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Part I

Electromechanical system modeling



sys

dynamic systems

mathematical representations

intro

Introduction

1 System dynamics is the field that studies

dynamic systems. And dynamic systems are

those that change. But on a long-enough time

scale, it’s hard to find systems that don’t change.

If we are to be a bit more modest in our

definition, although modest we are not, we can

conclude: dynamic systems are those that

change significantly on interesting time-scales.

However, there is a further qualification in

order, since a common thread runs through the

entire field: that of mathematical representation.

Every dynamic system studied has or could

have a mathematical representation.

“Mathematical representations” are here

understood broadly, encompassing equations

and also graphical depictions with implicit

mathematical relations. With this in mind, we

arrive at our final definition.

Definition intro.1: dynamic system

A dynamic system is one that changes

significantly on interesting time-scales and can

be represented mathematically.

This is actually quite broad. For instance,

conceivably we could derive a mathematical

model for the number of poodles barking in

France or the sum of the diameters of all human

eyes.

2 With the relatively intuitive graphical forms

of dynamic system representation described

below, one might wonder why more explicitly
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mathematical representations are required at all.

The answer is that while the design of dynamic

systems is aided by such graphical

representations, thorough mathematical

analysis is indispensable for good design. With

such analysis we can predict, for instance, the

maximum acceleration a person in a vehicle

would experience under certain operating

conditions.

3 Dynamic system mathematical models will

frequently include the following variable types,

which will be described in more detail later in

this chapter.

time An independent time variable, often

given the symbol t.

parameters Parameters are variables, usually

considered constant, that describe the

system’s physical qualities (e.g. mass,

length, electrical capacitance, thermal

resistance, etc.).

input variables Input variables represent

generally variable quantities independent

of the system (e.g. external force, voltage

source, pump pressure, etc.). These are

usually given variants of the symbol u.

output variables Output variables are

dependent variables that represent

quantities of interest. (e.g. velocity of a

vehicle, voltage across certain terminals,

number of poodles barking, etc.). These

are usually given variants of the symbol y.

state variables State variables are a minimal

(but not unique) set of dependent

variables that represent the internal status

or “state” of the system (e.g. force through

a spring, velocity of a mass, voltage of a

capacitor, current through an inductor,

etc.). These are usually given variants of

the symbol x.
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diagram

schematic

4 We here give an overview of some of the

most important system representations, all of

which are described in detail later in the text. It

helps to get a lay of the land before we go

exploring.

Graphical representations

5 Several types of graphical representations

can be useful. We begin with the venerable

diagram or schematic, which should include all

important elements of the system, such as those

shown in Fig. intro.1.

Figure intro.1: schematics representing (left-to-right) electronic, discrete mechanical, fluid, and continuous mechanical systems.

6 The mathematical relations in schematics are

frequently rather implicit. For instance, the

schematics of the two-mass system in

Fig. intro.1 explicitly specifies certain equations,

such that the force applied by the spring k is

equal in magnitude and opposite in direction for

each mass elementm1 andm2. The equations

for each element, later called the “elemental

equations,” are rarely explicitly given in any of

the graphical system representations. In our

two-mass example, for instance, each mass

element would have Newton’s second law as its

elemental equation. This is implied by the fact

that it is represented as a mass. However,

sometimes additional information is required.

In the case of the spring k connecting the

masses, it is reasonable to expect that the force

in the spring is monotonically related to its

length—this is (as we will see) what it means for
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linear graphs

1. It is worth mentioning a related type of graphical representation,
the bond graph. The linear graph and bond graph representations
are equivalent in many ways, but we prefer the linear graph for its
intuitiveness.

block diagrams

an element to behave as a spring. However,

from the schematic alone, it would be risky to

assume the spring follows Hooke’s law—that is,

that its force is proportional to its length. So

many diagrams require a narrative supplement.

7 A more-precise and minimal graphical

representation of a dynamic system is the linear

graph, the subject of Chapter graphs.1 Some

sample linear graphs are shown in Fig. intro.2.

Figure intro.2: linear graph representations of three systems. Elements are in black and nodes are in magenta.

8 Linear graphs are more-precise than

schematics in that they explicitly connect

elements (graph edges) at graph nodes. Explicit

here are the structural relations among

elements, which can be transcribed into

equations. For instance, the electronic

subsystem of the middle linear graph above

tells us, à la Kierchhoff’s voltage law, that the

voltage across each of the elements sum to zero:

VS − v1 − vR = 0. Similarly, à la Kierchhoff’s

current law, the currents through each of the

elements at the node connecting elements R and

1 sum to zero: iR − i1 = 0. We generalize these

relations for linear graphs in

Lec. graphs.connect Once again, the elemental

equations are implicit.

9 The final type of graphical system

representation we consider extensively in the

text is the block diagram, a couple examples of

which are shown in Fig. intro.3.
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Figure intro.3: block diagrams of two systems.

summing junctions

differential equations

10 Block diagrams are more high-level than

schematics and linear graphs, and usually show

the interconnection of multiple dynamic

systems. In Fig. intro.3, the systems represented

by blocks G and H are concatenated such that

the output of G is the input of H. The contents of

the blocks are systems usually interpreted in an

explicitly mathematical form that will be

introduced in a moment called the transfer

function that relates the input and output

variables; in our example, Gmaps Y1 to Y2, H

maps Y2 to Y3, and T maps Y6 to Y7. The lines

and arrows “carry” variables (Yi in our case)

among the systems. In addition to system

blocks, sometimes summing junctions, as

shown on the right of Fig. intro.3, sum two

variables; in our example, Y6 = Y4 + Y5.

Time-domain (differential) equations

11 Now we begin to make explicit all the

mathematics implied in the graphical

representations above. We have already seen

how algebraic relationships are implied by the

interconnection of elements in schematics, linear

graphs, and block diagrams. The “elemental”

equations implicit in schematics and linear

graphs can also be algebraic, but usually some

in every system are differential equations. For

example, the elemental equation for a mass

elementm is Newton’s second law, which, in

one dimension and with applied force f and

coordinate x, is

f = m
d2x
dt2 .
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io ODEs

solution

state equation

The time-derivative here makes this a

differential equation. When combined with

algebraic and other differential equations in the

system, the system of equations remains

differential.

12 So a system is described by a system of

algebraic and differential equations. There are

two common ways to represent this system. The

first is as a single differential equation of order

n, which is the result of combining all the

algebraic and differential equations into a single

scalar equation. The result—when the system is

ordinary, linear, and time-invariant (all these

terms will be described later in this text)—is

what we call the input-output differential

equation (io ODE) that relates input variable

u(t) and output variable y(t):

dny

dtn
+ an−1

dn−1y

dtn−1
+ · · ·+ a1

dy

dt
+ a0y =

bm
dmu

dtm
+ bm−1

dm−1u

dtm−1
+ · · ·+ b1

du

dt
+ b0u (1)

where ai, bj are constants defined in terms of a

system’s parameters. The io ODE

representation is convenient because, for many

common system orders n and inputs u, the

analytic solution for y(t) is known, or at least a

methodical process for deriving the solution is

known. Chapters lti and trans make extensive

use of the io ODE representation and show

multiple solution techniques.

13 The other common representation of the

system of equations is the state equation: a

system of first-order ODEs in dependent

variables xi(t) collected into a state vector x(t)

and multiple input variables uj(t) collected into

the input vector u such that

dx

dt
= f(x,u, t) (2a)

where f is a vector-valued function that also

depends on the system parameters. This
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output equation

state-space model

numerical solution

time-domain

frequency domain

Laplace transform

Fourier transform

2. The Fourier series is also included, here.

transfer function

equation can be linear or nonlinear. Note that

multiple outputs yk can also be found from the

output equation

y = g(x,u, t) (2b)

where g is a vector-valued function that also

depends on the system parameters.

14 Together, Eqs. 2a and 2b comprise what is

called a state-space model of a system. The

state-space model can fully represent a system

with multiple inputs and multiple outputs,

something not possible with an io ODE. For

many linear systems, the state equation can be

solved analytically, as described in ??. Another

advantage of the state-space model is that it can

also be easily solved numerically, as ?? also

covers.

15 The mathematical system representations

above include many variables that are presented

as explicit functions of time t, which is why we

say that they are time-domain representations.

Frequency-domain (algebraic) equations

16 The remaining system representations are

in what is called the frequency domain, which

encompasses those that involve functions of not

time but either angular frequency ω or Laplace

transform variable s. In fact, the Laplace and

Fourier transforms2 and their inverses are the

bridges between the time- and

frequency-domains.

17 The frequency domain will be properly

introduced in ??. For now, let’s define these two

remaining system representations in terms of

their respective transforms. It is worth noting

that the following representations are only

defined for linear systems.

18 The transfer function H(s) is defined as the

ratio of the Laplace transform of the output

Y(s) ≡ L(y(t)) to the Laplace transform of the
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frequency response function

input U(s) ≡ L(u(t)); i.e.

H(s) ≡ Y(s)

U(s)
. (3)

A quick rearrangement yields the output

Y(s) = H(s)U(s). (4)

If we were to inverse Laplace transform L−1

this, we would get y(t)! Let’s loop back for a

moment to the block diagram representations of

Fig. intro.3. We said the block Gmaps input Y1

to output Y2. The specific mapping is now clear:

the block G is usually represented by the

transfer function G(s), so

G(s) =
Y2(s)

Y1(s)
and Y2(s) = G(s)Y1(s). (5)

We see that this means, in the Laplace domain,

system blocks are just algebraic products of the

input and the transfer function. What’s more,

this transfer function thinking is very powerful:

the system is understood as operating on an

input with a transfer function and yielding an

output.

19 The frequency response function H(jω) is

defined similarly, but in terms of the Fourier

transform. The Fourier transform F is

introduced gently in Chapter four, but for now

just think of it as similar to the Laplace

transform (it is). The frequency response

function H(jω) is defined as the ratio of the

Fourier transform of the output Y(ω) ≡ F(y(t))

to the Fourier transform of the input

U(ω) ≡ F(u(t)); i.e.

H(jω) ≡ Y(ω)

U(ω)
. (6)

A quick rearrangement yields the output

Y(ω) = H(jω)U(ω). (7)

If we were to inverse Fourier transform F−1

this, we would get y(t)! Here we can gain the
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insight that the frequency response function,

like the transfer function, relates the input and

output. The difference is that the frequency

response function is explicitly dependent on the

angular frequency ω. We will see that, for a

sinusoidal input at frequency ω, H(jω) returns a

sinusoid at the same frequency, with only the

amplitude and phase altered! This will be one of

the key insights that will allow us to understand

the performance of a system in terms of its

frequency response function.

Summarizing

20 We’ve considered the three most important

graphical and four most important explicitly

mathematical dynamic system representations!

Most of system dynamics is the study of such

representations, their construction,

characteristics, and performance. If you’re

overwhelmed, keep in mind that this is a

high-level view of … the entirety of system

dynamics!

21 Many of these representations can

straightforwardly be converted into any other.

The representations and their conversion

pathways are sketched in Fig. intro.4. Use this

as a map as we explore the rich landscape of

system dynamics!
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Figure intro.4: relations among system representations.
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systems engineering

mathematical modeling

system properties

electromechanical systems

intro.it The systems approach

1 Simon Ramo and Richard Booton, Jr.—the

folks who brought us the intercontinental

ballistic missile (ICBM) (thanks? …I mean

thanks. But, thanks?)—defined systems

engineering to be

the design of the whole as

distinguished from the design of the

parts. (Richard C. Booton and

Simon Ramo. ?The development of

systems engineering? inIEEE

Transactions on Aerospace and

Electronic Systems: AES–20 [july

1984], pages 306–9)

Like the ICBM, many modern technologies

require this systems engineering design

approach.

2 A key aspect of the systems engineering

design process is the mathematical modeling of

the system—the development of a dynamic

system representation.

3 Dynamic systems exhibit behavior that can

be characterized through analysis and called the

system’s properties. A property of a dynamic

system might be how long it takes for it to

respond to a given input or which types of

inputs would cause a damaging response.

Clearly, such properties are of significant

interest to the design process.

4 This Part of the text focuses on

electromechanical systems: systems with an

interface between electronics and mechanical

subsystems. These are ubiquitous:

manufacturing plants, power plants, vehicles,

robots, consumer products, anything with a

motor—all include electromechanical systems.

In ?? , we will consider more types of systems

(e.g. fluid and thermal) and their interactions.
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linear graphs

graph theory

5 Electromechanical systems analysis can

proceed with initially separate modeling of the

electronic and mechanical subsystems, then,

through an unholy union, combining their

equations and attempting a solution. This is fine

for simple systems. However, many systems

will require a systematic approach.

6 We adopt a systematic approach that draws

linear graphs (á la graph theory) for electronic

and mechanical systems that are intentionally

analogous to electronic circuit diagrams. This

allows us to use a single graphical diagram to

express a system’s composition and

interconnections. Virtually every technique

from electronic circuit analysis can be applied to

these representations. Elemental equations,

Kirchhoff’s laws, impedance—each will be

generalized. In ?? , this same graphical and

electronic-analog technique will be extended to

other energy domains.
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system

boundary
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intro.sdet State-determined systems

1 A system is defined to be a collection of

objects and their relations contained within a

boundary. The collection of those objects that

are external to the system and yet interact with

it is called the environment. System variables

are variables that represent the behavior of the

system, both those that are internal to the

system and those that are external—that is, with

the system’s environment.

2 There are three important classes of system

variable, all typically expressed as

vector-valued functions of time t,

conventionally all expressed as column-vectors

(and called “vectors” even though they’re

vector-valued functions …because nothing

makes sense and we’re all going to die).

Consider Figure sdet.1 for the following

definitions. Input variables are system variables

that do not depend on the internal dynamics of

the system; for a system with r input variables,

the “input vector” is a vector-valued function

u : R → Rr. The environment prescribes inputs,

making them independent variables.

Conversely, output variables are system

variables of interest to the designer; for a system

withm output variables, the “output vector” is

a vector-valued function y : R → Rm. Outputs
may or may not directly interact with the

environment. Finally, a minimal set of variables

that define the internal state of the system are

defined as the state variables; for a system with

n state variables, the “state vector” is a

vector-valued function x : R → Rn.
3 We consider a very common class of system:

those that are state-determined, which are those

for which (Derek Rowell and

David N. Wormley. System Dynamics: An

Introduction. Prentice Hall, 1997)
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initial condition

elemental equations

continuity equations

compatibility equations

1. a mathematical description,

2. the state at time t0, called the initial

condition x(t)|t=t0 , and

3. the input u for all time t > t0

are necessary and sufficient conditions to

determine x(t) (and therefore y(t)) for all t > t0.

4 The “mathematical description” of the

system requires a set of primitive elements be

assigned to represent its internal and external

interactions. The equations derive from two key

types of mathematical relationships:

1. the input-output behavior of each

primitive element and

2. the topology of interconnections among

elements.

The former generate elemental equations and

the latter, continuity or compatibility equations.

Figure sdet.1: illustration of a system and its environment.
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Example intro.sdet-1 re: a state-determined system

In the RC circuit shown,

let Vs be a source and

vo the voltage of interest.

Identify

1. the system

boundary,

2. the input vector,

3. the output vector,

4. a state vector,

5. an elemental

equation,

6. and which

equations might

be continuity

or compatibility

equations.

+
−Vs

R
iR

C

iC

+

−

vo



intro Introduction lump Energy, power, and lumping p. 1

law of energy conservation

power

energy storage elements

energy dissipative elements

abstraction

intro.lump Energy, power, and lumping

1 The law of energy conservation states that,

for an isolated system, the total energy remains

constant. Let E : R → R be the function of time

representing the total energy in a system and

P : R → R be the function of time representing

power into the system, defined as

P(t) =
dE(t)

dt
. (1)

The energy in a system can change if it

exchanges energy with its environment. We

consider this exchange to occur through a finite

number of ports, each of which can supplies or

removes energy (positive or negative power), as

in Figure lump.1. This is expressed in an

equation for power into a port Pi and N ports as

P(t) =

N∑
i=1

Pi(t).

We construct our systems such that they have

no internal energy sources.

Lumping

2 We have assumed power enters a system via

a finite number of ports. Similarly, we assume

the energy in a system is stored in a finite

numberM of distinct elements with energy Ei

such that

E(t) =

M∑
i=1

Ei(t). (2)

We call these elements energy storage elements.

Energy can also be dissipated from the system

via certain elements called energy dissipative

elements.

3 Considering a system to have a finite

number of elements, as we have done, requires
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Figure lump.1: system ports

lumped-parameter modeling

distributed modeling

continuous modeling

elemental equation

a specific kind of abstraction from real systems.

A familiar example is the “point mass” of

elementary mechanics. We say it interacts with

its environment via specific connections called

ports (maybe it’s attached to a spring element)

and behaves a certain way in these interactions

(for a mass element, Newton’s second law). We

do not often encounter an object that behaves as

if it has mass, but no volume. Yet, this is a

useful abstraction for many problems.

4 When we abstract like this, considering an

object to be described fully as a discrete object

with interaction ports, we are said to be

lumped-parameter modeling. This is often

contrasted with distributed or continuous

modeling, which consider the element in greater

detail. For instance, an object might be

considered to be distributed through space and

perhaps be flexible or behave as a fluid.

5 It is lumped-parameter modeling because

we typically define a parameter that governs the

behavior of the element, such as resistance or

mass. This parameter will enter the system’s

dynamics via an elemental equation such as

Ohm’s Law in the case of a resistor or Newton’s

Second Law in the case of a mass.

6 Determining if lumped-parameter modeling
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finite element modeling

is proper for a given system is dependent on the

type of insight one wants to acheive about the

system. The system itself does not prescribe the

proper modeling technique, but the desired

understanding does. Every system is incredibly

complex in its behavior, if one considers it at a

fine-granularity. In this light, it is striking that

simple models work at all. Nevertheless,

lumping is highly effective for many analyses.

7 It is important to note that

lumped-parameter models can be applied at

different levels of granularity for the same

system. Finite element modeling can use a large

number of small lumped-parameter model

elements to approximate a continuous model.

