
rldesign Root-locus design PID Prop-integral-derivative controller design p. 1

rldesign.PID Prop-integral-derivative controller

design

We have designed P, PI, and PD controllers.

Now we include all three terms in a single PID

controller. With this, we can design for both

steady-state and transient response.

A PID controller transfer function will have one

pole and two zeros. One zero zI and the pole

will be specified by an integral compensator

and the other zero zD will be specified by a

derivative compensator.

Our design process will yield a PID controller

with transfer function

K1︸︷︷︸
P design

· K2(s− zD)︸ ︷︷ ︸
D compensation

· K3
(s− zI)

s︸ ︷︷ ︸
I compensation

= KP + KI/s+ KDs,

(1)

where the named gains are called proportional

KP, integral KI, and derivative KD. The design

procedure below will yield numbered gains K1

(P design), K2 (D compensation), and K3 (I

compensation). They are related as follows:

KP = −K1K2K3(zD + zI) (2)

KI = K1K2K3zIzD (3)

KD = K1K2K3. (4)

Our design procedure is as follows.

1. Check that the integral compensation of a

PID controller is necessary and sufficient

to meet the steady-state performance

criteria.

2. From the transient performance criteria

and using the second-order

approximation, determine the region of

the s-plane in which the dominant

closed-loop poles of the root locus should

appear.

3. Design a P controller and evaluate its

transient response performance.

rldesign Root-locus design PID Prop-integral-derivative controller design p. 1

9. See ricopic.one/control/source/pid_controller_design_example_01.m
for the source.

4. Apply derivative (D) compensation to

improve the transient response. Simulate

to verify the transient response

performance.

5. Apply integrator (I) compensation to

improve the steady-state error

performance.

6. Check all performance criteria and adjust

gains and zero locations, as-needed.

7. Determine gains: proportional KP, integral

KI, and derivative KD.

A design example

Let a system have plant transfer function

s+ 40

s2 + 10s+ 200
. (5)

Design a PID controller with unity feedback

such that the closed-loop rise time is about 0.05

seconds, the overshoot is less than 5%, and the

steady-state error is zero for a step command.

Determining ψ

We use Matlab for the design.9 First, we see that

the plant is Type 0, so integral compensation is

required to yield zero steady-state error for a

step command and therefore a PID controller is

a good choice. Second, we must determine what

the specified transient response criteria imply

for the locations of our closed-loop poles. Let

one of these desired pole locations be called ψ.

The transient response performance criteria are

as follows.

Tr = .05; % sec ... spec rise time
OS = 5; % percent ... spec overshoot max

The second-order approximation from

Chapter trans tells us, via Fig. exact.2, that the

rise time specification implies a specific ratio

http://ricopic.one/control/source/pid_controller_design_example_01.m

rldesign Root-locus design PID Prop-integral-derivative controller design p. 2

between ωn and the implicit function f(ζ)

defined in Fig. exact.2:

Trωn = f(ζ)⇒ (6a)

Tr =
f(ζ)

ωn
(6b)

= 0.05. (spec)

The minimum angle is determined from the

overshoot specification via the relations

∠ψ = π− arccos ζ and (7)

ζ =
− ln(%OS/100)√
π2 + ln2(%OS/100)

. (8)

zeta = -log(OS/100)/sqrt(pi^2+log(OS/100)^2)
psi_angle_min = pi - acos(zeta)

zeta =

0.6901

psi_angle_min =

2.3324

With ζ in-hand, we use Fig. exact.2 to determine

f(ζ) and apply Eq. 6a to determine |ψ| = ωn:

psi_mag = 2.1/Tr % also = omega_n

psi_mag =

42

So the target magnitude |ψ| and minimum angle

∠ψ are determined. Let’s convert this to

rectangular coordinates:

psi_real = psi_mag*cos(psi_angle_min);
psi_imag = psi_mag*sin(psi_angle_min);
psi = psi_real+i*psi_imag

psi =

-28.9845 +30.3957i

rldesign Root-locus design PID Prop-integral-derivative controller design p. 1

−100 −80 −60 −40 −20

−40

−20

20

40

← ψ

Figure PID.1: root locus without compensation.

So this is our design target for the dominant

closed-loop poles. As usual, it depends on the

second-order approximation, so we will need to

simulate to determine the actual performance.

P control

We design a proportional controller that gets us

as close as possible to ψ. The root locus is

shown in Figure PID.1.

G = tf([1,40],[1,10,200]);
figure
rlocus(G);hold on
plot(psi,'kx','MarkerSize',5,'LineWidth',2)
text(real(psi),imag(psi),' \leftarrow \psi')

Although we cannot get quite to ψ on the root

locus, we can at least try to meet our %OS
specification by choosing a conservative gain of

about

K1 = 64. (9)

Let’s construct the compensator and

corresponding closed-loop transfer function GP

for gain control.

K1 = 64;
G_P = feedback(K1*G,1); % closed loop transfer func

rldesign Root-locus design PID Prop-integral-derivative controller design p. 2

Derivative compensation

Now, we try cascade derivative compensation

with compensator

K2(s− zc). (10)

For now, we set K2 = 1. From Equation 4, we

compute the compensator zero angle

contribution

θc = π− ∠G(ψ).

theta_c = pi - angle(evalfr(G,psi));
disp(sprintf('theta_c = %0.3g deg',rad2deg(theta_c)))

theta_c = 13.1 deg

We try using the zero compensator:

K2(s− zc). (11)

where

zc = Re(ψ) − |Im(ψ)|/ tan(θc) (12)

z_c = real(psi) - abs(imag(psi))/tan(theta_c);
disp(sprintf('z_c = %0.3g',z_c))

z_c = -159

Let’s construct the compensator sans tuned gain

K2 and construct the corresponding root locus.

