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Figure nyquist.1: contour ΓN to be mapped by transfer function.

freq.nyquist Nyquist criterion

Introduction

Consider a feedback control system. Let G(s) be

the forward-loop transfer function and let H(s)

be the feedback transfer function. The Nyquist

plot is a parametric plot of the frequency

response function G(jω)H(jω) of the open-loop

transfer function G(s)H(s).

The Nyquist criterion allows us to gain insight

about closed-loop stability from the open-loop

frequency response (Nyquist and Bode plots)

and open-loop pole location. Additionally,

insight into transient response and steady-state

error response characteristics can be determined

from Nyquist plots. In this sense, the Nyquist

plot is analogous to the root-locus plot.

A description of the Nyquist criterion

A rigorous derivation of the Nyquist criterion is

beyond the scope of this work. However, a

motivating description is included. Before we

begin, please review complex functions, as

described in Appendix A.01.

The full Nyquist plot is the mapping of a

contour ΓN that contains the right-half plane and

is defined as beginning at the origin, moving

vertically along the jω-axis “to infinity,”

encircling the right-half-plane with a semicircle

“to negative infinity,” and returning vertically

to the origin, as shown in Fig. nyquist.1.

The Nyquist plot is now defined, but what

remains is describing the Nyquist criterion and

why it works. There are several important

insights required to understand it.

encirclements of the origin give us a clue

It turns out that whenever we map ΓN

with a transfer function F, we find out a

relationship between the number of poles
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P inside ΓN, the number of zeros Z inside

ΓN, and the number of counterclockwise

encirclements N of the origin by the

contour F(ΓN). The primary insight is that

when a pole or zero is encircled by ΓN, it

contributes an entire ±2π in phase around
the contour, whereas when a pole or zero

is not encircled by ΓN, its net contribution

to phase is zero. This yields the following

relationship:

N = P − Z. (1)

the open-loop transfer function mapping is close to what we want

We know the poles and zeros of the

open-loop transfer function G(s)H(s). We

want to know information about the

closed-loop pole locations. The

closed-loop transfer function (without

compensation) is

T(s) =
G(s)

1+G(s)H(s)
. (2)

Let’s rewrite G(s) and H(s) in terms of

numerators and denominators, as follows:

G(s) =
Gn(s)

Gd(s)
and H(s) =

Hn(s)

Hd(s)
. (3)

Let’s see what our closed-loop transfer

function looks like now:

T(s) =
Gn(s)Hd(s)

Gd(s)Hd(s) +Gn(s)Hn(s)
. (4)

Finally, let’s consider the denominator

Eq. 2 for a moment:

1+G(s)H(s) =
Gd(s)Hd(s) +Gn(s)Hn(s)

Gd(s)Hd(s)
,

(5)

which, combined with Eq. 3 and Eq. 4,

allows us to see two important

obervations:

1. the poles of 1+G(s)H(s) equal the

poles of G(s)H(s) and
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2. the zeros of 1+G(s)H(s) equal the

poles of T(s).

We are so close! We know the poles of

G(s)H(s), therefore we know the poles of

1+G(s)H(s). We want to know the poles

of T(s), which are related to the zeros of

1+G(s)H(s), which we don’t have, but we

have something related: the open loop

transfer function mapping G(ΓN)H(ΓN).

a sidestep for all the money What if we just

map with the open-loop transfer function

G(ΓN)H(ΓN)? That gives us almost exactly

the same image as 1+G(ΓN)H(ΓN), but

shifted one unit to the left. This means

that if we plot G(ΓN)H(ΓN) and interpret it

as 1+G(ΓN)H(ΓN), we can determine

stability of the closed loop transfer

function! Let’s redefine our N-P-Z

relationships for the mapping G(ΓN)H(ΓN).

1. Let N be the number of

counterclockwise encirclements of

−1.

2. Let P be the number of open-loop

poles in the right-half plane.

3. Let Z be the number of closed-loop

poles in the right-half plane.

If we have a plot of G(ΓN)H(ΓN), we have

the first two and the third is given by the

Nyquist criterion:

Z = P −N. (6)

We will use this to determine stability in

Lec. freq.nystab. However, even now, we know

that the existence of right-half-plane closed-loop

poles implies closed-loop instability, so we can

already identify that much. Before exploring

stability further, we will learn to sketch the

Nyquist plot. Not because we don’t have

MATLAB, but rather to gain intuition.
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Sketching Nyquist plots

We now begin sketching Nyquist plots.

Remember that we are first-of-all interested in

the number of counterclockwise encirclements

of −1, which will help us determine stability via

the Nyquist criterion. We proceed by example.