Such applications are beyond the scope of this

course.
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intro.mecht Mechanical translational elements

1 We now introduce a few lumped-parameter

elements for mechanical systems in translational

(i.e. straight-line) motion. Newton’s laws of

motion can be applied. Let a force f and velocity

v be input to a port in a mechanical translational

element. Since, for mechanical systems, the

power into the element is

P(t) = f(t)v(t) (1)

we call f and v the power-flow variables for

mechanical translational systems. Some

mechanical translational elements have two

distinct locations between which its velocity is

defined (e.g. the velocity across a spring’s two

ends) and other elements have just one (e.g. a

point-mass), the velocity of which must have an

inertial frame of reference. This is analogous to

how a point in a circuit can be said to have a

voltage—by which we mean “relative to

ground.” In fact, we call this mechanical

translational inertial reference ground.

2 Work done on the system over the time

interval [0, T ] is defined as

W ≡
ˆ T
0

P(τ)dτ. (2)

Therefore, the work done on a mechanical

system is

W =

ˆ T
0

f(τ)v(τ)dτ. (3)

3 The linear displacement x is

x(t) =

ˆ t
0

v(τ)dτ+ x(0). (4)

Similarly, the linear momentum is

p(t) =

ˆ t
0

f(τ)dτ+ p(0). (5)
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source elements

translational spring

linear translational spring

spring constant

constitutive equation

k

v1 v2

f f

Figure mecht.1: schematic symbol for a spring with spring constant k and
velocity drop v = v1 − v2.

elemental equation

4 We now consider two elements that can

store energy, called energy storage elements; an

element that can dissipate energy to a system’s

environment, called an energy dissipative

element; and two elements that can supply

power from outside a system, called source

elements.

Translational springs

5 A translational spring is defined as an

element for which the displacement x across it is

a monotonic function of the force f through it. A

linear translational spring is a spring for which

Hooke’s law applies; that is, for which

f(t) = kx(t), (6)

where f is the force through the spring and x is

the displacement across the spring, minus its

unstretched length, and k is called the spring

constant and is typically a function of the

material properties and geometry of the

element. This is called the element’s constitutive

equation because it constitutes what it means to

be a spring.

6 Although there are many examples of

nonlinear springs, we can often use a linear

model for analysis in some operating regime.

The elemental equation for a linear spring can

be found by time-differentiating Equation 6 to

obtain

df

dt
= kv.

We call this the elemental equation because it

relates the element’s power-flow variables f and

v.

7 A spring stores energy as elastic potential

energy, making it an energy storage element.

The amount of energy it stores depends on the



intro Introduction mecht Mechanical translational elements p. 1

m

v2 v1

f

Figure mecht.2: schematic symbol for a point-mass with mass m and
velocity drop v = v1 − v2, where v2 is the constant reference velocity.

B

v1 v2

f f

Figure mecht.3: schematic symbol for a damper with damping coefficient B
and velocity drop v = v1 − v2.

dampers

linear dampers

damping coefficient

viscous damping

dashpot

force it applies. For a linear spring,

E(t) =
1

2k
f(t)2. (7)

Point-masses

8 A non-relativistic translational point-mass

element with massm, velocity v (relative to an

inertial reference frame), and momentum p has

the constitutive equation

p = mv. (8)

Once again, time-differentiating the constitutive

equation gives us the elemental equation:

dv

dt
=
1

m
f,

which is just Newton’s second law.

9 Point-masses can store energy (making them

energy storage elements) in gravitational

potential energy or, as will be much more useful

in our analyses, in kinetic energy

E(t) =
1

2
mv2. (9)

Dampers

10 Dampers are defined as elements for which

the force f through the element is a monotonic

function of the velocity v across it. Linear

dampers have constitutive equation (and, it

turns out, elemental equation)

f = Bv (10)

where B is called the damping coefficient.

Linear damping is often called viscous damping

because systems that push viscous fluid

through small orifices or those that have

lubricated sliding are well-approximated by this

equation. For this reason, a damper is typically

schematically depicted as a dashpot.
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dry friction

Coulomb friction

drag

ideal force source

ideal velocity source

11 Linear damping is a reasonable

approximation of lubricated sliding, but it is

rather poor for dry friction or Coulomb friction,

forces for which are not very

velocity-dependent. Aerodynamic drag is quite

velocity-dependent, but is rather nonlinear,

often represented as

f = c|v|v

where c is called the drag constant.

12 Dampers dissipate energy from the system

(typically to heat), making them energy

dissipative elements.

Force and velocity sources

13 An ideal force source is an element that

provides arbitrary energy to a system via an

independent (of the system) force. The

corresponding velocity across the element

depends on the system.

14 An ideal velocity source is an element that

provides arbitrary energy to a system via an

independent (of the system) velocity. The

corresponding force through the element

depends on the system.
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intro.mechr Mechanical rotational elements

1 We now introduce a few lumped-parameter

elements for mechanical systems in rotational

motion. Newton’s laws of motion, in their

angular analogs, can be applied. Let a torque T

and angular velocity Ω be input to a port in a

mechanical rotational element. Since, for

mechanical rotational systems, the power into

the element is

P(t) = T(t)Ω(t) (1)

we call T and Ω the power-flow variables for

mechanical rotational systems. Some

mechanical rotational elements have two

distinct locations between which its angular

velocity is defined (e.g. the angular velocity

across a spring’s two ends) and other elements

have just one (e.g. a rotational inertia), the

velocity of which must have an inertial frame of

reference. This is analogous to how a point in a

circuit can be said to have a voltage—by which

we mean “relative to ground.” In fact, we call

this mechanical rotational inertial reference

ground.

2 Work done on the system over the time

interval [0, tf] is defined as

W ≡
ˆ tf
0

P(τ)dτ. (2)

Therefore, the work done on a mechanical

system is

W =

ˆ tf
0

T(τ)Ω(τ)dτ. (3)

3 The angular displacement θ is

θ(t) =

ˆ t
0

Ω(τ)dτ+ θ(0). (4)

Similarly, the angular momentum is

h(t) =

ˆ t
0

T(τ)dτ+ h(0). (5)
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energy dissipative elements

source elements

rotational spring

linear rotational spring

torsional spring constant

constitutive equation

k

Ω1

T

Ω2

T

Figure mechr.1: schematic symbol for a spring with spring constant k and
angular velocity dropΩ = Ω1 −Ω2.

elemental equation

4 We now consider two elements that can

store energy, called energy storage elements; an

element that can dissipate energy to a system’s

environment, called an energy dissipative

element; and two elements that can supply

power from outside a system, called source

elements.

Rotational springs

5 A rotational spring is defined as an element

for which the angular displacement θ across it is

a monotonic function of the torque T through it.

A linear rotational spring is a rotational spring

for which the angular form of Hooke’s law

applies; that is, for which

T(t) = kθ(t), (6)

where T is the torque through the spring and θ

is the angular displacement across the spring

and k is called the torsional spring constant and

is typically a function of the material properties

and geometry of the element. This is called the

element’s constitutive equation because it

constitutes what it means to be a rotational

spring.

6 Although there are many examples of

nonlinear springs, we can often use a linear

model for analysis in some operating regime.

The elemental equation for a linear spring can

be found by time-differentiating Equation 6 to

obtain

dT

dt
= kΩ.

We call this the elemental equation because it

relates the element’s power-flow variables T

and Ω.

7 A rotational spring stores energy as elastic

potential energy, making it an energy storage

element. The amount of energy it stores
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moment of inertia

J

Ω2

ref

Ω1

T

Figure mechr.2: schematic symbol for a moment of inertia with inertia J
and velocity dropΩ = Ω1 −Ω2, whereΩ2 is a constant reference velocity.

flywheel

B

Ω1

T

Ω2

T

B

Ω

T T

Figure mechr.3: schematic symbol for a drag cup (above) and bearing
(below) with damping coefficient B. For the drag cup, the angular velocity drop is
Ω = Ω1 −Ω2 and for the bearing,Ω is reference is ground.

rotational dampers

linear rotational dampers

torsional damping coefficient

torsional viscous damping

depends on the torque it applies. For a linear

rotational spring,

E(t) =
1

2k
T(t)2. (7)

Moments of inertia

8 A moment of inertia element with moment

of inertia J, angular velocity Ω (relative to an

inertial reference frame), and angular

momentum h has the constitutive equation

h = JΩ. (8)

Once again, time-differentiating the constitutive

equation gives us the elemental equation:

dΩ

dt
=
1

J
T,

which is just the angular version of Newton’s

second law.

9 Any rotating element with mass can be

considered as a lumped-inertia element. The

flywheel is the quintessential example.

Flywheels store energy in their angular

momentum, with the expression

E(t) =
1

2
JΩ2, (9)

making them (and all moments of inertia)

energy storage elements.

Rotational dampers

10 Rotational dampers are defined as elements

for which the torque T through the element is a

monotonic function of the angular velocity Ω

across it. Linear rotational dampers have

constitutive equation (and, it turns out,

elemental equation)

T = BΩ (10)

where B is called the torsional damping
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drag cup

bearing

dry friction
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coefficient. Linear torsional damping is often

called torsional viscous damping because

systems that push viscous fluid through small

orifices or those that have lubricated bearings

are well-approximated by this equation. For this

reason, a damper is typically schematically

depicted as a drag cup or as a bearing, both of

which are shown in Figure mechr.3.

11 Linear damping is a reasonable

approximation of lubricated sliding, but it is

rather poor for dry friction or Coulomb friction,

forces for which are not very

velocity-dependent.

12 Rotational dampers dissipate energy from

the system (typically to heat), making them

energy dissipative elements.

Torque and angular velocity sources

13 An ideal torque source is an element that

provides arbitrary energy to a system via an

independent (of the system) torque. The

corresponding angular velocity across the

element depends on the system.

14 An ideal angular velocity source is an

element that provides arbitrary energy to a

system via an independent (of the system)

angular velocity. The corresponding torque

through the element depends on the system.
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intro.ele Electronic elements

1 We now review a few lumped-parameter

elements for electronic systems. Let a current i

and voltage v be input to a port in an electronic

element. Since, for electronic system, the power

into the element is

P(t) = i(t)v(t) (1)

we call i and v the power-flow variables.

Voltage is always understood to be between two

points in a circuit. If only one point is included,

the voltage is implicitly relative to a reference

voltage, called ground.

2 The magnetic flux linkage λ is

λ(t) =

ˆ t
0

v(τ)dτ+ λ(0). (2)

Similarly, the charge is

q(t) =

ˆ t
0

i(τ)dτ+ q(0). (3)

3 We now consider two elements that can

store energy, called energy storage elements; an

element that can dissipate energy to a system’s

environment, called an energy dissipative

element; and two elements that can supply

power from outside a system, called source

elements.

Capacitors

4 Capacitors have two terminal and are

composed of two conductive surfaces separated

by some distance. One surface has charge q and

the other −q. A capacitor stores energy in an

electric field between the surfaces.

5 Let a capacitor with voltage v across it and

charge q be characterized by the parameter

capacitance C, where the constitutive equation is

q = Cv. (4)
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electrolytic capacitor

ceramic capacitor

bipolar capacitor

polarized capacitor

anode

cathode

explosion

cathode-to-cathode

L

Figure ele.2: inductor circuit diagram symbol.

6 The capacitance has derived SI unit farad (F),

where F = A · s/V. A farad is actually quite a lot

of capacitance. Most capacitors have

capacitances best represented in µF, nF, and pF.

7 The time-derivative of this equation yields

the v-i relationship (what we call the “elemental

equation”) for capacitors.

dv

dt
=
1

C
i (5)

8 Capacitors allow us to build many new

types of circuits: filtering, energy storage,

resonant, blocking (blocks dc-component), and

bypassing (draws ac-component to ground).

9 Capacitors come in a number of varieties,

with those with the largest capacity (and least

expensive) being electrolytic and most common

being ceramic. There are two functional

varieties of capacitors: bipolar and polarized,

with circuit diagram symbols shown in

Figure ele.1. Polarized capacitors can have

voltage drop across in only one direction, from

anode (+) to cathode (−)—otherwise they are

damaged or may explode. Electrolytic

capacitors are polarized and ceramic capacitors

are bipolar.

10 So what if you need a high-capacitance

bipolar capacitor? Here’s a trick: place identical

high-capacity polarized capacitors

cathode-to-cathode. What results is effectively a

bipolar capacitor with capacitance half that of

one of the polarized capacitors.

Inductors

C

(a) bipolar capacitor.

C

−+

(b) polarized capacitor

Figure ele.1: capacitor circuit diagram symbols.
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pure inductor

flux linkage λ

ideal inductor

inductance L

henry (H)

core

R

Figure ele.3: resistor circuit diagram symbol.

11 A pure inductor is defined as an element in

which flux linkage λ—the integral of the

voltage—across the inductor is a monotonic

function of the current i. An ideal inductor is

such that this monotonic function is linear, with

slope called the inductance L; i.e. the ideal

constitutive equation is

λ = Li (6)

12 The units of inductance are the SI derived

unit henry (H). Most inductors have inductance

best represented in mH or µH.

13 The elemental equation for an inductor is

found by taking the time-derivative of the

constitutive equation.

di

dt
=
1

L
v (7)

14 Inductors store energy in a magnetic field.

It is important to notice how inductors are, in a

sense, the opposite of capacitors. A capacitor’s

current is proportional to the time rate of

change of its voltage. An inductor’s voltage is

proportional to the time rate of change of its

current.

15 Inductors are usually made of wire coiled

into a number of turns. The geometry of the coil

determines its inductance L.

16 Often, a core material—such as iron and

ferrite—is included by wrapping the wire

around the core. This increases the inductance L.

17 Inductors are used extensively in

radio-frequency (rf) circuits, which we won’t

discuss in this text. However, they play

important roles in ac-dc conversion, filtering,

and transformers—all of which we will consider

extensively.

18 The circuit diagram for an inductor is

shown in Figure ele.2.
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constitutive equation

elemental equation

Resistors

19 Resistors dissipate energy from the system,

converting electrical energy to thermal energy

(heat). The constitutive equation for an ideal

resistor is

v = iR. (8)

This is already in terms of power variables, so it

is also the elemental equation.

Sources

20 Sources (a.k.a. supplies) supply power to a

circuit. There are two primary types: voltage

sources and current sources.

Ideal voltage sources

21 An ideal voltage source provides exactly

the voltage a user specifies, independent of the

circuit to which it is connected. All it must do in

order to achieve this is to supply whatever

current necessary.

Ideal current sources

22 An ideal current source provides exactly

the current a user specifies, independent of the

circuit to which it is connected. All it must do in

order to achieve this is to supply whatever

voltage necessary.

Modeling real sources

23 No real source can produce infinite power.

Some have feedback that controls the output

within some finite power range. These types of

sources can be approximated as ideal when

operating within its specifications. Many

voltage sources (e.g. batteries) do not have

internal feedback controlling the voltage. When

these sources are “loaded” (delivering power)
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they cannot maintain their nominal output, be

that voltage or current. We model these types of

sources as ideal sources in series or parallel with

a resistor, as illustrated in Figure ele.4.

24 Most manufacturers specify the nominal

resistance of a source as the “output resistance.”

A typical value is 50 Ω.

(a) real voltage source model. (b) real current source model.

Figure ele.4: Models for power-limited “real” sources.
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intro.genvars Generalized through- and

across-variables

1 We have considered mechanical

translational, mechanical rotational, and

electronic systems—which we refer to as

different energy domains. There are analogies

among these systems that allow for

generalizations of certain aspects of these

systems. These generalizations will allow us to

use a single framework for unifying the analysis

of these (and other) dynamic systems.

2 There are two important classes of variables

common to lumped-parameter dynamic

systems: across-variables and

through-variables.

3 An across-variable is one that makes

reference to two nodes of a system element. For

instance, the following are across-variables:

•

•

•

We denote a generalized across-variable as V.

4 A through-variable is one that represents a

quantity that passes through a system element.

For instance, the following are

through-variables:

•

•

•

We denote a generalized through-variable as F.

5 The generalized integrated across-variable X

is

X =

ˆ t
0

V(τ)dτ+ X(0). (1)

6 The generalized integrated through-variable
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H is

H =

ˆ t
0

F(τ)dτ+H(0). (2)

7 For mechanical and electronic systems,

power P passing through a lumped-parameter

element is

P(t) = F(t)V(t). (3)

8 These generalized across- and

through-variables are sometimes used in

analysis. However, the key idea here is that

there are two classes of power-flow variables:

across and through. These two classes allow us

to strengthen the sense in which we consider

different dynamic systems to be analogous.
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intro.genels Generalized one-port elements

1 We can categorize the behavior of one-port

elements—electronic, mechanical translational,

and mechanical rotational—considered thus far.

In the following sections, we consider two types

of energy storage elements, dissipative

elements, and source elements.

A-type energy storage elements

2 An element that stores energy as a function

of its across-variable is called an A-type energy

storage element. Sometimes we call it a

generalized capacitor because a capacitor is an

A-type energy storage element.

3 For generalized through-variable F,

across-variable V, integrated through-variable

H, and integrated across-variable X the ideal,

linear constitutive equation is

H = CV (1)

for C ∈ R called the generalized capacitance.

Differentiating Equation 1 with respect to time,

the elemental equation is

dV

dt
=
1

C
F.

A-type energy storage elements considered thus

far are capacitors, translational masses, and

rotational moments of inertia. As with

generalized variables, the analogs among

elements are more important than are

generalized A-type energy storage elements.

T-type energy storage elements

4 An element that stores energy as a function

of its through-variable is called a T-type energy

storage element. Sometimes we call it a

generalized inductor because an inductor is a

T-type energy storage element.
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generalized inductance L

inductors

translational springs

rotational springs

D-type energy dissipative element

generalized resistor

generalized resistance R

resistors

translational dampers

rotational dampers

ideal through-variable source

5 The ideal, linear constitutive equation is

X = LF (2)

for L ∈ R called the generalized inductance.

Differentiating Equation 2 with respect to time,

the elemental equation is

dF

dt
=
1

L
V.

6 T-type energy storage elements considered

thus far are inductors, translational springs, and

rotational springs. As with generalized

variables, the analogs among elements are more

important than are generalized T-type energy

storage elements.

