

y_Plead(:,i) = step(G_Plead(i),t_a); % P-lead step resp.
end

figure
plot(t_a,y_P);
hold on;
for i = 1:length(p_c)

plot(t_a,y_Plead(:,i));
end
xlabel('time (s)');
ylabel('step response');
grid on
legend(...

'P control','P-lead 1','P-lead 2','P-lead 3',...
'location','southeast'...

);

The responses, shown in Figure PLead.2,

suggest the lead-compensated controllers are at

least close to meeting the transient

specifications. The steady-state error is worse

for compensator locations that are less-negative

and better for those that are more-negative. For

this reason, we remember that our “arbitrary”

choice of one of our compensator parameters

still affects the steady-state (and sometimes

transient) response. Let’s use stepinfo to

rldesign Root-locus design PLead Proportional-lead design p. 2

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

time (s)

st
ep

re
sp
o
n
se

P control

P-lead 1

P-lead 2

P-lead 3

Figure PLead.2: step responses for proportional and proportional-lead
controllers.

compute more accurate transient response

characteristics for the different controllers.

disp('P control')
si_P = stepinfo(y_P,t_a);
disp(sprintf('settling time: %0.3g',si_P.SettlingTime))
disp(sprintf('percent overshoot: %0.3g\n',si_P.Overshoot))
for i = 1:length(p_c)

si_Plead = stepinfo(y_Plead(:,i),t_a);
disp(sprintf('p_c: %0.3g',p_c(i)))
disp(sprintf(...
'settling time: %0.3g',si_Plead.SettlingTime ...

))
disp(sprintf(...
'percent overshoot: %0.3g\n',si_Plead.Overshoot...

))
end

P control
settling time: 0.906
percent overshoot: 13.6

p_c: -40
settling time: 1.28
percent overshoot: 66.2

p_c: -100
settling time: 0.371
percent overshoot: 6.95

p_c: -400
settling time: 0.37
percent overshoot: 7.31

We see that most of the P-lead controllers meet

the settling time and percent overshoot

rldesign Root-locus design PID Proportional-lead design p. 3

requirements. However, the first one is

problematic. This is mostly due to the

second-order approximation being significantly

violated in this case. We see from the time

response that the initial overshoot happens

quickly, but the return to steady-state is slow. If

desired, the gain K2 and compensator pole and

zero locations could be tuned, iteratively.