Example freq.nyquist-1 re: a stable open-loop system

Let an open-loop transfer function be defined

by

G(s)H(s) =
30

(s+ 4)(s+ 7)
.

Sketch its Nyquist plot and apply the Nyquist

criterion to determine the number of closed-

loop poles in the right-half plane.

Figure nyquist.2:

Let’s sketch the contour ΓN in Fig. nyquist.2.

So the magnitude and phase of the mapped

contour are

|G(ΓN)H(ΓN)| =
30

L1L2
and

∠G(ΓN)H(ΓN) = −θ1 − θ2.

We begin at point A and map the orange

contour, which is the positive jω-axis. At A,

θ1 = θ2 = 0, so ∠G(A)H(A) = 0, and L1 = 4

and L2 = 7, so |G(A)H(A)| = 30/28 ≈ 1.07. In

the Fig. nyquist.3, we sketch G(ΓN)H(ΓN) with

point A′ = G(A)H(A).

Figure nyquist.3:

As we move to B on the

orange contour, the angle becomes increasingly

negative and the magnitude decreases. Finally,

at C, the angle approaches −180deg and the

magnitude approaches 0. Note that in the

sketch we don’t go quite to zero because we

want to leave space to represent what occurs at

zero.

What occurs at zero is that the green contour

“at infinity” is mapped. The angle changes

from +180deg to −180deg and the magnitude
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stays at 0. We sketch this by showing a 360deg
rotation back to +180deg = −180deg at C′.

This doesn’t always happen. Sometimes the

angle with which the origin is approached is

different than the angle with which it leaves.

In this case, the blue contour exits at 180deg
with increasing amplitude, only to “mirror” the

orange contour’s return to A′. This does always

occur: The Nyquist plot is always symmetric

about the real axis and the jω-axis image is

essentially a mirroring of the −jω-axis image.

Examining the Nyquist plot sketch, there are no

counterclockwise encirclements of −1, i.e. N =

0. The open-loop transfer function has no poles

in the right-half-plane, i.e. P = 0. Therefore,

from the Nyquist criterion,

Z = P −N = 0− 0 = 0.

So there are no closed-loop in the right-half-

plane and the closed-loop system is stable.

What if there’s an open-loop pole on the contour

ΓN? The magnitude of the contour G(ΓN)H(ΓN)

becomes infinite, but we cannot determine at

which phase it does so. Therefore, in these cases

we take an infinitesimal detour around the pole

so that we can keep track of the phase. The

magnitude still approaches infinity, but the

phase information is retained. Let’s consider

another example that illustrates this.

Example freq.nyquist-2 re: a system with open-loop poles on the

Nyquist contour

Let an open-loop transfer function be defined

by

G(s)H(s) =
10(s+ 1)

s2 + 1
.

Sketch its Nyquist plot and apply the Nyquist

criterion to determine the number of closed-
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loop poles in the right-half plane.

Figure nyquist.4:

Let’s sketch the contour ΓN in Fig. nyquist.4.

So the magnitude and phase of the mapped

contour are

|G(ΓN)H(ΓN)| =
10L1
L2L3

and

∠G(ΓN)H(ΓN) = θ1 − θ2 − θ3.

We begin at point A and map the orange

contour, which is the positive jω-axis. At A,

θ1 = 0 and θ2 = −θ3, so ∠G(A)H(A) = 0,

and L1 = L2 = L3 = 1, so |G(A)H(A)| = 10.

In Fig. nyquist.5, we sketch G(ΓN)H(ΓN) with

point A′ = G(A)H(A). As we move to B on

the orange contour, θ1 → +45deg and still

θ2 = −θ3, so ∠G(A)H(A) → +45deg. But the

magnitude approaches infinity because L2 → 0.

Figure nyquist.5:

The infinitesimal detour from B to C doesn’t

change the magnitude, but it does change the

phase by −180deg. Finally, from C to D the

only angle that changes is θ1 by +45deg, which

yields ∠G(A)H(A) → −90deg as the magnitude

approaches zero due to the denominator of the

magnitude approaching infinity faster than

the numerator. What occurs at zero is that the

green contour “at infinity” is mapped. The

angle changes from −90deg to +90deg and

the magnitude stays at 0. We sketch this by

showing a 180deg rotation back to +90deg
at C′.The blue contour exits at +90deg with

increasing amplitude, only to “mirror” the

orange contour’s return to A′.

Examining the Nyquist plot sketch, there are no

counterclockwise encirclements of −1, i.e. N =

0. The open-loop transfer function has no poles

in the right-half-plane, i.e. P = 0. Therefore,

from the Nyquist criterion,
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Z = P −N = 0− 0 = 0.

So there are no closed-loop in the right-half-

plane and the closed-loop system is stable.