D-type energy dissipative elements

7 An element that dissipates energy from the

system and has an algebraic relationship

between its through-variable and its

across-variable is called a D-type energy

dissipative element. Sometimes we call it a

generalized resistor because a resistor is a

D-type energy dissipative element.

8 The ideal, linear constitutive and elemental

equation is

V = RF (3)

for R ∈ R called the generalized resistance.

9 D-type energy dissipative elements

considered thus far are resistors, translational

dampers, and rotational dampers. As with

generalized variables, the analogs among

elements are more important than are

generalized D-type energy dissipative elements.

Sources

10 An ideal through-variable source is an

element that provides arbitrary energy to a
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ideal across-variable source

system via an independent (of the system)

through-variable. The corresponding

across-variable depends on the system. Current,

force, and torque sources are the

through-variable sources considered thus far.

11 An ideal across-variable source is an

element that provides arbitrary energy to a

system via an independent (of the system)

across-variable. The corresponding

through-variable depends on the system.

Voltage, translational velocity, and angular

velocity are the across-variable sources

considered thus far.
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intro.exe Exercises for Chapter intro

Exercise intro.playmate

Consider the illustration of Fig. exe.1 in which a

bending plate scale is to have a heavy load

placed upon it. Such scales measure the weight

of the load by measuring the strain on the

sensors and electronically converting this to the

weight placed on the plate. (It goes without

saying that calibration is required for such

systems.)

It takes time for the system to come to

equilibrium, during which oscillation occurs.

Develop a one-dimensional lumped-parameter

model of the mechanical aspect of the system

and its applied load, via the following steps.

1. Declare what you will take to be the

system and its input(s).

2. Declare a one-dimensional, mechanical,

lumped-parameter model for the system.

How might you determine the

lumped-parameter model parameters (e.g.

mass, spring constant, etc.)?

3. Sketch the lumped-parameter system

model.

4. Draw a linear graph corresponding to

your lumped-parameter model.

Figure exe.1: a bending plate scale with strain sensors and load.

Exercise intro.madrid

Consider the drivetrain of a standard internal

combustion engine vehicle. When accelerating
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from a stop in wet weather it is common for the

wheels to slip due to a film of water between the

wheels and the road. Develop a lumped

parameter model of this system with the

following assumptions,

• the engine and transmission together can

be simulated as a torque source,

• the transmission and wheels are connected

with a drive shaft of finite stiffness, and

• each wheel has equal mass.

From this description please,

1. draw a one dimensional lumped

parameter model (like the diagrams in

problem granda), and

2. draw a linear graph of the lumped

parameter model.
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linear graphs

topology

graphs.intro Introduction to linear graphs

1 Engineers often use graphical techniques to

aid in analysis and design. We will use linear

graphs to represent the topology or structure of

a system modeled as interconnected lumped

elements.

2 This represents to us the essential structure

of the system in a minimalist form. In this way,

Q72 BUS TO LGA

Q48 BUS TO LGA

Q48 BUS TO LGA

Q48 BUS TO LGA

Q70 SBS TO LGA

M60 SBS TO LGA

M60 SBS TO LGA
M60 SBS TO LGAM60 SBS 

TO LGA

M60 SBS 

TO LGA

Q72 BUS 

TO LGA

Q3 BUS 

TO JFK

Q10 BUS 

TO JFK

Q10 BUS 

TO JFK

Q10 

BUS 

TO JFK

B15 

BUS 

TO JFK

L N Q R W

 N Q R W
 1 2 3 7

 7

LGA Airport

JFK Airport

Q70 SBS TO LGA
Q47 BUS TO LGA

Mets-Willets Point

Figure intro.1: a modern New York subway map in the style of Vignelli (Jake Berman).

https://en.wikipedia.org/wiki/File:NYC_subway-4D.svg
maps.complutense.org
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1. Vignelli was a brilliant Minimalist designer of many prodcucts, from
dishes to clothing, but he was most known for his graphic design. Great
places to start studying Vignelli are the documentary Design is One
(2012) and The Vignelli Canon.

edges

nodes

Vref V1

node

V2

node
F

edge

Figure intro.2: an edge with nodes. The across variable is V = V1−V2.

nonlinearity

reference node

ground

it is like Massimo Vignelli’s famous 1972 New

York subway system “map,” which inspired

widespread adoption of his style (see

Figure intro.1).1 Besides minimalism, the key

idea in Vignelli subway maps is that the details

of the tunnels’ paths are irrelevant and, in fact,

distracting to the person attempting to get from

one station to another.

3 In a similar way, a linear graph represents

the system in a minimalist style, with only two

types of objects:

1. A set of edges, each of which represents an

energy port associated with a system

element. Each edge is drawn as an

oriented line segment “ ”.

2. A set of nodes, each of which represents a

point of interconnction among system

elements. Each node is drawn as a dot “ ”.

4 All edges begin and end at nodes. The nodes

represent locations in the system where distinct

across-variable values may be measured. For

example, wires that connect elements are

actually nodes at which voltage may be

measured. Putting an edge together with nodes,

we have Figure intro.2.

5 It is important to note that linear graphs can

represent nonlinear system elements—the name

is a reference to the lines used.

6 It is common to choose a node of the graph

as the reference node, to which all

across-variables are referenced. Due to its

similarity to the electronic ground, we often use

these terms interchangeably.

7 Figure intro.3 shows how a linear graph can

be constructed for a simple RC-circuit. Note that

the wires become nodes, the elements become

edges, and the reference node represents the

circuit ground. In a similar manner, we will

construct linear graphs of circuits, mechanical

http://www.imdb.com/title/tt2610862/
http://www.imdb.com/title/tt2610862/
http://www.vignelli.com/canon.pdf
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translational systems, and mechanical rotational

systems.

+
−Vs

R

C

Vs

R

C

Figure intro.3: an example of a linear graph representation of an RC-circuit.
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sign

sign assignment

sign convention

sign interpretation

Vive la révolution!

passive sign convention

graphs.sign Sign convention

1 The sign (positive or negative) of a variable

is used to represent an orientation of its physical

quantity. For instance, −3m/s could mean 3

m/s to the right or left. No one can say which is

better (right is better). Deciding how the

physical quantity corresponds to the sign of the

variable is called sign assignment. When we use

a sign convention, we make the assignment in a

conventional manner. For instance, the sign

convention for normal stress is that compression

is negative and tension is positive.

2 Why use a sign convention? If we follow a

convention when constructing a problem, we

can use the convention’s interpretation of the

result. For complicated systems, this helps us

keep things straight. Furthermore, if someone

else attempts to understand our work, it is

much easier to simply say “using the standard

sign convention, …” than explaining our own

snowflake sign assignment. However, it is

nonetheless true that we can assign signs

arbitrarily.

3 Arbitrary? Vive la révolution! But wait. If a

source is present, we must observe some

caution. A source typically comes with its own

convention. For instance, if we hook up a power

supply to the circuit with the + and − leads a

certain way, unless we want to get very

confused, we should probably accommodate

that sign.

4 A sign convention for each of the energy

domains we’ve considered follows.

Electronic systems

5 We use the passive sign convention of

electrical engineering, defined below.
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ground

i v
drop

i v
drop

i v
drop

i v
drop

Figure sign.1: passive sign convention for electronic systems in terms of voltage v and current i. Passive elements are on the left, active on the right.

passive element

active element

interpretation

Definition graphs.1: passive sign convention

Power flowing in to a component is considered

to be positive and power flowing out of a

component is considered negative.

6 Because power P = vi, this implies the

current and voltage signs are prescribed by the

convention. For passive elements, the electrical

potential must drop in the direction of positive

current flow. This means the assumed direction

of voltage drop across a passive element must

be the same as that of the current flow. For

active elements, which supply power to the

circuit, the converse is true: the voltage drop

and current flow must be in opposite directions.

Figure sign.1 illustrates the possible

configurations.

7 When drawing a linear graph of a circuit, for

each passive element’s edge, draw the arrow

beside it pointing in the direction of assumed

current flow and voltage drop.

8 The purpose of a sign convention is to help

us interpret the signs of our results. For

instance, if, at a given instant, a capacitor has

voltage vC = 3 V and current iC = −2 A, we

compute PC = −6W and we know 6Wof power

is flowing from the capacitor into the circuit.

9 For passive elements, there is no preferred

direction of “assumed” voltage drop and

current flow. If a voltage or current value

discovered by performing a circuit analysis is

positive, this means the “assumed” and “actual”

directions are the same. For a negative value,

the directions are opposite.
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m
Fs

m
Fs

Fs

m

k

Fs

m

k

Fs

m

k

Fs

m

k

10 For active elements, choose the sign in

accordance with the physical situation. For

instance, if a positive terminal of a battery is

connected to a certain terminal in a circuit, it ill

behooves one to simply say “but Darling, I’m

going to call that negative.” It’s positive

whether you like it or not, Nancy.

Translational mechanical systems

11 The following steps can be applied to any

translational mechanical system. We introduce

the convention with an inline example.

Consider the simple mechanical system shown

at right.

12 coordinate arrow Assign the sign by

drawing a coordinate arrow, as shown at right.

The direction of the arrow is arbitrary, however,

if possible, assign the positive direction to

match the sources. If the problem allows, it is

best practice to have all sources and the

coordinate arrow in the same direction.

draw linear graph without arrows There

are two nodes with distinct velocities: ground

and the mass, as shown at right. The mass node

is always drawn to ground. The spring connects

between the mass and ground. Finally, the force

source connects to the mass, where it is applied,

and also connects to ground, which is

impervious to it.

13 assign spring and damper directions

On each spring and damper element, define the

positive velocity drop and edge arrow to be in

the direction of the coordinate arrow.

14 assign mass directions On each mass

element, define the positive velocity drop and

edge arrow to be toward ground. Sometimes we

dash the latter half of the mass edge in to signify

that it is “virtually” connected to ground.

15 assign force source directions On

each force source element, define the positive
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Table sign.1: interpretation of the translational mechanical system sign convention.

force f velocity v

positive + negative − positive + negative −

m force in direction
of the coordinate
arrow

force opposite the
direction of the
coordinate arrow

velocity in the
coordinate arrow
direction

velocity opposite
the coordinate
arrow direction

k compressive force tensile force velocity drops in
the coordinate
arrow direction

velocity drops
opposite the
coordinate arrow
direction

B compressive force tensile force velocity drops in
the coordinate
arrow direction

velocity drops
opposite the
coordinate arrow
direction

Vs

m

k

direction as follows.

(ideal) If the force source has the same

definition of positive as your coordinate arrows,

draw it toward the node of application.

(if needed) If the force source has the opposite

definition of positive as your coordinate arrow,

draw it away from the node of application.

16 assign velocity source directions On

each velocity source element, define the positive

direction as follows.

(ideal) If the velocity source has the same

definition of positive as your coordinate arrows,

draw it away from the node of application.

(if needed) If the velocity source has the

opposite definition of positive as your

coordinate arrow, draw it toward the node of

application.

17 This convention yields the interpretations

of Table sign.1.

Example graphs.sign-1 re: translational mechanical sign convention

For the system shown, draw a linear graph and

assign signs according to the sign convention.
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J
Ts

J
Ts

Ts

J

k

Ts

J

k

m2m1

B2
k

B1

Fs

Rotational mechanical systems

18 The following steps can be applied to any

rotational mechanical system. We introduce the

convention with an inline example. Consider

the simple system shown at right.

19 coordinate arrow Assign the sign by

drawing a coordinate arrow, as shown at right.

The direction of the arrow is arbitrary, however,

if possible, assign the positive direction to

match the sources. If the problem allows, it is

best practice to have all sources and the

coordinate arrow in the same direction. The

right-hand rule is always implied.

20 draw linear graph without arrows

There are two nodes with distinct velocities:

ground and the inertia, as shown at right. The

inertia node is always drawn to ground. The

spring connects between the inertia and ground.

Finally, the torque source connects to the mass,

where it is applied, and also connects to ground,

which is impervious to it.

21 assign spring and damper directions

On each inline spring and damper element,

define the positive velocity drop and edge

arrow to be in the direction of the coordinate

arrow. Springs and dampers that aren’t inline
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Ts

J

k

Ts

J

k

Ωs

J

k

typically connect to ground, toward which edge

arrows should point.

22 assign inertia directions On each

inertia element, define the positive angular

velocity drop and edge arrow to be toward

ground. Sometimes we dash the latter half of

the inertia edge to signify that it is “virtually”

connected to ground.

23 assign torque source directions On

each torque source element, define the positive

direction as follows.

(ideal) If the torque source has the same

definition of positive as your coordinate arrows,

draw it toward the node of application.

(if needed) If the torque source has the opposite

definition of positive as your coordinate arrow,

draw it away from the node of application.

24 assign angular velocity source

directions On each angular velocity source

element, define the positive direction as follows.

(ideal) If the source has the same definition of

positive as your coordinate arrows, draw it

away from the node of application.

(if needed) If the source has the opposite

definition of positive as your coordinate arrow,

draw it toward the node of application.

25 This convention yields the interpretations

of Table sign.2.

Example graphs.sign-2 re: rotational mechanical sign convention

For the system shown, draw a linear graph and

assign signs according to the sign convention.

J1
Ts B1 B2

J2
B3 k
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Table sign.2: interpretation of the rotational
mechanical system sign convention.

torque T angular velocity Ω

positive + negative − positive + negative −

J torque in direction
of the coordinate
arrow

torque opposite
the direction of the
coordinate arrow

velocity in the
coordinate arrow
direction

velocity opposite
the coordinate
arrow direction

k wring! wrong! velocity drops in
the coordinate
arrow direction

velocity drops
opposite the
coordinate arrow
direction

B wring! wrong! velocity drops in
the coordinate
arrow direction

velocity drops
opposite the
coordinate arrow
direction
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contour

continuity law

KCL

loop

2. Technically, we need not restrict the definition to series that do not
reuse edges for purposes of the compatibility law, but these loops are
superfluous and we exclude them here.

compatibility law

graphs.connect Element interconnection laws

1 The interconnections among elements

constrain across- and through-variable

relationships. The first element interconnection

law requires the concept of a contour “ ”: a

closed path that does not self-intersect

superimposed over the linear graph. The first

interconnection law is called the continuity law.

Definition graphs.2: continuity law

The sum of the through-variables that flow on

into a contour on a linear graph is zero, or, in

terms of generalized through-variables Fi for

N elements with through variables defined as

positive into the contour,

N∑
i=1

Fi = 0. (1)

2 Contours can enclose any number of nodes

and edges, as illustrated in Figure connect.1.

Kirchhoff’s current law (KCL) is the special case

of the continuity law for electronic systems.

3 The second interconnection law we consider

requires the concept of a loop “ ”: a

continuous series of edges that begin and end at

the same node, not reusing any edges.2 The

second interconnection law is called the

compatibility law.

S

1

2

3

−F1 − F2 − FS = 0

S

1

2

3

−FS − F3 = 0

S

1

2

3

F1 + F2 + FS = 0

Figure connect.1: illustration of different contours, denoted with red dashed lines “ ,” contours for which the continuity law applies, as shown below each
graph.
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S

1

2

3

V1 − V2 = 0

S

1

2

3

V2 + V3 − VS = 0

S

1

2

3

V1 + V3 − VS = 0

Figure connect.2: illustration of different loops, denoted with violet edges “ ,” loops for which the compatibility law applies.

KVL

Definition graphs.3: compatibility law

The sum of the across-variable drops on edges

around any closed loop on a linear graph is

zero, or, in terms of generalized across variables

Vi for N elements in a loop,

N∑
i=1

Vi = 0. (2)

A loop can be “inner” or “outer,” as shown in

Figure connect.2. Kirchhoff’s voltage law (KVL)

is the special case of the compatibility law for

electronic systems.

Example graphs.connect-1 re: element interconnection laws

For the system shown, (a) write three unique

continuity and three unique compatibility

equations. Moreover, (b) write a continuity

equation solved for F4 in terms of FS and

F1. Finally, (c) write a compatibility equation

solved for V5 in terms of VS, V3, and V4.

1

2

3

4

5

S
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system graph

graphs.sysmod Systematic linear graph modeling

1 A system graph is a representation of a

physical system as a set of interconnected linear

graph elements. The construction of a system

graph requires a number of engineering

decisions. In general, we can use the following

procedure.

1. Define the system boundary and analyze

the physical system to determine the

essential features that must be included in

the model, especially:

a) inputs,

b) outputs,

c) energy domains, and

d) key elements.

2. Form a schematic model of the physical

system and assign schematic signs

according to the sign convention of

Lecture graphs.sign.

3. Determine the necessary

lumped-parameter elements representing

the system’s

a) energy sources,

b) energy storage, and

c) energy dissipation.

4. Identify the across-variables that define

the linear graph nodes and draw a set of

nodes.

5. Determine appropriate nodes for each

lumped element and include each element

in the graph.

6. Assign linear graph signs according to the

sign convention of Lecture graphs.sign.

2 The first three of these steps are the hardest.

Considerable physical insight is required to

construct an effective model. Often it is

helpful—if not necessary—to have experimental

results to guide the process.
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Example graphs.sysmod-1 re: linear graph model of translational

mechanical systemFor the system shown, develop a linear graph

model.

Example graphs.sysmod-2 re: linear graph model of rotational

mechanical systemFor the system shown, develop a linear graph

model.