C_sans = zpk(z_c,[],1);
figure
rlocus(K1*C_sans*G);hold on
plot(psi,'kx','MarkerSize',5,'LineWidth',2)
text(real(psi),imag(psi),' \leftarrow \psi')

By construction, the resulting root locus of

Fig. PID.2 intersects ψ. The corresponding gain

is, from Eq. 2 (or we could use the data cursor),

K2 =
1

|K1(ψ− zc)G(ψ)|
. (13)

Let’s compute it, the controller CPD, and the

closed-loop transfer function GPD.

rldesign Root-locus design PID Prop-integral-derivative controller design p. 1

−160 −140 −120 −100 −80 −60 −40 −20

−40

−20

20

40

← ψ

Figure PID.2: root locus with derivative compensation.

K2 = 1/abs(evalfr(K1*C_sans*G,psi))
C = K1*K2*C_sans;
G_PD = feedback(C*G,1);

K2 =

0.0053

Simulate Our placement of the ψ depended on

the second-order approximation’s accuracy,

which in this case is questionable, due to the

proximity of a third closed-loop pole. In any

case, we simulate the step response to test the

efficacy of the PD controller design and to

compare it with the P controller.

t_a = linspace(0,.7,200); % s ... sim time
y_P = step(G_P,t_a); % P controlled step response
y_PD = step(G_PD,t_a); % PD controlled step response

figure
plot(t_a,y_P);
hold on;
plot(t_a,y_PD);
xlabel('time (s)');
ylabel('step response');
grid on
legend('P control','PD control','location','southeast');

The responses, shown in Figure PID.3, suggest

the PD controller is probably not meeting the

transient performance specifications. Let’s use

stepinfo to compute more accurate transient

rldesign Root-locus design PID Prop-integral-derivative controller design p. 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

time (s)

st
ep

re
sp
o
n
se

P control

PD control

Figure PID.3: step responses for proportional and proportional-derivative
controllers.

response characteristics of the PD-controlled

system.

si_PD = stepinfo(y_PD,t_a);
disp(sprintf('rise time: %0.3g',si_PD.RiseTime))
disp(sprintf('percent overshoot: %0.3g',si_PD.Overshoot))

rise time: 0.022
percent overshoot: 13.6

It’s too fast and overshoots too much. Our

second-order approximation that led to this

design is not very accurate. Before we start

tuning this design, let’s fix the steady-state error

by including an integral compensator. Perhaps

this compensator’s zero can “help” us with our

fix.

Integral compensation

The integral compensator has its usual form

K3
s− zI
s

. (14)

We’re less concerned than usual about affecting

our transient response with this compensator

because we need some help doing so in any

case. Let’s start with zI = −5.

z_I = -5;
C_I_sans = zpk(z_I,0,1);

rldesign Root-locus design PID Prop-integral-derivative controller design p. 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

time (s)

st
ep

re
sp
o
n
se

P control

PD control

PID control

Figure PID.4: step responses for proportional and proportional-derivative
controllers.

Now, a root locus wouldn’t be particularly

helpful here, since our second-order

approximation is poor and getting worse by the

minute. Instead, we proceed directly to

simulation.

G_PID1 = feedback(C_I_sans*C*G,1);
y_PID1 = step(G_PID1,t_a); % PID controlled step response

The responses, shown in Figure PID.4, show

that the steady-state error has improved with

integral compensation, and so has the transient

response, but not enough.

figure
plot(t_a,y_P);
hold on;
plot(t_a,y_PD);
hold on;
plot(t_a,y_PID1);
xlabel('time (s)');
ylabel('step response');
grid on
legend('P control','PD control','PID control',...

'location','southeast');

Let’s take a look at the stepinfo.

si_PID = stepinfo(y_PID1,t_a);
disp(sprintf('rise time: %0.3g',si_PID.RiseTime))
disp(sprintf('percent overshoot: %0.3g',si_PID.Overshoot))

rldesign Root-locus design PID Prop-integral-derivative controller design p. 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

time (s)

st
ep

re
sp
o
n
se

P control

PD control

PID control

tweaked PID control

Figure PID.5: step responses for proportional and proportional-derivative
controllers.

rise time: 0.0246
percent overshoot: 8.98

It’s still too fast and overshoots too much. At

this point we can directly tweak our

compensator zeros and the overall gain to try to

meet our specifications.

K3 = 4;
z_D = -25;
z_I = -8;
C_D_sans = zpk(z_D,[],1);
C_I_sans = zpk(z_I,0,1);
G_PID2 = feedback(K1*K2*K3*C_I_sans*C_D_sans*G,1);
y_PID2 = step(G_PID2,t_a); % PID controlled step response

figure
plot(t_a,y_P);hold on;
plot(t_a,y_PD);hold on;
plot(t_a,y_PID1);hold on;
plot(t_a,y_PID2);
xlabel('time (s)');
ylabel('step response');
grid on
legend('P control','PD control','PID control',...

'tweaked PID control','location','southeast');

si_PID = stepinfo(y_PID2,t_a);
disp(sprintf('rise time: %0.3g',si_PID.RiseTime))
disp(sprintf('percent overshoot: %0.3g',si_PID.Overshoot))

rise time: 0.0422
percent overshoot: 0.391

rldesign Root-locus design PLeLa Prop-integral-derivative controller design p. 4

It turns out to be difficult to meet both

specifications, even with the massively tweaked

controller design. Whenever one attempts to

increase the rise time, the overshoot also

increases. However, we’ve done a serviceable

job, considering.

Compute the PID gains.

KP = -K1*K2*K3*(z_D+z_I)
KI = K1*K2*K3*z_D*z_I
KD = K1*K2*K3

KP =

44.8013

KI =

271.5228

KD =

1.3576

