rldesign.multd Multiple derivative compensators

Lec. rldesign.PD shows how to design a derivative compensator such that the compensated root locus of a control system can be made to include some test point $\psi \in \mathbb{C}$ where the designer would like a closed-loop pole (typically to satisfy transient response requirements). This derivative compensator has the form

$$C_{\rm D} = K(s - z_{\rm c}), \tag{1}$$

for gain $K \in \mathbb{R}$ and zero $z_c \in \mathbb{R}$. The crux of the design procedure is to compute via the root locus phase criterion¹¹ the required compensator phase contribution:

$$\theta_{\rm c} = \pi - \angle {\rm GH}(\psi) \tag{2}$$

for open-loop transfer function GH(s). A trigonometric analysis shows that, for $\theta_c \in [-\pi, \pi]$, the compensator zero must be

$$z_{c} = \operatorname{Re}(\psi) - \operatorname{Im}(\psi) / \tan \theta_{c}.$$
 (3)

The obvious limitation here is that if the required compensation θ_c is beyond $\pm \pi$, the derivative compensator of Eq. 1 cannot contribute sufficient phase. The strategy we adopt here is to augment the derivative compensator to include as many (equal) zeros as we need:

$$C_{m} = K(s - z_{m})^{m}, \qquad (4)$$

where z_m is a zero of multiplicity m. We call this a multiple derivative compensator or m-derivative compensator.

How do we select the compensator zero z_m and multiplicity m for a given θ_c ? First, we determine m by determining how many π (or $-\pi$) contributions are required:^{12,13}

$$\mathbf{m} = \left\lceil \frac{|\boldsymbol{\theta}_c|}{\pi} \right\rceil. \tag{5}$$

11. The phase criterion was defined in Lec. rlocus.def, Eq. 6.

Algorithm	multd.1	the	multiple	derivative
compensator algorithm.				

function d_comp_m(ψ , GH(s))				
$\boldsymbol{\theta}_{c} \gets \boldsymbol{\pi} - \angle GH(\boldsymbol{\psi})$	▷ required phase comp			
$\mathfrak{m} \leftarrow \text{ceiling}(\theta_c/\pi)$	⊳ zeros needed			
$\theta_{\mathfrak{m}} \leftarrow \theta_{c}/\mathfrak{m}$	▷ divide contributions			
$z_{\mathfrak{m}} \leftarrow \operatorname{Re}(\psi) - \operatorname{Im}(\psi) / \tan \theta_{\mathfrak{m}} $ $\triangleright \operatorname{trig}$				
$C'_{\mathfrak{m}} \leftarrow (\mathfrak{s} - \mathfrak{z}_{\mathfrak{m}})^{\mathfrak{m}}$	⊳ comp sans gain			
$K_{\mathfrak{m}} \leftarrow C'_{\mathfrak{m}}(\psi)GH(\psi) $	$ ^{-1} > angle criterion$			
$C_{\mathfrak{m}} \leftarrow K_{\mathfrak{m}}C'_{\mathfrak{m}}$	⊳ comp with gain			
return C _m				
end function				

12. The function $\lceil \cdot \rceil$ is called the ceiling function and rounds up to the nearest integer.

13. Note that if $\theta_c \in [-\pi, \pi]$, the multiplicity m = 1 and the compensator is a regular derivative compensator.

With this, we can divide-up the the required phase contribution θ_c among the m zeros:

$$\theta_{\rm m} = \theta_{\rm c}/{\rm m}.$$
 (6)

By construction, $\theta_m \in [-\pi, \pi]$, so the compensator zeros should be located at

$$z_{\mathfrak{m}} = \operatorname{Re}(\psi) - \operatorname{Im}(\psi) / \tan \theta_{\mathfrak{m}}.$$
 (7)

This is summarized in Algorithm multd.1.

Causality

A complication can arise when derivative compensation yields a closed-loop transfer function with more zeros than poles—a type of system called non-causal (non-non-causal systems are called causal). Non-causal systems are those that depend on future states, something classically¹⁴ impossible to instantiate in real-time, and therefore a controller that creates such a control system is of no practical use.¹⁵ Adding multiple zeros to a controller can easily yield such undesirable systems. To mitigate this, we can include ι pure integrators 1/s into the compensator. They will obviously affect the root locus, so their effects must be taken into account during the zero compensator calculations. This is done by treating the open-loop transfer function as if it already had the compensator integrators $1/s^{\iota}$. Algorithm multd.2 summarizes this approach.

Example rldesign.multd-1

Design a controller to meet the

14. It gets complicated when considering relativity and quantum mechanics, which we do not, here.

15. Non-causal system models are useful for digital signal postprocessing, but these are always a posteriori—i.e. "future" time is known because it is in the analytic past. Controllers do not have this luxury.

Algorithm	multd.2	the	multiple	derivative
compensate	or algorith	m wi	th ι integra	itors.

function d_comp_mi(ψ , GH(s), ι)			
$\theta_{c} \leftarrow \pi - \angle GH(\psi)/s$	^µ ⊳ required phase		
comp			
$\mathfrak{m} \leftarrow ceiling(\theta_c/\pi)$	⊳ zeros needed		
$\theta_{\mathfrak{m}} \leftarrow \theta_{c}/\mathfrak{m}$	▷ divide contributions		
$z_{\mathfrak{m}} \leftarrow \operatorname{Re}(\psi) - \operatorname{Im}(\psi) / \tan \theta_{\mathfrak{m}} $ $\triangleright \operatorname{tris}$			
$C'_{\mathfrak{m}} \leftarrow (s-z_{\mathfrak{m}})^{\mathfrak{m}}/s^{\iota}$	⊳ comp sans gain		
$K_{\mathfrak{m}} \leftarrow C'_{\mathfrak{m}}(\psi)GH(\psi) $	$ ^{-1}$ > angle criterion		
$C_{\mathfrak{m}} \leftarrow K_{\mathfrak{m}}C'_{\mathfrak{m}}$	⊳ comp with gain		
return C _m			
end function			