Example graphs.sysmod-3 re: linear graph model of electronic system

For the system shown, develop a linear graph

model.
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graphs.exe Exercises for Chapter graphs

Exercise graphs.lillimoomie

Finish applying the sign coordinate arrows on

on the following linear graphs.

a. electronic system

VS

L R

b. rotational mechanical system (assume TS

is in the positive direction)

TS

k

B

c. translational mechanical system

FS

m1

k

Bm2

Exercise graphs.4

Draw necessary sign coordinate arrows and a

linear graph for each of the following

schematics.

a. electronic system, current source

IS

L R C
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b. rotational mechanical system, torque

source

J1
TS

B1 k

J2

B2 B3

c. translational mechanical system, velocity

source

m2m1

B2
k2

B1

k1
VS

Exercise graphs.5

Draw necessary sign coordinate arrows and

draw a linear graph for each of the following

schematics.

a. electronic system, voltage source

+
−VS

R L

C

b. rotational mechanical system, angular

velocity source

ΩS
k1

J1

B1 k2

J2

B2 B3

c. translational mechanical system, force

source
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m3m2

B2
k2

B1

k1

m1
FS

Exercise graphs.6

Draw necessary sign coordinate arrows and a

linear graph for each of the following

schematics.

a. electronic system, voltage source

+
−VS

R L

C2C1

b. rotational mechanical system, torque

source

J0
TS

k1

J1

B1 k2

J2

B2 B3

c. translational mechanical system, force

source

m3m2

k3

B2

k2

B1

k1

m1
FS

Exercise graphs.bunker

Use the assigned coordinate arrows to draw a

linear graph for each of the following

schematics.
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a. electronic system, voltage and current

source

+
−VS

R1 L1
C2

R4

IS

R2

L2

C1 R3

b. rotational mechanical system, torque

source, coordinate arrow

J1
TS

+

B1

J2

B2k1

J3

B3

c. translational mechanical system, force

sources (2)

m3m2

FS2

B2

k2

B1

k1

m1
FS1

+
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state variables

state

input variables

state-determined system model

system order

output variables

state vector

input vector

output vector

independent energy storage elements

ss.svar State variable system representation

1 State variables, typically denoted xi, are

members of a minimal set of variables that

completely expresses the state (or status) of a

system. All variables in the system can be

expressed algebraically in terms of state

variables and input variables, typically denoted

ui.

2 A state-determined system model is a

system for which

1. a mathematical description in terms of n

state variables xi,

2. initial conditions xi(t0), and

3. inputs ui(t) for t > t0

are sufficient conditions to determine xi(t) for

all t > t0. We call n the system order.

3 The state, input, and output variables are all

functions of time. Typically, we construct

vector-valued functions of time for each. The

so-called state vector x is actually a

vector-valued function of time x : R → Rn. The
ith value of x is a state variable denoted xi.

4 Similarly, the so-called input vector u is

actually a vector-valued function of time

u : R → Rr, where r is the number of inputs. The

ith value of u is an input variable denoted ui.

5 Finally, the so-called output vector y is

actually a vector-valued function of time

y : R → Rm, wherem is the number of outputs.

The ith value of y is an output variable denoted

yi.

6 Most systems encountered in engineering

practice can be modeled as state-determined.

For these systems, the number of state variables

n is equal to the number of independent energy

storage elements.

7 Since to know the state vector x is to know

everything about the state, the energy stored in

each element can be determined from x.
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power flow

Therefore, the time-derivative dx/dt describes

the power flow.

8 The choice of state variables represented by

x is not unique. In fact, any basis transformation

yields another valid state vector. This is

because, despite a vector’s components

changing when its basis is changed, a

“symmetric” change also occurs to its basis

vectors. This means a vector is a

coordinate-independent object, and the same

goes for vector-valued functions. This is not to

say that there aren’t invalid choices for a state

vector. There are. But if a valid state vector is

given in one basis, any basis transformation

yields a valid state vector.

9 One aspect of the state vector is invariant,

however: it must always be a vector-valued

function in Rn. Our method of analysis will

yield a special basis for our state vectors. Some

methods yield rather unnatural state variables

(e.g. the third time-derivative of the voltage

across a capacitor), but ours will yield natural

state variables (e.g. the voltage across a

capacitor or the force through a spring).

system with
state vector

inputs outputs

Figure svar.1: block diagram of a system with input u, state x, and output y.
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state-space model

state equation

1. We’ll learn how to solve such systems both analytically and
numerically in later chapters.

ss.ssmodel State and output equations

1 The state x, input u, and output y vectors

interact through two equations:

dx

dt
= f(x,u, t) (1a)

y = g(x,u, t) (1b)

where f and g are vector-valued functions that

depend on the system. Together, they comprise

what is called a state-space model of a system.

Let’s not glide past these equations, which will

be our dear friends for the rest of our analytic

lives. The first equation (1a) is called the state

equation. Given state and input vectors at a

moment in time, it’s function f describes, how

the state is changing (i.e. dx/dt). Clearly, the

state equation is a vector differential equation,

which is equivalent to a system of first-order

differential equations.1

2 In accordance with the definition of a

state-determined system from Lecture ss.svar,

given an initial condition x(t0) and input u, the

state x is determined for all t > t0. The

state-space model is precisely the “mathematical

model” described in the definition of a

state-determined system. Determining the state

requires the solution—analytic or numerical—of

the vector differential equation.

3 The second equation (1b) is algebraic. It

expresses how the output y can be constructed

from the state x and input u. This means we

must first solve the state equation (1a). Since the

output y is a vector of variables of interest, the

output equation is constructed in two steps: (1)

define the output variables and (2) write them

in terms of the state variables xi and input

variables uj.

4 Just because we know that, for a

state-determined system, there exists a solution

to Equation 1a, doesn’t mean we know how to
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2. Technically, since x and u are themselves functions, f and g are
functionals.

3. A later lecture will describe the process of deriving a “linearized”
model from a nonlinear one.

linear, time-invariant

find it. In general, f : Rn × Rr × R → Rn and

g : Rn × Rr × R → Rm can be nonlinear

functions.2 We don’t know how to solve most

nonlinear state equations analytically. An

additional complication can arise when, in

addition to states and inputs, system parameters

are themselves time-varying (note the explicit

time t argument of f and g). Fortunately, often a

linear model is sufficiently effective.3

5 A linear, time-invariant (LTI) system has

state-space model

dx

dt
= Ax+ Bu (2a)

y = Cx+Du (2b)

where

• A is an matrix that describes how

the changes the ,

• B is an matrix that describes how the

changes the ,

• C is an matrix that describes how

the contributes to the , and

• D is an matrix that describes how

the contributes to the .

In the next two lectures, we will learn how to

derive a state-space model—for linear systems,

how to find A, B, C, and D—for a system from

its linear graph. This is the link between the

linear graph model and the state-space model.
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normal tree

subgraph

ss.graph2nt Normal trees

1 Before we introduce the algorithm for

constructing the state-space model in

Lecture ss.nt2ss, we introduce the first step from

the system graph to the state-space model: the

normal tree. It is a subgraph of the system’s

linear graph.

2 In the following, we will consider a

connected graph with E edges, of which S are

sources. There are 2E− S unknown across- and

through-variables, so that’s how many

equations we need. We have E− S elemental

equations and for the rest we will write

continuity and compatibility equations. N is the

number of nodes.

3 The following rules must be respected.

R1. There can be no loops.

R2. Every node must be connected.

Form a normal tree with

the following steps. For

an inline example, we

will construct a normal

tree from the linear graph

for an electronic system,

shown at right.
Vs

R1 R2

C
L

1. Include all nodes.

Vs

R1 R2

C
L

2. Include all across-variable sources.

Vs

R1 R2

C
L
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branches

links

dependent energy storage elements

independent energy storage elements

controllable

A-types in series

T-types in parallel

Primary variables

3. Select as many as possible A-type elements.

Vs

R1 R2

C
L

4. Select as many as possible D-type elements.

Vs

R1 R2

C
L

5. Select as many as possible T-type elements.

Vs

R1 R2

C
L

4 We call those edges in the normal tree its

branches and those not, the links.

5 A-type elements not in and T-type elements

in the normal tree are called dependent energy

storage elements. All other A- and T-types are

independent energy storage elements. The

energy in these can be independently controlled.

6 In order to avoid an artificial excess in state

variables and construct what is called a

controllable model, whenever A-types in series

(sharing one node) or T-types in parallel

(sharing two nodes) appear, we should combine

them to form equivalent elements in accordance

with the formulas

Ce =
1∑
i 1/Ci

or (1a)

Le =
1∑
i 1/Li

. (1b)

7 There are special names for power-flow

variables associated with an element,

depending on whether the element is a branch

or link. Primary variables are: across-variables

on branches and through-variables on links.
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Secondary variablesSecondary variables are: through-variables on

branches and across-variables on links.
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normal tree

primary variables

secondary variables

state variables

state vector

input vector

output vector

elemental equation

4. There will be E− S elemental equations.

continuity equation

5. There will beN− 1− SA independent continuity equations.

compatibility equation

6. There will be E−N+ 1− ST independent compatibility equations.

ss.nt2ss Normal tree to state-space

1 At long last, we consider an algorithm to

generate a state-space model from a linear

graph model. In the following, we will consider

a connected graph with E edges, of which S are

sources (split between through-variable sources

ST and across SA). There are 2E− S unknown

across- and through-variables, so that’s how

many equations we need. We have E− S

elemental equations and for the rest we will

write continuity and compatibility equations. N

is the number of nodes.

1. Derive 2E− S independent differential and

algebraic equations from elemental,

continuity, and compatibility equations.

a) Draw a normal tree.

b) Identify primary and secondary

variables.

c) Select the state variables to be

across-variables on A-type branches

and

through-variables on T-type links.

d) Define the state vector x, input vector

u, and output vector y.

e) Write an elemental equation for each

passive element.4

f) Write a continuity equation for each

passive branch by drawing a contour

intersecting that and no other branch.

Solve each for the secondary

through-variable associated with that

branch.5

g) Write a compatibility equation for

each passive link by temporarily

“including” it in the tree and finding

the compatibility equation for the

resulting loop. Solve each for the

secondary across-variable associated

with that link.6
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2. Eliminate variables that are not state or

input variables and their derivatives. The

following procedure is recommended.

a) Eliminate all secondary variables by

substitution into the elemental

equations of the continuity and

compatibility equations.

b) Reduce the resulting set of equations

to n (system order) in state and input

variables, only. If not elimination,

use linear algebra.

c) Write the result in standard form

(Equation 1a or Equation 2a).

d) Express the output variables in terms

of state and input variables, using

any of the elemental, continuity, or

compatibility equations.

e) Write the result in standard form

(Equation 1b or Equation 2b).

Example ss.nt2ss-1 re: circuit state-space model

For the electronic

system shown, find a

state-space model with

outputs iL, Is, and vR2 .
VS

R1 R2

C
L
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ss.trans State-space model of a translational

mechanical system

1 Let’s try an example of a higher-order

translational mechanical system.

Example ss.trans-1 re: state-space model of a translational

mechanical systemFor the translationalmechanical system shown,

find a state-spacemodelwith outputs the spring

forces and mass momenta.

m2m1

k1

B1

k2

B2

Vs
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ss.rot State-space model of a rotational mechanical

system

1 Let’s try an example of a rotational

mechanical system.

Example ss.rot-1 re: state-space model of a rotational

mechanical systemFor the rotational mechanical system shown,

find a state-space model with outputs the

spring torque and moment of inertia angular

momentum.

Ωs B1
J
B2 k
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Laplace transform

transfer function

transfer function definition

ss.ss2tf2io Bridge between state-space and io

differential equations

1 The Laplace transform L is cool af. It is used

to solve differential equations and define the

transfer function H: you know, just another

awesome dynamic system representation. For

now, we’ll use it as a bridge between state-space

and input/output differential equation

representations, merely waving at transfer

functions as we pass through. Later, transfer

functions will be considered extensively.

Transfer functions

2 Let a system have an input u and an output

y. Let the Laplace transform of each be denoted

U and Y, both functions of complex Laplace

transform variable s. A transfer function H is

defined as the ratio of the Laplace transform of

the output over the input:

H(s) =
Y(s)

U(s)
. (1)

3 The transfer function is exceedingly useful in

many types of analysis. One of its most

powerful aspects is that it gives us access to

thinking about systems as operating on an input

u and yielding an output y.

Bridging transfer functions and io differential equations

4 Consider a dynamic system described by the

input-output differential equation—with

variable y representing the output, dependent

variable time t, variable u representing the

input, constant coefficients ai, bj, order n, and

m 6 n for n ∈ N0—as:

dny

dtn
+ an−1

dn−1y

dtn−1
+ · · ·+ a1

dy

dt
+ a0y =

bm
dmu

dtm
+ bm−1

dm−1u

dtm−1
+ · · ·+ b1

du

dt
+ b0u.

(2)
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Laplace transform

forced response

5 The Laplace transform L of Eq. 2 yields

something interesting (assuming zero initial

conditions):

L

(
dny

dtn
+ an−1

dn−1y

dtn−1
+ · · ·+ a1

dy

dt
+ a0y

)
=

L

(
bm

dmu

dtm
+ bm−1

dm−1u

dtm−1
+ · · ·+ b1

du

dt
+ b0u

)
⇒

L

(
dny

dtn

)
+ an−1L

(
dn−1y

dtn−1

)
+ · · ·+ a1L

(
dy

dt

)
+ a0L (y) =

bmL

(
dmu

dtm

)
+ bm−1L

(
dm−1u

dtm−1

)
+ · · ·+ b1L

(
du

dt

)
+ b0L (u) ⇒

snY + an−1s
n−1Y + · · ·+ a1sY + a0Y =

bms
mU+ bm−1s

m−1U+ · · ·+ b1sU+ b0U.

Solving for Y,

Y =
bms

m + bm−1s
m−1 + · · ·+ b1s+ b0

sn + an−1sn−1 + · · ·+ a1s+ a0
U.

The inverse Laplace transform L−1 of Y is the

forced response. However, this is not our

primary concern; rather, we are interested to

solve for the transfer function H as the ratio of

the output transform Y to the input transform U,

i.e.

H(s) ≡ Y(s)

U(s)
(3)

=
bms

m + bm−1s
m−1 + · · ·+ b1s+ b0

sn + an−1sn−1 + · · ·+ a1s+ a0
. (4)

6 Exactly the reverse procedure, then, can be

used to convert a given transfer function to an

input-output differential equation.

Example ss.ss2tf2io-1 re: A circuit transfer function

The circuit shown

has input-output

differential equation

L
d2vL
dt2

+ R
dvL
dt

+
1

C
vL = L

d2Vs

dt2
.

What is the transfer

function from Vs to vL?
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matrix transfer function

+
−Vs

R
C

L

Bridging transfer functions and state-space models

7 Given a system in the standard form of a

state equation,

dx

dt
= Ax+ Bu,

we take the Laplace transform to yield,

assuming zero initial conditions,

sX = AX+ BU,

which can be solved for the state:

X = (sI−A)−1BU, (5)

where I is the identity matrix with the same

dimension as that of A. The standard form of

the output equation yields the output solution

Y = HU, (6)

where we define the matrix transfer function H

to be

H(s) = C(sI−A)−1B+D.

The element Hij is a transfer function from the

jth input Uj to the ith output Yi.
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state-space realization

8 The reverse procedure of deriving a

state-space model from a transfer function is

what is called a state-space realization, which is

not a unique operation (there are different

realizations for a single transfer function) and is

not considered here.

Example ss.ss2tf2io-2 re: Matrix transfer function from state-space

Given the linear state-space model

ẋ =

[
−3 4

−1 1

]
x+

[
1

0

]
u

y =

[
1 0

0 1

]
x+

[
0

0

]
u,

derive the matrix transfer function.

Example ss.ss2tf2io-3 re: state-space to io differential equations

For the following state-space model, derived

in Example ss.nt2ss-1, derive the io differential
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equations for each output variable:

dx

dt
=

[
−1
R1C

−1
C

1/L −R2/L

]
x+

[
1
R1C

0

]
u

y =

 0 1

−1/R1 0

0 R2

 x+

 0

1/R1

0

u.

The output variables are iL, IS, and vR2 .
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ss.exe Exercises for Chapter ss

Exercise ss.7

Draw necessary sign coordinate arrows, a linear

graph, a normal tree, and identify state

variables and system order for each of the

following schematics.

a. electronic system, current source

IS

L R C

b. rotational mechanical system, torque

source

J1
TS

B1 k

J2

B2 B3

c. translational mechanical system, velocity

source

m2m1

B2
k2

B1

k1
VS

Exercise ss.8

Draw necessary sign coordinate arrows, a linear

graph, a normal tree, and identify state

variables and system order for each of the

following schematics.

a. electronic system, voltage source
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+
−VS

R L

C

b. rotational mechanical system, angular

velocity source

ΩS
k1

J1

B1 k2

J2

B2 B3

c. translational mechanical system, force

source

m3m2

B2
k2

B1

k1

m1
FS

Exercise ss.9

Draw necessary sign coordinate arrows, a linear

graph, a normal tree, and identify state

variables and system order for each of the

following schematics.

a. electronic system, voltage source

+
−VS

R L

C2C1

b. rotational mechanical system, torque

source
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J0
TS

k1

J1

B1 k2

J2

B2 B3

c. translational mechanical system, force

source

m3m2

k3

B2

k2

B1

k1

m1
FS

Exercise ss.11

Use the following linear graph for a circuit to

answer the questions below, which are the steps

to determining a state-space model of the

circuit. Use the sign convention from the

diagram. VS is a voltage source.

VS

R L

C

a. Determine the normal tree, state variables,

system order, state vector, input vector,

and output vector for the outputs iR and

vC.

b. Write the required elemental, continuity,

and compatibility equations.

c. Solve for the state equation in standard

form.

d. Solve for the output equation in standard

form.
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Exercise ss.12

Use the following linear graph for a mechanical

translational system to answer the questions

below, which are the steps to determining a

state-space model from the linear graph.

Use the sign convention from the diagram. FS is

a force source. Let the outputs be vm and fk.

FS m k

a. Determine the normal tree, state variables,

system order, state vector, input vector,

and output vector.

b. Write the required elemental, continuity,

and compatibility equations.

c. Solve for the state equation in standard

form.

d. Solve for the output equation in standard

form.

Exercise ss.13

Use the following linear graph for a mechanical

rotational system to answer the questions

below, which are the steps to determining a

state-space model from the linear graph.

Use the sign convention from the diagram. TS is

a torque source. Let the outputs be ΩJ and TB.

TS

Jk
B

a. Determine the normal tree, state variables,

system order, state vector, input vector,

and output vector.
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b. Write the required elemental, continuity,

and compatibility equations.

c. Solve for the state equation in standard

form.

d. Solve for the output equation in standard

form.

Exercise ss.blowhard

Use the following linear graph for a mechanical

rotational system to answer the questions

below, which are the steps to determining a

state-space model from the linear graph.

Use the sign convention from the diagram. ΩS

is an angular velocity source. Let the outputs be

the angular velocity ΩJ of the inertia and the

angular displacement θk across the spring.

ΩS

B k

J

1. Determine the normal tree, state variables,

system order, state vector, input vector,

and output vector.

2. Write the required elemental, continuity,

and compatibility equations.

3. Solve for the state equation in standard

form.

4. Solve for the output equation in standard

form.

Exercise ss.chunker

Use the assigned coordinate arrows to draw a

linear graph, a normal tree, and identify state

variables and system order for each of the

following schematics.
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/35 p.

1. electronic system, voltage and current

source

+
−VS

R1 L1
C2

R4

IS

R2

L2

C1 R3

2. rotational mechanical system, torque

source, coordinate arrow

J1
TS

+

B1

J2

B2k1

J3

B3

3. translational mechanical system, force

sources (2)

m3m2

FS2

B2

k2

B1

k1

m1
FS1

+

Exercise ss.granada

Use the assigned coordinate arrows to draw a

linear graph, a normal tree, and identify state

variables and system order for each of the

following systems.
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1. rotational mechanical system, two torque

sources

J1
TS1

J2

K

J3

B TS2

+

2. translational mechanical system, velocity

source

m1

B1
VS

m2

K B2

+

Exercise ss.valencia

Use the following linear graph for a mechanical

translational system to answer the questions

below, which are the steps to determining a

state-space model from the linear graph.

Use the sign convention from the diagram. FS is

a force source. Let the outputs be vm1
and vm2

.

FS

K

m1 m2B

1. Determine the normal tree, state variables,

system order, state vector, input vector,

and output vector.

2. Write the required elemental, continuity,

and compatibility equations.

3. Solve for the state equation in standard

form.

4. Solve for the output equation in standard

form.
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two-port elements

transducers

motor

transformer ratio

gyrator modulus

ideal transducer

1. For an explanation of why that is the case, see Rowell and
Wormley. (Derek Rowell and David N. Wormley. System Dynamics:
An Introduction. Prentice Hall, 1997)

transformer

gyrator

emech.trans Ideal transducers

1 Two-port system elements can model

transducers—elements that transfer energy

between two energy domains or change its form

within an energy domain. The quintessential

example, which we will consider in detail, is the

motor, which converts electrical energy to

mechanical energy. However, many other

system elements can be considered transducers,

and we’ll consider a few in this lecture.

2 Each of the two ports has a through- and an

across-variable. We use the convention that the

power into each port (P1 and P2) is positive,

which has implications for the signs of the

power flow variables F1, F2, V1, and V2. For an

two-port element to transfer power, we have

P1 + P2 = 0

F1V1 = −F2V2 ⇒
V1

V2
= −

F2

F1
and

V1

F2
= −

V2

F1
.

We define the transformer ratio TF to be

TF ≡ V1

V2
= −

F2

F1
. (1)

Furthermore, we define the gyrator modulus GY

to be

GY ≡ V1

F2
= −

V2

F1
. (2)

3 For an ideal transducer—one that is linear,

time-invariant, and without power loss—we

have only two nontrivial solutions:1

V2 = V1/TF

F2 = −TFF1

or V2 = −GY F1

F2 = V1/GY.

4 For a given element, if the solution with TF is

a good model, we call that element a

transformer. If the GY solution is a good model,

we call it a gyrator.
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Example emech.trans-1 re: DC motor

Consider a DC motor with rotor radius r,

number of coil turns N, background field B,

and rotor length `. The torque T of a DC motor

is related to its coil current i by the relation

T = −2rNB`i.

1. Determine if DC motors are transformers

or gyrators.

2. Find TF or GY.

3. Derive the relation between the voltage

v and the angular velocity Ω across the

motor using the assumption that it is an

ideal transducer.

Example emech.trans-2 re: gears

Consider two gears with radii r1 and r2 and

number of teeth n1 and n2.

1. Determine the power flow variables for

gears.

2. Write two independent equations relating

the power flow variables.

3. Determine if gears are transformers or

gyrators.

4. Find TF or GY.
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Figure transmod.1: two-port ideal linear graph elements of a transformer
(left) and a gyrator (right).

2. Inclusion of an A-type at this step may result in a violation of R3 or
R4 in the next, which implies the A-type is a dependent energy storage
element and that it should be excluded from the normal tree.

emech.transmod Modeling with transducers

1 We now develop both linear graph and

state-space models of systems that include

transducers. Linear graphs of two-port ideal

transducer elements are drawn as shown in

Figure transmod.1. Once again, we use the sign

convention that power into an element is

positive. Often, the edges are drawn toward

ground nodes, which are always different when

the transducer acts between different energy

domains. Transducers may or may not be

sufficiently modeled by ideal transducers. For

instance, we may need to consider the moment

of inertia associated with a gear. When this is

the case, additional elements can be connected

in parallel and in series with the two-port

element nodes. DC motors—another

example—are typically not modeled with an

ideal transducer, alone, because the windings

have both resistance and inductance.

State-space modeling with transducers

2 We present a method for constructing a

state-space model of systems containing

transducer elements. This procedure begins, as

before, with the construction of the normal tree.

The following rules must be respected.

R1. There can be no loops.

R2. Every node must be connected.

R3. Of a transformer’s two edges, exactly one

is included.

R4. Of a gyrator’s two edges, either both are or

neither is included.

3 Form a normal tree with the following steps.

1. Include all nodes.

2. Include all across-variable sources.

3. Include as many as possible A-type

elements.2
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4. Include transducer edges, minimizing the

number of T-types in the tree.

5. Include as many as possible D-type

elements.

6. Include as many as possible T-type

elements.

4 The state and output equations can be

derived as before, but with the following caveat:

each two-port element requires two elemental

equations.
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3. See a decent history here.

stator

rotor

commutator

Lorentz force

4. The equations here assume a stationary wire. In a DCmotor, the wire
is moving, which creates additional effects, but the Lorentz force is still
present.

emech.dcm DC motors

1 DC motors are commonly used in

mechanical engineering designs as an actuator.

Products such as pumps, fans, conveyors, and

robots use DC motors to convert electrical

energy to mechanical (rotational) energy.

2 DC motors first emerged in the mid-19th

century as the first device to produce useful

mechanical work from electrical power.3 One of

fathers of the DC motor, the Benedictine priest

Ányos Jedlik, invented the key facets of the

motor: the stator, the rotor, and the

commutator. Roughly speaking, for a typical

brushed DC motor, current flowing through the

wire windings of the stator produces a magnetic

field that turns the rotor, which has windings of

its own; the commutator mechanically switches

the direction of current flow through the

windings to yield continuous electromagnetic

torque.

3 We will begin our study of DC motors with a

review of a key physical phenomenon: the

mechanical force on a charged particle moving

in a magnetic field.

Lorentz force

4 Consider a charged particle moving through

a background magnetic field. The Lorentz force

is the (mechanical!) force on the particle, which

depends on the velocity of the particle, the

background magnetic field, and the background

electric field. Charge flowing through a straight,

stationary4 wire with current i in a uniform

background magnetic field B is subject to the

cumulative effect of the Lorentz force on each

charge. Let the straight wire’s length and

orientation in the B-field be described by the

vector `, which should be chosen to be in the

direction of positive current flow. It can be

https://en.wikipedia.org/wiki/Electric_motor#History
https://en.wikipedia.org/wiki/%C3%81nyos_Jedlik
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PMDC motors

stator

shown that the resultant force f on the wire is

f = i`× B (1)

as shown in Fig. dcm.1.

f

f

Figure dcm.1: the forces f on two wires in a magnetic field B. The wire on the left has current flowing into the board, that on the right has current flowing out of
the board. The cross-product right-hand-rule applies.

5 With a curved wire, then, we could take

infinitesimal sections d` and integrate along the

wire’s path:

f = i

ˆ
d`× B. (2)

6 DC motors take advantage of this

electromechanical phenomenon by driving

current through cleverly arranged wires to

generate torque on a shaft.

Permanent magnet DC motors

7 In order to take advantage of the Lorentz

force, first a uniform background magnetic field

B is required. Some DC motors, called

permanent magnet DC motors (PMDC motors)

generate this field with two stationary

permanent magnets arranged as shown in

Fig. dcm.2. The magnets are affixed to the

“stationary” part of the motor called the stator.

8 Now consider a rigidly supported wire with

current i passing through the field such that

much of its length is perpendicular to the

magnetic field. Consider the resultant forces on

these perpendicular sections of wire for

different wire configurations, as illustrated in

Fig. dcm.2. We have torque! But note that it
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S N

f

f

f

f

(a) Orientation A: horizontal.

S N

f

f

(b) Orientation B: vertical.

S N

f

f

f

f

(c) Orientation C: mixed.

Figure dcm.2: axial section view of a simple DC motor with permanent magnets.

armature

rotor

not #winning

commutator

brushes

changes direction for different armature

orientations, which will need to be addressed in

a moment. Note that we can wind this

wire—which we call the armature—multiple

times around the loop to increase the torque.

The rotating bit of the motor that supports the

armature is called the rotor, which includes the

shaft.

9 The trouble is, if we connect our armature

up to a circuit—which is usually located

alongside the stator, i.e. not rotating—the wire

will wrap about itself, which is not #winning.

But we’re tricky af so let’s consider just cutting

that wire and rigidly connecting it to a

disk—called a commutator—with two

conductive regions, one for each terminal of the

armature. The commutator will rotate with the

armature, but it provides smooth contacts along

the perimeter of the disk.

10 We can then connect the driving circuit to

these contacts via brushes: conductive blocks

pressed against the commutator on opposite

sides such that they remain in contact

(conducting current) yet allow the commutator

to slide easily, as shown in Fig. dcm.3. Brushes

are typically made from carbon and wear out

over time. This is partially mitigated by

spring-loading, but eventually the brushes must

be replaced, nonetheless.
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Figure dcm.3: illustration of brushes, commutator, and two armatures.

11 So brushes solve the “wire wrapping”

problem, but do they have an effect on the

“torque flipping” issue? Yes! When the

armature passes through its vertical orientation,

current reverses direction through the armature.

So whenever the perpendicular section of wire

is on the right, current flows in the same

direction, regardless of to which side of the

armature it belongs.

12 Finally, is there a way to overcome the

limitation of torque variation with different

armature angles? Yes: if there are several

different armature windings at different angles

and correspondingly the commutator is split

into several conductive contact pairs (one for

each armature winding), a relatively continuous
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wound stator DC motors

shunt DC motors

series DC motors

compound DC motors

brushless (BLDC) motors

torque results! Real PMDC motors use this

technique.

Wound stator DC motors

13 Wound stator DC motors operate very

similarly to PMDC motors, but generate their

background field with two stationary coils in

place of the permanent magnets, above. These

electromagnets require a current of their own,

which is usually provided through the same

circuitry that supplies the armature current (DC

motors typically have only two terminals).

14 Three common configurations of the

electrical connection of these are shown in

Fig. dcm.4. These define the following three DC

motor types.

shunt The shunt DC motor has its stator and

rotor windings connected in parallel.

These are the most common wound stator

DC motors and their speeds can be easily

controlled without feedback, but they

have very low starting torque.

series The series DC motor has stator and rotor

windings connected in series. These have

high starting torque—so high, in fact, that

it is not advisable to start these motors

without a load—but their speeds are not

as easily controlled without feedback.

compound The compound DC motor has

stator and rotor windings connected in

both series and parallel. These can exhibit

characteristics that mix advantages and

disadvantages of shunt and series DC

motors.

Brushless DC motors

15 There is yet another type of DC motor:

brushless (BLDC). Brushless DC motors work

on principles more similar to AC motors, but
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VS

stator coils M
ar
m
at
u
re

(a) shunt motor

VS

M

(b) series motor

VS

M

(c) compound motor

Figure dcm.4: connections for shunt, series, and compound DC motors.

5. Stefán Baldursson. ?BLDC Motor Modelling and Control – A
Matlab®/Simulink®Implementation? mathesis. Chalmers University,
2005.

1 2

R L

B J

Figure dcm.5: a better brushed DC motor model.

require complex solid-state switching that must

be precisely timed. As their name implies, these

motors do not require brushes. A brushless DC

motor mathematical model is not presented

here, but a nice introduction is given by

Baldursson.5

16 The brushed DC motor is still widely used,

despite its limitations, which include relatively

frequent maintenance to replace brushes that

wear out or clean/replace commutators. Other

disadvantages of brushed DC motors include

their relatively large size, relatively large rotor

inertia, heat generated by the windings of the

stator and/or rotor, and arcing that creates

electronic interference for nearby electronics.

Reasons they are still widely used include that

they are inexpensive (about half the cost of

brushless DC motors), don’t require (but often

still use) complex driving circuits, are easy to

model, and are easily driven at different speeds;

for these reasons, an additional reason emerges:

they’re relatively easy to design with!

A PMDC motor model

17 We have already explored a model for a

PMDC motor in Example emech.trans-1, which

yielded elemental equations

T2 = −TFi1 and (3)

Ω2 = v1/TF, (4)
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motor torque constant

back-emf voltage constant

6. One more note. When given a torque constant, the unit “oz” means
“ounce-force,” which is the mass in regular (mass) ounces multiplied by
the gravitational acceleration g.

where TF is the motor constant. That model

assumed neither armature resistance nor

inductance were present—that is, it was an ideal

transformer model. A linear graph of a much

better model for a DC motor is shown in

Figure dcm.5. This model includes a resistor R

and inductor L in series with an ideal

transducer. On the mechanical side, the rotor

inertia J and internal bearing damping B are

included. The tail ends of R and 2 should be

connected to external electrical and mechanical

subgraphs, respectively.

Motor constants

18 The motor torque constant Kt and back-emf

voltage constant Kv are related to the

transformer ratio TF derived above to

characterize a brushed DC motor’s response. If

expressed in a set of consistent units—say, SI

units—Kt and Kv have the same numerical

value and are equivalent to TF. Precisely, with

consistent units, TF = Kv = Kt.

19 However, manufacturers usually use weird

units like oz–in/A and V/krpm. If they are

given in anything but SI units, we recommend

converting to SI for analysis.

20 Once in SI, we will have something like (for

x ∈ R):

Kt = x N–m/A and

Kv = x V/(rad/s).

21 So if we are given either Kt or Kv, the

unknown constant can be found (in SI units) by

converting the known constant to SI.6

Animations

22 There are some great animations of DC

motor operating principles and construction.

I’ve included the url of my favorite, along with
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some bonus animations for other important

types of motors we don’t have time to discuss,

here.

• Brushed DC motors:

youtu.be/LAtPHANEfQo
• Brushless DC motors:

youtu.be/bCEiOnuODac
• AC (asynchronous) induction motors:

youtu.be/AQqyGNOP_3o
• AC synchronous motors:

youtu.be/Vk2jDXxZIhs
• Stepper motors: youtu.be/eyqwLiowZiU

https://youtu.be/LAtPHANEfQo
https://youtu.be/bCEiOnuODac
https://youtu.be/AQqyGNOP_3o
https://youtu.be/Vk2jDXxZIhs
https://youtu.be/eyqwLiowZiU
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Table real.1: datasheet specifications for the Electrocraft 23SMDC-LCSS servomotor from Servo Systems. This is the motor used in the lab.

parameter specification SI conversion

g
en
er
al

continuous stall torque 55 oz-in 0.388 N-m
peak torque Tmax 400 oz-in 2.82 N-m
max terminal voltage 60 Vdc 60 Vdc

max operating speed Ωmax 6000 rpm 628 rad/s

m
ec
h
an
ic
al

rotor inertia Jm 0.008 oz-in/s2 56.5 · 10−6 N-m/s2

damping constant Bm 0.25 oz-in/krpm 16.9 · 10−6 N-m/(rad/s)
thermal resistance 4 C/W 4 K/W
max armature temp 155 C 428 K
max friction torque 3 oz-in 0.0212 N-m
max radial load7 10 lb 44.5 N
weight (motor only) 3.5 lb 15.6 N

el
ec
tr
ic
al

torque constant Kt 13.7 oz-in/A 0.097 N-m/A
voltage constant Kv 10.2 V/krpm 0.097 V/(rad/s)
terminal resistance 1.6 Ω 1.6 Ω

electrical time constant 2.6ms 2.6 · 10−3 s
mechanical time constant 8.9ms 8.9 · 10−3 s
max continuous current 4 A 4 A
armature inductance 4.1mH 4.1 · 10−3 H
max peak current 34 A 34 A

Figure real.1: electromechanical systems from the lab.

7. Load applied at one inch from bearing.

emech.real Modeling a real electromechanical system

1 We now model the electromechanical

systems from the laboratory, shown in

Figure real.1. The system includes a brushed

DC motor (Electrocraft 23SMDC-LCSS

servomotor from Servo Systems), two shafts, a

shaft coupler, two bearings, and a flywheel. The

motor’s datasheet specifications are given in

Table real.1. The mechanical subsystem’s inertia

is dominated by the stainless steel flywheel with

Jf = 0.324 · 10−3 kg-m2. The bearing damping

Bb is the most difficult parameter to determine.

Let’s begin with the assumption that the

combined bearing damping is Bb = 20 · 10−6

N-m/(rad/s).

Linear graph model

2 A linear graph model is in order. An ideal

http://servosystems.com/electrocraft_dcbrush_rdm103.html
http://servosystems.com/electrocraft_dcbrush_rdm103.html
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1 2

R L

VS B J

Figure real.2: a linear graph model of the electromechanical systems of
Figure real.1.

8. Often we can model our motor-driving source as ideal within an
operating range. See Lecture emech.drive for more details.

9. This is the sum of the inertia of the flywheel Jf = 0.324 · 10−3 kg-
m2 and the rotor Jm = 0.0565 · 10−3 kg-m2. It might be worthwhile
combining this with the inertia from the shaft and coupler to obtain a
more accurate value, but the difference is likely negligible.

voltage source drives the motor8—modeled as

an ideal transducer with armature resistance R

and inductance L, given in Table real.1. The

ideal transducer’s rotational mechanical side (2)

is connected to a moment of inertia

J = Jm + Jf = 0.381 · 10−3 kg-m2, dominated by

the flywheel,9 and damping B, which is the

parallel combination of the internal motor

damping of Table real.1 and the bearing

damping Bb, to yield B = 26.9 · 10−6 N-m/s2.

We choose to ignore the flexibility of the

coupler. Problem emech. considers the same

system but does not ignore the coupler’s

flexibility. In general, shaft couplers have

significant flexibility and, depending on the

application, this may require consideration in

the dynamic model.

State-space model

3 The normal tree can be constructed by the

procedure from Lecture emech.transmod. The

voltage source VS is first included, followed by

J. Then exactly one edge of the ideal transducer

must be selected, minimizing the number of

T-types in the tree. We don’t really have a

choice, in this case, because selecting edge 2

would create a loop, so we must select edge 1.

Next, R is included. No more elements can be

included without creating a loop, so we are

finished.

4 We are now prepared to determine

variables. The state variables are across

variables of A-type tree branches and through

variables of T-type links—so ΩJ and iL, and the

system is second-order (n = 2). Clearly, the

system’s input is the voltage source VS. We are

interested in all the variables for the analysis in

Lecture emech.curves, so we choose them all for

our outputs. In summary, then, the state, input,
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1 2

R L

VS B J

Figure real.3: the linear graph model for drawing contours.

and output vectors are:

x =

[
ΩJ

iL

]
, u =

[
Vs

]
, and

y =
[
ΩJ TJ vL iL ΩB TB vR iR v1 i1 Ω2 T2 Vs Is

]>
.

5 Let’s write some equations! Elemental are

up first.

J

L

B

R

1

2

Now, continuity and compatibility equations

are developed by summing through-variables

into contours. The three required contours—one

for each of R, 1, and J—can be drawn on

Figure real.3. The three compatibility

equations—one for each of L, 2, and B—are

found by “temporarily including” those links in

the tree and summing across-variables around

the loops created. Let’s write the equations.

branch continuity equation

R

1

J

link compatibility equation

L

2

B
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10. Here is the rnd file for use with StateMint
(statemint.stmartin.edu) to derive the state-space model from
the elemental, continuity, and compatibility equations:

ricopic.one/dynamic_systems/source/motor_model.rnd

Note that the “constraint equations” are the continuity and compatibility
equations solved for primary variables.

6 All that remains to form the state-space

model is to eliminate variables that are neither

states nor inputs from the elemental, continuity,

and compatibility equations. Eliminating

secondary variables by substituting the

continuity and compatibility equations into the

elemental equations, the following results.

J

L

B

R

1

2

The last four equations allow us to eliminate the

remaining undesirable variables to obtain the

state model in the standard form10

dx

dt
= Ax+ Bu (1a)

y = Cx+Du (1b)

where

A =

[
−B/J TF/J

−TF/L −R/L

]
, (1c)

B =

[
0

1/L

]
, (1d)

C =

[
1 −B −TF 0 1 B 0 0 TF 0 1 0 0 0

0 TF −R 1 0 0 R 1 0 1 0 −TF 0 1

]>
, and

(1e)

D =
[
0 0 1 0 0 0 0 0 0 0 0 0 1 0

]>
.

(1f)

http://statemint.stmartin.edu/
http://ricopic.one/dynamic_systems/source/motor_model.rnd
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1 2

R L

VS Bm Jm Ts

Figure curves.1: a linear graph model of the motor from Lecture emech.real
in a test-configuration with a brake modeled by Ts.

motor curve

brake

magnetic particle brake

11. See, for instance here or here.

12. Here is the rnd file for use with statemint.stmartin.edu to derive
the state-space model from the elemental, continuity, and compatibility
equations.

emech.curves DC motor performance in steady-state

1 Brushed DC motor performance has several

aspects, but most of them revolve around the

so-called motor curve: for a given motor

voltage, its steady-state speed versus a constant

torque applied to the load. The test setup for

drawing such a curve requires a calibrated,

controllable torque source applied to the motor

shaft. A brake is typically used. A

voltage-controlled magnetic particle brake is

ideal.11

2 We will gain a deep understanding of DC

motor performance characteristics only by

tarrying with this situation. Therefore, we begin

by modeling it in Lecture emech.curves and

analyzing its performance in

Lecture emech.curves.

Modeling the test system

3 Including a torque source Ts on the load

changes the model only slightly, as shown in

Figure curves.1. Note that the mechanical

subsystem is reduced to only the motor, since

during such a test the load and bearings would

be detrimental (it is a test for the motor, after

all). Invariant are the normal tree, state

variables, and most of the derivation of the state

equations.

4 The input vector becomes

u =

[
Vs

Ts

]
. (1)

The continuity equation for the inertia becomes

TJm = −T2 − TBm − Ts (the torque specifically

opposes motion, to which we assign the positive

direction) and the state model’s matrices B and

D change, such that12

https://en.wikipedia.org/wiki/Electromagnetic_brake#Particle_brake
http://www.warnerelectric.com/products/torque-control-products/magnetic-particle/magnetic-particle-clutches-and-brakes
http://ricopic.one/dynamic_systems/source/motor_model_characteristics.rnd
http://statemint.stmartin.edu
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13. A stationary inputu is required for a stationary state if the input has
any effect on the state; that is, if B is nonzero.

A =

[
−Bm/Jm TF/Jm

−TF/L −R/L

]
, (2a)

B =

[
0 −1/Jm

1/L 0

]
(2b)

C =

[
1 −Bm −TF 0 1 Bm 0 0 TF 0 1 0 0 0

0 TF −R 1 0 0 R 1 0 1 0 −TF 0 1

]>
,

(2c)

D =

[
0 0 1 0 0 0 0 0 0 0 0 0 1 0

0 −1 0 0 0 0 0 0 0 0 0 0 0 0

]>
.

(2d)

Steady-state performance analysis

Let’s begin by defining the system parameters.

Kt_spec = 13.7; % oz-in/A ... torque constant from spec
Kv_spec = 10.2; % V/krpm ... voltage constant from spec
Tmax_spec = 2.82; % N-m ... max (stall) torque from spec
Omax_spec = 628; % rad/s ... max speed (no load) from spec
N_oz = 0.278013851; % N/oz
m_in = 0.0254; % m/in
Kt_si = Kt_spec*N_oz*m_in; % N-m/A
rads_krpm = 1e3*2*pi/60; % (rad/s)/krpm
Kv_si = Kv_spec/rads_krpm; % V/(rad/s)
Jm = 56.5e-6; % kg-m^2 ... inertia of rotor
Bm = 16.9e-6; % N-m/s^2 ... motor damping coef
R = 1.6; % Ohm ... armature resistance
L = 4.1e-3; % H ... armature inductance
TF = Kv_si; % N-m/A ... trans ratio/motor constant

Let’s investigate what happens in steady-state x.

The system is stationary when ẋ = 0 and u = u

(stationary),13 so

0 = Ax+ Bu ⇒

x = −A−1Bu. (3)

Let’s compute our steady-state solution for a

constant voltage input Vs(t) = V and braking

torque Ts(t) = T . We use a symbolic approach to

gain insight.

syms B_ J_ TF_ L_ R_ Vs_ Ts_ % using underscore for syms
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a_ = [-B_/J_,TF_/J_;-TF_/L_,-R_/L_];
b_ = [0,-1/J_;1/L_,0];
u_ = [Vs_;Ts_];

M1_ = -inv(a_)*b_ % matrix -A^-1 B
den_ = TF_^2 + B_*R_; % common den
M2_ = M1_.*den_; % factor
xs_ = M1_*u_ % full ss sol
xs_2_ = M2_*u_; % naughty factorless ss sol

M1_ =

[ TF_/(TF_^2 + B_*R_), -R_/(TF_^2 + B_*R_)]
[ B_/(TF_^2 + B_*R_), TF_/(TF_^2 + B_*R_)]

xs_ =

(TF_*Vs_)/(TF_^2 + B_*R_) - (R_*Ts_)/(TF_^2 + B_*R_)
(B_*Vs_)/(TF_^2 + B_*R_) + (TF_*Ts_)/(TF_^2 + B_*R_)

eig(a_)

ans =

-((B_^2*L_^2 - 2*B_*J_*L_*R_ + J_^2*R_^2 -
4*J_*L_*TF_^2)^(1/2) + B_*L_ + J_*R_)/(2*J_*L_)↪→

-(B_*L_ - (B_^2*L_^2 - 2*B_*J_*L_*R_ + J_^2*R_^2 -
4*J_*L_*TF_^2)^(1/2) + J_*R_)/(2*J_*L_)↪→

A little more human-readably, using the fact

that Ω2 = ΩJ and i1 = iL, and using bars to

denote steady-state values,

Ω2 =
1

TF2 + BmR
(TFVs − RTs) (4)

i1 =
1

TF2 + BmR
(BVs + TFTs) (5)

Let’s focus on the first of these, the relationship

between Ω2 and Ts. For given Vs, there is a

linearly decreasing relationship betweenΩ2 and

Ts. This is precisely the motor curve. But it’s one

of a few curves plotted versus Ts. Other

common curves are current i1, mechanical

braking power Pbrk = TsΩs, and efficiency ε.

The efficiency is defined as the ratio of the
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braking power to the voltage source power

Psrc = IsVs; i.e.

ε = Pbrk/Psrc. (6)

We already have expressions for Ω2 and i1 in

terms of Ts, but we must still derive them for

Pbrk and ε. For Pbrk, we must express Ωs in

terms of known quantities. From the linear

graph, it is obvious that Ωs = Ω2. Therefore,

Pbrk = TsΩ2. (7)

Now for ε. We have the unknown source

current Is. However, from the linear graph, it is

obvious that Is = i1. Therefore,

ε =
TsΩ2

i1Vs
. (8)

Let’s compute these quantities for our

parameters.

Vs = 60; % V ... max used, which is common
Tmax = TF/R*Vs; % N-m ... occurs when Omega_J = 0
Ts_a = linspace(0,Tmax,180); % N-m ... braking torques
O2_a = 1/(TF^2 + Bm*R)*(TF*Vs-R*Ts_a); % rad/s ... ss speed
i1_a = 1/(TF^2 + Bm*R)*(Bm*Vs+TF*Ts_a);
Pbrk_a = Ts_a.*O2_a; % W ... braking power
eff_a = Pbrk_a./(i1_a*Vs);

Now let’s plot them! The output is shown in

Figure curves.2.

There are some key quantities that can be read

from the graph and found analytically. The

most important are the maximum speed Ω2max,

which occurs at zero torque, and maximum

torque Tsmax, which occurs at zero speed.

Another is that the maximummechanical power

(output) occurs at Tsmax/2. Finally, the

maximum effieciency occurs at relatively low

torque and high speed, which is typical for the
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Figure curves.2: motor curves derived from the model.

following reason: the two energy-dissipative

elements, the resistor and the damper, trade-off

as being the dominant effect at the peak, and the

resistor tends to dominate. That is, at high

speed/voltage and low torque/current, the

damper dominates dissipation; at low

speed/voltage and high torque/current, the

resistor dominates dissipation. It is very

common for a motor’s resistance to dominate

the damping, as in our case.

Let’s examine the maximum speed and torque.

Omax = O2_a(1) % rad/s ... occurs when T_s = 0
Tmax % N-m ... already computed and occurs when Omega_2 = 0

Omax =

614.2479

Tmax =

3.6526
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Comparing these to the values given in the spec

sheet, we see we’re pretty good, but there’s a bit

of a discrepency in the max torque.

Omax_spec
Tmax_spec
disp(sprintf('percent error for speed: %0.3g',...

(Omax-Omax_spec)/Omax_spec*100))
disp(sprintf('percent error for torque: %0.3g',...

(Tmax-Tmax_spec)/Tmax_spec*100))

Omax_spec =

628

Tmax_spec =

2.8200

percent error for speed: -2.19
percent error for torque: 29.5

We should investigate further, but what we will

find is that these values are fairly sensitive to TF,

B, and R. In our case, it is likely that the given

value for R is a bit low. It is given as 1.6 Ω, but it

is probably closer to 2 Ω. However, the

datasheet for this motor was not clear about

whether the maximum speed and torque values

were derived from a full motor curve fit or if

they were the only points measured. The former

is best for estimating dynamic model

parameters like R and B, but the latter is

occasionally sufficient.
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emech.dcmtrans Transient DC motor performance

Let’s begin by defining the system parameters.

Kt_spec = 13.7; % oz-in/A ... torque constant from spec
Kv_spec = 10.2; % V/krpm ... voltage constant from spec
Tmax_spec = 2.82; % N-m ... max (stall) torque from spec
Omax_spec = 628; % rad/s ... max speed (no load) from spec
N_oz = 0.278013851; % N/oz
m_in = 0.0254; % m/in
Kt_si = Kt_spec*N_oz*m_in; % N-m/A
rads_krpm = 1e3*2*pi/60; % (rad/s)/krpm
Kv_si = Kv_spec/rads_krpm; % V/(rad/s)
d = 2.5*m_in; % m ... flywheel diameter
thick = 1*m_in; % m ... flywheel thickness
vol = pi*(d/2)^2*thick; % flywheel volume
rho = 8000; % kg/m^3 ... flywheel density (304 stainless)
m = rho*vol; % kg ... flywheel mass
Jf = 1/2*m*(d/2)^2; % kg-m^2 ... inertia of flywheel
Jr = 56.5e-6; % kg-m^2 ... inertia of rotor
J = Jf+Jr; % kg-m^2 ... total inertia
Bm = 16.9e-6; % N-m/s^2 ... motor damping coef
Bd = 20e-6; % N-m/s^2 ... bearing damping coef
B = Bm + Bd; % N-m/s^2 ... total damping coef
R = 1.6; % Ohm ... armature resistance
L = 4.1e-3; % H ... armature inductance
TF = Kv_si; % N-m/A ... trans ratio/motor constant

The state-space model was derived in

Lecture emech.real. First, we construct the A, B,

C, and Dmatrices (a, b, c, and d). Then we

define a MATLAB LTI system model using the

ss command.

a = [-B/J,TF/J;-TF/L,-R/L];
b = [0;1/L];
c = [1,0;-B,TF;-TF,-R;0,1;1,0;B,0;...

0,R;0,1;TF,0;0,1;1,0;0,-TF;0,0;0,1];
d = [0; 0; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 0];
sys = ss(a,b,c,d);

Simulating the step response

The step input is widely used to characterize the

transient response of a system. MATLAB’s step
function conveniently simulates the step

response of an LTI system model.

[ys_a,t_a] = step(sys);
disp([t_a(1:6),ys_a(1:6,1:4)]) % print a little

https://www.mathworks.com/discovery/state-space.html
https://www.mathworks.com/help/control/ref/ss.html
https://www.mathworks.com/help/control/ref/step.html
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0 0 0 1.0000 0
0.0002 0.0018 0.0056 0.9082 0.0573
0.0005 0.0071 0.0106 0.8245 0.1093
0.0007 0.0155 0.0152 0.7482 0.1565
0.0010 0.0267 0.0194 0.6786 0.1993
0.0012 0.0405 0.0232 0.6151 0.2381

The vector t_a contains values of time and array

ys_a contains a vector of time-series values for

each output. If one would like the output for a

step input kus(t) (scaled unit step us(t)), by the

principle of superposition for linear systems,

one can scale the output by k. The outputs are

plotted in Figure dcmtrans.1.

It is also interesting to inspect the power flow

and energy associated with each element. Since

we have simulated both the across and the

through variable for each element, we can

compute the instantaneous power by simply

taking the product of them at each time step.

Moreover, we can cumulatively compute the

energy contribution of that power for each

element. For energy storage elements, this is the

change in energy stored or supplied; for energy

dissipative elements, this is the change in

energy dissipated; for source elements, this is

the energy supplied or absorbed. The results are

plotted in Figure dcmtrans.2.

P = NaN*ones(size(ys_a,1),size(ys_a,2)/2);
E = NaN*ones(size(P));
j = 0;
for i = 1:2:size(ys_a,2)

j = j+1;
P(:,j) = ys_a(:,i).*ys_a(:,i+1);
E(:,j) = cumtrapz(t_a,P(:,j));

end
disp('power:');
disp(P(1:6,1:4)) % print a little
disp('energy change:')
disp(E(1:6,1:4)) % print a little

power:
0 0 0 0

0.0000 0.0520 0.0000 0.0052
0.0001 0.0901 0.0000 0.0191
0.0002 0.1171 0.0000 0.0392
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Figure dcmtrans.1: unit step responses for across- (left axes) and
through-variables (right axes). Units are as follows: voltage is in V, current is in A,
angular velocity is in rad/s, and torque is in N-m. and.
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Figure dcmtrans.2: power flow (left axes) and energy
storage/dissipation/transformation (right axes) for a unit step response. The unit
of power is W and the unit of energy is J.
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0.0005 0.1352 0.0000 0.0635
0.0009 0.1465 0.0000 0.0907

energy change:
1.0e-03 *

0 0 0 0
0.0000 0.0064 0.0000 0.0006
0.0000 0.0239 0.0000 0.0036
0.0001 0.0494 0.0000 0.0108
0.0001 0.0805 0.0000 0.0235
0.0003 0.1152 0.0000 0.0425

Estimating parameters from the step response

Often, our model has a couple parameters we

don’t know well from the specifications, but

must attempt to measure. For the system under

consideration, perhaps the two parameters most

interesting to measure are the dominant time

constant and the transformer ratio TF (most

important). In this section, we explore how one

might estimate them from a measured step

response. Other parameters in the system could

be similarly estimated.

By way of the transfer function, the state-space

model can be transformed into input-output

differential equations.

syms B_ J_ TF_ L_ R_ Vs_ s % using underscore for syms

a_ = [-B_/J_,TF_/J_;-TF_/L_,-R_/L_];
b_ = [0;1/L_];

(s*eye(2)-a_)^-1*b_

ans =
TF_/(TF_^2 + B_*R_ + B_*L_*s + J_*R_*s +

J_*L_*s^2)↪→

(B_ + J_*s)/(TF_^2 + B_*R_ + B_*L_*s + J_*R_*s +
J_*L_*s^2)↪→

The differential equation for ΩJ is

d2ΩJ
dt2

+

(
R

L
+
B

J

)
dΩJ
dt

+
TF2 + BR

JL
ΩJ =

TF

JL
Vs.

(1)

The corresponding characteristic equation is

λ2 +

(
R

L
+
B

J

)
λ+

TF2 + BR

JL
= 0 (2)
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which has solution

λ1,2 = −
1

2

(
R

L
+
B

J

)
± 1

2

√(
R

L
+
B

J

)2
− 4

TF2 + BR

JL
.

(3)

For a step input Vs(t) = Vs,

ΩJ(0) = dΩJ(0)/dt = 0, and distinct roots λ1 and

λ2, the solution is

ΩJ(t) = Vs
TF

TF2 + BR

(
1−

1

λ2 − λ1

(
λ2e

λ1t − λ1e
λ2t
))

(4)

Let’s compute λ1 and λ2.

lambda12 = -1/2*(R/L+B/J) + ...
[1,-1]*1/2*sqrt((R/L+B/J)^2 - 4*(TF^2+B*R)/(J*L))

lambda12 =
-16.3467 -373.9941

Both values are real, so we expect not an

oscillation, but a decay to a final value.

However, that decay occurs with two different

time constants: τ1 = −1/λ1 and τ2 = −1/λ2.

tau12 = -1./lambda12
disp(['ratio: ',num2str(tau12(1)/tau12(2))])

tau12 =
0.0612 0.0027

ratio: 22.8788

So second decays much faster than the first.

That’s good news for our estimation project

because we can easily ignore the step response’s

first 5τ2 ≈ 0.0134 s and assume the rest is

decaying at τ1, which we call the dominant time

constant and which we would like to estimate.

Let’s generate some fake response data to get

the idea. We’ll layer on some Gaussian noise

with randn to be more realistic. The data is

plotted in Figure dcmtrans.3.
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Figure dcmtrans.3: unit step response “data.”

t_data = linspace(0,-6/lambda12(1),200);

O_fun = @(t) TF/(TF^2+B*R)*...
(1-1/(lambda12(2)-lambda12(1))*...
(lambda12(2)*exp(lambda12(1)*t)-...
lambda12(1)*exp(lambda12(2)*t)));

rng(2);
O_data = O_fun(t_data) + .5*randn(size(t_data));

Let’s trim the data to eliminate the time interval

corresponding to the first five of the “fast” time

constant τ2.

[t_5,i_5] = min(abs(t_data-(-5/lambda12(2)))); % delete
t_data_trunc = t_data((i_5+1):end);
O_data_trunc = O_data((i_5+1):end);

We need want to take the natural logarithm of

the data so we can perform a linear regression to

estimate the “experimental” slow time constant

τ̃1. We must first estimate the steady-state value

ΩJ∞ (which we’ll also need). We don’t want to

just take the last value in the array due to its

noisiness. The data goes for six slow time

constants, so averaging the data for the last time

constant is a good estimate.

[t_ss,i_ss] = ...
min(abs(t_data_trunc-(-5/lambda12(1)))); % start here

O_data_ss = O_data_trunc((i_ss+1):end);
mu_O_ss = mean(O_data_ss)
S_mu_O_ss = std(O_data_ss)/sqrt(length(O_data_ss))
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mu_O_ss =
10.1801

S_mu_O_ss =
0.0763

Let’s use this result to transform the data into its

linear form.

O_lin = log(-(O_data_trunc-mu_O_ss));
O_lin_complex = find(imag(O_lin)>0);
disp(['number of complex values: ',...

num2str(length(O_lin_complex))])

number of complex values: 33

Now we have encountered a problem. The

noisiness of the data makes some of our points

wander into negative-land. Logarithms of

negative numbers are complex. Naive

approaches like just taking real parts, excluding

complex values, or coercing complex values to

−∞ all have the issue of biasing the data.

There are a lot of approaches we could take. The

best approaches include nonlinear regression

and discrete filtering to smooth the data (e.g.

filtfilt).
We opt for an easier approach: we find the

index at which the time series first transgresses

the boundary and exclude the data beyond the

previous index.

i_bad = O_lin_complex(1);
t_lin_trunc = t_data_trunc(1:i_bad-1);
O_lin_trunc = O_lin(1:i_bad-1);

This is plotted in Figure dcmtrans.4 along with

the linear regression least-squares fit, computed

below.

pf = polyfit(t_lin_trunc,O_lin_trunc,1);
O_lin_fit = polyval(pf,t_lin_trunc);
tau_1_est = -1/pf(1)

tau_1_est =
0.0603
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Figure dcmtrans.4: transformed angular velocity “data” with a linear
fit.

So our estimate for τ1 is τ̃1 = 60.3ms. Recall that

our analytic expression for τ1 is known in terms

of other parameters. Similarly, the steady-state

value of ΩJ, which has already been estimated

to be ΩJ∞ = 10.18 (i.e. mu_O_ss). This occurs
when the time-derivatives of ΩJ are zero. From

the solution for ΩJ (or its differential equation),

for constant Vs(t) = Vs, this occurs when

ΩJ∞ =
TF

TF2 + BR
Vs. (5)

An analytic expression for TF can be found by

solving Equation 5, which yields

TF = Vs ±
1

2Ω̃J∞
√
V2s − 4BRΩ̃2J∞ (6)

We choose the solution closer to the a priori

(spec) value of 0.0974.

TF_est = (1 + (- 4*B*R*mu_O_ss^2 + 1^2)^(1/2))/(2*mu_O_ss)

TF_est =
0.0976

This estimate T̃F = 0.0976 is very close to the

value given in the specification sheet because

we constructed it to be so. Real measurements

would probably yield an estimate further from

the specification, which is why we would

estimate it.
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emech.drive Driving motors

1 The DC motor requires DC electrical power

provided by a circuit called the “driving”

circuit. For industrial motors at least, these

circuits must provide significant power, and for

this reason a separate (from the control circuit)

power supply is often used. There is a

quick-and-dirty way to drive a DC motor at

variable speed: since its angular velocity is

reliably proportional to its voltage, place a

potentiometer in series with the power supply

and motor. However, this has disadvantages

that include the power being limited and

dissipated at high potentiometer resistance (low

speed). For most applications, we will need

either a current (or power) amplifier or—more

likely—a microcontroller and an integrated

circuit to produce a pulse-width modulation

driving signal.

Pulse-width modulation

2 Pulse-width modulation (PWM) is a

technique used to deliver an effectively variable

signal to a load (in this case a motor) without a

truly variable power source. A pulse of full

source amplitude is repeated at a high

frequency (e.g. 20 kHz), delivering a signal that

is effectively averaged by the load dynamics

such that its effects on the load are nearly

continuous. The fraction of the period that the

signal is high (on) is called the duty cycle δ. The

following figure shows a PWM signal v(t) and

its average v(t) with a few parameter

definitions.

3 The mean of any periodic signal can be

computed with the integral

v(t) =
1

T

ˆ T
0

v(t),

which is easily evaluated for a PWM signal:
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v(t) =
Aw

T
= Aδ.

4 This result shows that if a PWM signal is

delivered to a load, such as a DC motor, that is

relatively unaffected by high-frequency signals,

the effective signal will be simply the product of

the source amplitude A and the duty cycle δ.

The duty cycle can have values from 0 to 1, so

the effective DC signal produced varies linearly

δ from 0 to A.

PWM with a microcontroller and integrated

circuit

5 A microcontroller such as the myRIO or

Arduino can easily produce a PWM signal;

however, this signal is typically low-power and

cannot drive even small DC motors. Therefore it

is common to include a special kind of

integrated circuit (IC) that uses the

microcontroller’s low-power PWM signal to

gate a high-power DC source signal for delivery

to the motor. We use a connectorized printed

circuit board (PCB, e.g. a PC motherboard)—the

Pololu motor driver carrier—that includes on it

a STMicroelectronics VNH5019 H-bridge motor

driver integrated circuit (IC, i.e. a microchip).

H-bridge circuits 6 We want to drive DC

motors at different effective voltages and

different directions. An H-bridge circuit allows

us to reverse the direction of the PWM signal

delivered to the motor. The following is a

diagram of the H-bridge circuit.

7 The switches S1-S4 are typically instantiated

with MOSFET transistors. As shown in the

figure below, during the high duration of the

PWM pulse, either S1 and S4 (a) or S2 and S3 (b)

are closed and the others are open.

(a) motor driven one direction
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(b) motor driven the opposite direction

8 Recall that a DC motor can be modeled as a

resistor and inductor in series with an

electro-mechanical transformer. The inductance

of the windings make it an “inductive” load,

which presents the following challenge. We

can’t rapidly change the current flow through

an inductor without a huge spike in voltage,

and the switches do just that, leading to switch

damage. Therefore, during the low or “off”

duration of the PWM signal, S1-S4 cannot all be

simply opened. There are actually a few options

for switch positions that allow the current to

continue to flow without inductive “kickback.”

9 What’s up with the diodes? Technically,

they could be used to deal with the kickback,

but they typically are not because they dissipate

power. However, they are used to do just that to

ease the transition between switch flips, which

are never quite simultaneous.

Motor curves

10 Motors are often characterized by three

steady-state curves:

1. a torque T versus angular velocity Ω

curve;

2. an angular velocity Ω versus voltage v

curve, which has slope 1/km; and

3. a torque T versus current i curve, which

has slope −km.

11 We will develop our own motor curves for

the DC motor in the lab by simultaneously

measuring v, i, and Ω. Unfortunately, we will

not be measuring T directly, and so we will be

unable to measure all these curves directly;

however, we will be able to infer them based on

the (reasonable, but not perfect) assumption

that the motor has no power losses. In the end,
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they should look something like the following

(using our usual sign convention).

12 In order to construct such curves, we will

measure v, i, and Ω. The following sections

describe the measurement process.
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motor
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Figure exe.1: schematic of an electromechanical system for Exercise emech..

emech.exe Exercises for Chapter emech

Exercise emech.triangle

Respond to the following questions and

imperatives with one or two sentences and, if

needed, equations and/or sketch.

a. Why do we include a resistor in

lumped-parameter motor models?

b. How are brushes used in brushed DC

motors?

c. With regard to standard motor curves,

why do we say the “braking power” is

equivalent to the power that could be

successfully transferred by the motor to

the mechanical system?

d. In terms of electrical and mechanical

processes, why does an efficiency versus

torque motor curve have a peak?

e. As a DC motor’s bearings wear down,

how will its efficiency curve be affected?

Exercise emech.square

Consider the system presented in the schematic

of Fig. exe.1. Let the DC motor have motor

constant Ka (units N-m/A) and let the motor be

driven by an ideal current source IS. Assume

the motor inertia has been lumped into J1 and

motor damping lumped into B1.

a. Draw a linear graph model.

b. Draw a normal tree.

c. Identify any dependent energy storage

elements. If the motor was driven by an

ideal voltage source instead, how would

this change?

Draw a linear graph model and normal tree.
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Figure exe.2: a linear graph model of the electromechanical system.
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Figure exe.3: a linear graph model with normal tree in green of the
electromechanical system of Exercise emech. with a gear reduction.

Exercise emech.rectangle

Consider the system presented in the schematic

of Fig. exe.1. From the linear graph model and

normal tree derived in Exercise emech., derive a

state-space model in standard form. Let the

outputs be θJ1 and θJ2 , the angular positions of

the flywheels.

Exercise emech.quadrilateral

Consider the linear graph model of a motor

coupled to a rotational mechanical system

shown in Fig. exe.2. This is similar to the model

from the Lec. emech.real, but includes the

flexibility of the shaft coupler. An ideal voltage

source drives the motor—modeled as an ideal

transducer with armature resistance R and

inductance L, given by the manufacturer in

Table real.1. The ideal transducer’s rotational

mechanical side (2) is connected to a moment of

inertia Jm modeling the rotor inertia and

damping Bb modeling the internal motor

damping, both values given in the motor

specifications. Take Bb = Bm and

Jf = 0.324 · 10−3 kg-m2. Assume the shaft

coupling has a torsional stiffness of k = 100

N-m/rad.

a. Derive a state-space model for the system

with outputs i1 and ΩJf .

b. Create a Matlab ssmodel for the system

and simulate its response from rest to an

input voltage VS = 10 V.

c. Plot the outputs through time until they

reach steady state.

Exercise emech.mrpotatohead

Consider the linear graph model (with normal

tree) of Fig. exe.3. This is a model of a motor

with constant Ka connected to a pair of meshing
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Table exe.1: parameter values for Exercise emech..

R 2 Ω

L 8mH

Ka 0.2 N-m/A

J2 0.1 · 10−3 kg-m2

B2 50 µN-m/(rad/s)

N 5

J4 1 · 10−3 kg-m2

B4 70 µN-m/(rad/s)

/25 p.

Figure exe.4: Exercise emech. part (a)

Figure exe.5: Exercise emech. part (b)

Figure exe.6: Exercise emech. part (c)

gears with transformer ratio N, the output over

input gear ratio. An ideal voltage source drives

the motor—modeled as an ideal transducer with

armature resistance R and inductance L. The

motor’s rotational mechanical side (2) is

connected to a moment of inertia J2 modeling

the rotor and drive gear combined inertia. The

damping element B2 models the internal motor

damping and the drive gear bearing damping.

The output side of the gear transducer (4) is

connected to a moment of inertia J4 modeling

the output gear and load combined inertia. The

damping element B4 models the internal motor

damping and the drive gear bearing damping.

Use the parameter values given in Table exe.1.

a. Derive a state-space model for the system

with outputs ΩJ2 and ΩJ4 .

b. Create a Matlab ssmodel for the system

and simulate its response from rest to an

input voltage VS = 20 V.

c. Plot the outputs through time until they

reach steady state.

Exercise emech.clunker

Draw a linear graph, a normal tree, identify

state variables, identify system order, and

denote any dependent energy storage elements

for each of the following schematics.

a. The electronic system of Fig. exe.4, voltage

and current sources, and transformer with

transformer ratio N.

b. The electromechanical system of Fig. exe.5

with motor model parameters shown,

coordinate arrow in green. Model the

propeller as a moment of inertia J2 and

damping B2.

c. The translational mechanical system of

Fig. exe.6, force source, coordinate arrow

in green.
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/20 p.

/25 p.

Exercise emech.curvy

Consider the DC motor curves of Fig. curves.2,

reproduced in Fig. exe.7.

a. At peak efficiency, what is the steady-state

motor speed?

b. At peak efficiency, what is the steady-state

motor torque?

c. You are to use this motor to drive a load at

a constant angular speed of 100 rad/s with

at least 1 N-m of torque. You wisely

choose to use a gear reduction between

the motor and load. What should the gear

ratio be to meet the above requirements

and optimize efficiency? Justify your

answer in terms of the motor curves of

Fig. exe.7.
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Figure exe.7: the motor curve Fig. curves.2 for Exercise emech..

Exercise emech.chair

Consider the opamp circuit of Fig. exe.8, which

will be used to drive a motor. The input can
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14. Do not ignore the voltage drop across Rm, though. Note that this
amounts to an assumption of steady-state operation at top speed. By
requiring a specific T2, we are also implicitly ignoring torque losses due
to motor bearing damping.

−
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R2
+
−VS

+

−

vo

Figure exe.8: opamp circuit for Exercise emech..

/10 p.
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supply a variable VS ∈ [0, 10] V, the motor has

constant Ka = 0.05 V/(rad/s) and coil resistance

Rm = 1 Ω, and the opamp has differential

supplies ±24 V. Assume the maximum torque

magnitude required from the motor at top

speed is |T2| = 0.1 N-m and ignore any voltage

drop in the motor due to the coil inductance.14

Select R1 and R2 to demonstrably meet the

following requirements:

a. drivable motor speeds of at least [0, 400]

rad/s,

b. no saturation of the opamp, and

c. a maximum power dissipation by R1 and

R2 less than 300mW.

Exercise emech.onomatopoeia

Consider the DC motor curves of Fig. curves.2,

reproduced in Fig. exe.7. If this motor is

running at 400 rad
s ,

1. How much torque is produced?

2. What is the output power?

3. What is the input power?

4. Why are the input and output power the

same or different?

Exercise emech.deglazification

Explain in your own words what lumped

parameter elements should be used when

modeling an electric motor and why.

Exercise emech.confuzzled

In the linear graph below a system is depicted

consisting of a motor with its related damping

and inertia driven by a voltage source and

connected to a set of gears driving a second

inertia. A rotary spring is attached between the

two inertias.
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Given this linear graph:

1. draw a normal tree,

2. determine the state variables and system

order, and

3. list any dependent energy storage

elements and explain what this implies.

VS

R L

1 2
B1 J1

3 4
B2 J2

k

Exercise emech.levitation

In the linear graph and normal tree below a

system is depicted consisting of a motor driven

by a voltage source VS with inertia J driving a

rotary damper and spring connected in series.

Let the motor constant be Ka, and outputs of the

system be the rotational velocity of the inertia,

ΩJ, and the change in rotational velocity across

the rotational damper, ΩB.

Given this linear graph and normal tree:

1. determine the state variables,

2. define the state, input, and output vectors,

3. write the elemental, continuity, and

compatibility equations, and

4. solve for the state and output equations.

VS

R L

1 2
J

K

B
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Time response



transient response

steady-state response

transient steady-state
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Figure lti.1: transient and steady-state responses. Note that the transition is not
precisely defined. (Figure adapted from Electronics: an introduction by Picone.)

free response

forced response

lti

Linear time-invariant system properties

1 In this chapter, we will extend our

understanding of linear, time-invariant (LTI)

system properties. We must keep in mind a few

important definitions.

2 The transient response of a system is its

response during the initial time-interval during

which the initial conditions dominate. The

steady-state response of a system is its

remaining response, which occurs after the

transient response. Fig. lti.1 illustrates these

definitions.

3 The free response of a system is the response

of the system to initial conditions—without

forcing (i.e. the specific solution of the io ODE

with the forcing function identically zero). This

is closely related to, but distinct from, the

transient response, which is the free response

plus an additional term. This additional term is

the forced response: the response of the system

to a forcing function—without initial conditions

(i.e. the specific solution of the io ODE with the

initial conditions identically zero).
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superposition

linear, time-invariant (LTI) systems

lti.super+ Superposition, derivative, and integral

properties

1 From the principle of superposition, linear,

time invariant (LTI) system responses to both

initial conditions and nonzero forcing can be

obtained by summing the free response yfr and

forced response yfo:

y(t) = yfr(t) + yfo(t).

Moreover, superposition says that any linear

combination of inputs yields a corresponding

linear combination of outputs. That is, we can

find the response of a system to each input,

separately, then linearly combine (scale and

sum) the results according to the original linear

combination. That is, for inputs u1 and u2 and

constants a1, a2 ∈ R, a forcing function

f(t) = a1u1(t) + a2u2(t)

would yield output

y(t) = a1y1(t) + a2y2(t)

where y1 and y2 are the outputs for inputs u1

and u2, respectively.

2 This powerful principle allows us to

construct solutions to complex forcing functions

by decomposing the problem. It also allows us

to make extensive use of existing solutions to

common inputs.

3 There are two more LTI system properties

worth noting here. Let a system have input u1

and corresponding output y1. If the system is

then given input u2(t) = u̇1(t), the

corresponding output is

y2(t) = ẏ1(t).
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derivative property

integral property

Similarly, if the same system is then given input

u3(t) =
´ t
0
u1(τ)dτ, the corresponding output is

y3(t) =

ˆ t
0

y1(τ)dτ.

These are sometimes called the derivative and

integral properties of LTI systems.
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equilibrium

1. If A is not invertible, the system has at least one eigenvalue equal to
zero, which yields an equilibrium subspace equal to an offset (byBu) of
the null space of the state space Rn.

equilibrium

phase portrait

trajectories

2. � N.S. Nise. Control Systems Engineering, 7th Edition. Wiley, 2015.
ISBN: 9781118800829.

asymptotic stability

lti.equistab Equilibrium and stability properties

1 For a system with LTI state-space model

ẋ = Ax+ Bu, y = Cx+Du, the model is in an

equilibrium state x if ẋ = 0. This implies

Ax+ Bu = 0. For constant input u, this implies

Ax = −Bu.

If A is invertible,1 as is often the case, there is a

unique solution for a single equilibrium state:

x = −A−1Bu.

Definition lti.1: Stability

If x is perturbed from an equilibrium state x,

the response x(t) can:

1. asymptotically return to x

2. diverge from x

3. remain perturbed or oscillate about xwith

a constant amplitude

2 A phase portrait is a parametric plot of state

variable trajectories, with time implicit. Phase

portraits are exceptionally useful for

understanding nonlinear systems, but they also

give us a nice way to understand stability, as in

Figure equistab.1.

3 These definitions of stability can be

interpreted in terms of the free response of a

system, as described, below.

Stability defined by the free response

4 Using the concept of the free response (no

inputs, just initial conditions), we define the

following types of stability for LTI systems2.

1. An LTI system is asymptotically stable if

the free response approaches an
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assymptotically stable

x2

x1

marginally stable

x2

x1

unstable

x2

x1

Figure equistab.1: a phase-portrait demonstration of (left) asymptotic stability, (center) marginal stability, and (right) instability for a second-order system.

instability

marginal stability

equilibrium state as time approaches

infinity.

2. An LTI system is unstable if the free

response grows without bound as time

approaches infinity.

3. An LTI system is marginally stable if the

free response neither decays nor grows

but remains constant or oscillates as time

approaches infinity.

5 These statements imply that the free

response alone governs stability. Recall that the

free response yfr of a system with characteristic

equation roots λi with multiplicitymi, for

constants Ci, is

yfr(t) =
∑
i

Cit
mi−1eλit.

Each term will either decay to zero, remain

constant, or increase without

bound—depending on the sign of the real part

of the corresponding root of the characteristic

equation Re (λi).
6 In other words, for an LTI system, the

following statements hold.

1. An LTI system is asymptotically stable if,

for all λi, Re (λi) < 0.
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BIBO stability

3. � Nise, Control Systems Engineering, 7th Edition.

BIBO stable

BIBO unstable

BIBO marginal stability

2. An LTI system is unstable if, for any λi,

Re (λi) > 0.
3. An LTI system is marginally stable if,

a) for all λi, Re (λi) 6 0 and
b) at least one Re (λi) = 0 and
c) no λi for which Re (λi) = 0 has

multiplicitymi > 1.

Stability defined by the forced response

7 An alternate formulation of the stability

definitions above is called the bounded-input

bounded-output (BIBO) definition of stability,

and states the following3.

1. A system is BIBO stable if every bounded

input yields a bounded output.

2. A system is BIBO unstable if any bounded

input yields an unbounded output.

8 In terms of BIBO stability, marginal stability,

then, means that a system has a bounded

response to some inputs and an unbounded

response to others. For instance, a second-order

undamped system response to a sinusoidal

input at the natural frequency is unbounded,

whereas every other input yields a bounded

output.

9 Although we focus on the definitions of

stability in terms of the free response, it is good

to understand BIBO stability, as well.
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Vs

k B

m

Figure vib.1: a vibration isolation table schematic with input velocity Vs.

Vs

k

B

m

Figure vib.2: linear graph of the isolation table.

4. For a discussion of this ignoring of gravity, see Lec. lti.ghost.

lti.vib Vibration isolation table analysis

1 In this example, we exercise many of the

methods for modeling and analysis explored

thus far.

2 Given the vibration isolation table model in

Figure vib.1—withm = 320 kg, k = 16000 N/m,

and B = 1200 N–m/s—derive:

1. a linear graph model,

2. a state-space model,

3. the equilibrium state x for the unit step

input,

4. a transfer function model,

5. an input-output differential equation

model with input Vs and output vm,

6. a solution for vm(t) for a unit step input

Vs(t) = 1m/s for t > 0,

7. the system’s stability.

Linear graph and state-space models

3 The linear graph and normal tree are shown

in Figure vib.2. Note that there is an equilibrium

for this system, so we are justified in ignoring

gravity and referencing any displacements to

the static equilibrium position.4 The state

variables are the velocity of the mass vm and the

force through the spring fk and the system order

is n = 2. The input, state, and output vectors are

u =
[
Vs

]
x =

[
vm

fk

]
y =

[
vm

]
.

The elemental equations are as follows.

m v̇m =
1

m
fm

k ḟk = kvk

B fB = BvB

The continuity and compatibility equations are

as follows.
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branch continuity equation

m fm = fk + fB

link compatibility equation

k vk = Vs − vm

B vB = Vs − vm
The state equation can be found by substituting

the continuity and compatibility equations into

the elemental equations, and eliminating fB, to

yield

ẋ =

[
−B/m 1/m

−k 0

]
x+

[
B/m

k

]
u (1a)

y =
[
1 0

]
x+

[
0
]
u. (1b)

Equilibrium

4 Let’s check to see if A is invertible by trying

to compute its inverse:

A−1 =

[
−B/m 1/m

−k 0

]−1
(2)

=
1

k/m

[
0 −1/m

k −B/m

]
(3)

So it has an inverse, after all! Let’s use this to

compute the equilibrium state:

x = −A−1Bu (4)

=
−m

k

[
0 −1/m

k −B/m

][
B/m

k

] [
1
]

(5)

=
−m

k

[
−k/m

0

]
(6)

=

[
1

0

]
(7)

So the system is in equilibrium with vm = 1m/s

and fk = 0 N. Since vm is also our output, we

expect 1m/s to be our steady-state output

value.

Transfer function model
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5. See (� Rowell and Wormley, System Dynamics: An Introduction,
Sec. A.4.3) for details on the matrix inverse.

5 The transfer function H(s) = Vm(s)/Vs(s)

will be used as a bridge to the input-output

differential equation. The transfer function can

be found from the usual formula, from

Lecture ss.ss2tf2io,

H(s) = C(sI−A)−1B+D. (8)

Let’s first compute (sI−A)−1:5

(sI−A)−1 =

([
s 0

0 s

]
−

[
−B/m 1/m

−k 0

])−1

(9a)

=

[
s+ B/m −1/m

k s

]−1
(9b)

=
1

(s+ B/m)(s) − (−1/m)(k)

[
s 1/m

−k s+ B/m

]
(9c)

=
1

s2 + (B/m)s+ k/m

[
s 1/m

−k s+ B/m

]
(9d)

Now we’re ready to compute the entirety of H:

H(s) =
1

s2 + (B/m)s+ k/m

[
1 0

] [ s 1/m

−k s+ B/m

][
B/m

k

]
+
[
0
]

(10a)

=
1

s2 + (B/m)s+ k/m

[
s 1/m

] [B/m
k

]
(10b)

=
(B/m)s+ k/m

s2 + (B/m)s+ k/m
. (10c)

Input-output differential equation

6 The input-output differential equation can

be found from the reverse of the procedure in

Lecture ss.ss2tf2io. Beginning from the transfer
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function,

Vm

Vs
=

(B/m)s+ k/m

s2 + (B/m)s+ k/m
⇒

(11a)(
s2 + (B/m)s+ k/m

)
Vm = ((B/m)s+ k/m)Vs ⇒

(11b)

v̈m + (B/m)v̇m + (k/m)vm = (B/m)V̇s + (k/m)Vs.

(11c)

Step response

7 The step response is found using

superposition and the derivative property of

LTI systems. The forcing function

f(t) = (B/m)V̇s + (k/m)Vs is composed of two

terms, one of which has a derivative of the input

Vs. Rather than attempting to solve the entire

problem at once, we choose to find the response

for a forcing function f(t) = 1 (for t > 0)—that is,

the unit step response—and use superposition

and the derivative property of LTI systems to

calculate the composite response.

Unit step response

8 The characteristic equation of Equation 11c

is

λ2 + (B/m)λ+ k/m = 0⇒ (12a)

= −
B

2m
±

√
B2 − 4mk

2m
⇒

(12b)

λ1,2 = −1.875± j6.818. (12c)

The roots are complex, so the system will have a

damped sinusoidal step response. Let

σ = −1.875 and ω = 6.818 such that

λ1,2 = σ± jω. The homogeneous solution is

vmh
(t) = C1e

λ1t + C2e
λ2t. (13)
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In this form, C1 and C2 are complex. It is

somewhat easier to deal with

vmh
(t) = C1e

σtejωt + C2e
σte−jωt (14a)

= eσt (C1 cosωt+ jC1 sinωt+ C2 cosωt− jC2 sinωt)
(14b)

= eσt ((C1 + C2) cosωt+ j(C1 − C2) sinωt) .
(14c)

Let C3 = C1 + C2 and C4 = j(C1 − C2) such that

vmh
(t) = eσt (C3 cosωt+ C4 sinωt) . (15)

This is a decaying (because σ < 0) sinusoid. A

nice aspect of this new form is that C3 and C4

are real.

9 Now, the particular solution can be found by

assuming a solution of the form vmp(t) = K for

t > 0. Substituting this into Equation 11c (with

forcing f(t) = 1, we attempt to find a solution for

K (that is, determine it):

(k/m)K = 1⇒ K = m/k. (16)

Therefore, vmp(t) = m/k is a solution, and

therefore the general solution is

vmstep(t) = vmh
(t) + vmp(t) (17a)

= eσt (C3 cosωt+ C4 sinωt) +m/k.
(17b)

This leaves the specific solution, to be found

applying the initial conditions (assumed to be

zero). Before we do so, however, we need the

time-derivative of the vmstep :

v̇mstep(t) = e
σt ((C3σ+ C4ω) cos(ωt) + (C4σ− C3ω) sin(ωt)) .

(18)

Now, applying the initial conditions,

vmstep(0) = 0⇒ (19a)

C3 = −m/k (19b)

v̇mstep(0) = 0⇒ 0 = C3σ+ C4ω⇒ (19c)

C4 =
σ

ω
· m
k
. (19d)
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10 It’s good form to re-write this as a single

sinusoid:

vmstep(t) = vmh
(t) + vmp(t) (20a)

= A1e
σt cos(ωt+ψ1) +m/k (20b)

where we have used Lecture math.trig to find

A1 =
√
C23 + C

2
4 (21a)

ψ1 = − arctan(C4/C3). (21b)

Superposition and the derivative property

11 Recall that the actual forcing function is a

linear combination of the input and its

time-derivative. Therefore, it is expedient to

re-write the time-derivative of the unit step

response:

v̇mstep(t) = A1e
σt (σ cos(ωt+ψ1) −ω sin(ωt+ψ1))

(22a)

= A1A2e
σt cos(ωt+ψ1 +ψ2) (22b)

where

A2 =
√
σ2 +ω2 (22c)

ψ2 = − arctan(−ω/σ). (22d)

Finally, applying superposition and the

derivative rule of LTI systems,

vm(t) = (B/m)v̇mstep(t) + (k/m)vmstep (23a)

=
B

m
A1A2e

σt cos(ωt+ψ1 +ψ2) +
k

m
A1e

σt cos(ωt+ψ1) + 1.

(23b)

This is the solution!

12 It’s worth plotting the response. Begin by

defining the system parameters.

m = 320; % kg ... mass
k = 16000; % N/m ... spring constant
B = 1200; % N-m/s ... damping coefficient

Now define the secondary parameters.
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Figure vib.3: vibration table step response vm(t).

lambda = -B/(2*m)+[-1,1]*sqrt(B^2-4*m*k)/(2*m);
sigma = real(lambda(1));
omega = imag(lambda(2));
K = m/k;
C3 = -m/k;
C4 = sigma/omega*m/k;
A1 = sqrt(C3^2+C4^2);
psi1 = -atan2(C4,C3);
A2 = sqrt(sigma^2+omega^2);
psi2 = -atan2(-omega,sigma);

Finally, the solution for vm(t) can be defined as

an anonymous function.

vm = @(t) ...
A1*A2*B/m*exp(sigma*t).*cos(omega*t+psi1+psi2)+...
A1*k/m*exp(sigma*t).*cos(omega*t+psi1)+...
1;

Now, plot over the first few seconds. The results

are shown in Figure vib.3.

t_a = linspace(0,3,200);
h = figure;
p = plot(t_a,vm(t_a),'linewidth',1.5);
xlabel('time (s)')
ylabel('velocity $v_m(t)$ (m/s)',...

'interpreter','latex');
grid on
hgsave(h,'figures/temp');

13 Note that the steady-state output value

agrees with that predicted by the equilibrium

analysis, above.



lti Linear time-invariant system properties ghost Vibration isolation table analysis p. 2

Stability

14 We have learned what we need in order to

analyze the system’s stability. The roots of the

characteristic equation were

λ1,2 = −1.875± j6.818, which clearly all have

negative real parts, and therefore the system is

asymptotically stable.
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lti.ghost When gravity ghosts you

1 You’re familiar with experience. Just when

you think you’re getting along so well with a

“vertically” oriented translational mechanical

system, gravity stops answering your texts. In

this lecture, I’ll try to explain this common

experience: it seems that sometimes the force of

gravity “matters,” and other times it does not. Is

gravity really Hamletic, an ambivalent vixen, or

is there some way to understand this

phenomenon?

2 Consider the following example contrived to

shed some light.

Example lti.ghost-1 re: state-space model of a harmonic

oscillator

Figure ghost.1: a mechanical harmonic oscillator with spring k unstretched
(left) and stretched (right) to its static equilibrium length.

3 Often when considering a spring k, we

focus on the velocity vk across it, i.e. the

time-derivative of the displacement xk. We

effectively differentiate-away the constant

unstretched length L from xk; we can think of

xk − L (1)

as the “stretch” of the spring. In this exercise,

we will attend closely to the details of this

stretching.

4 Consider the mechanical harmonic

oscillator shown in Fig. ghost.1. Derive a single

input-output ODE for the system in terms of

xk, the total displacement across the spring.

Let the constant L̃ be the stretched length of the

spring when the system is in static equilibrium.

Solve for L̃ in terms of the system parameters.

Show that when we change ODE dependent

variable from xk to

x̃k = xk − L̃, (2)

the displacement from equilibrium, gravity

ghosts us!
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Figure ghost.2: a free-body diagram of the mass.

5 For this example, there is a much shorter

way to deriving the system ODE than our

usual approach, and we will use it here: the

traditional free-body diagram application

of Newton’s laws, shown in Fig. ghost.2.

Applying Newton’s second law,

Fg + fk = mẍm = mẍk

where the forces are

Fg = mg and

fk = −k(xk − L). (when xk > 0, fk < 0)

Substituting in the forces,

mg− k(xk − L) = mẍk ⇒

mẍk + k xk = mg+ kL.

6 Equilibrium implies ẍk = 0 and xk = L̃,

therefore

k L̃ = mg+ kL ⇒

L̃ =
mg

k
+ L.

7 Changing variables à la Eq. 2 in the ODE

yields

m
d2
dt2 (x̃k + L̃) + k(x̃k + L̃− L) = mg ⇒

m ¨̃xk + k
(
x̃k +

(mg
k

+ L
)
− L
)
= mg ⇒

m ¨̃xk + kx̃k +mg = mg ⇒

m ¨̃xk + kx̃k = 0.

Alas, poor ghost!

8 We have seen now that the gravitational
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datum

equilibrium requirement

Figure ghost.3: to ghost or not to ghost, that is the question.

ghosting occurs when we change variables such

that the displacement is relative to an

equilibrium in the gravitational field. It is

simply a change of datum or reference position

of the displacement that cancels out the

gravitational term—ay, there’s the rub! We call

this the equilibrium requirement.

9 For this reason, those performing such

analyses, with a flourish of the hand, declare

vertical displacements relative to equilibrium

and poof—gravity disappears without explicit

justification, for the details make cowards of us

all.

10 But there are situations in which this would

be a fatal error: those for which there is

! For instance, consider if the

mass in our previous example was suspended

from a damper instead of a spring: in this case,

no equilibrium exists! Without going through

the details or at least recalling the equilibrium

requirement, it can be easy to fool oneself into

wrongly dismissing gravity.

11 Remember me,

Ghost-would-be,

For I am thy father’s spirit,

If gravity’d,

With thee flee,

Th’equilibrium requirement.
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lti.exe Exercises for Chapter lti

Exercise lti.oil

A certain sensor used to measure displacement

over time t is tested several times with input

displacement u1(t) and a certain function y1(t)

is estimated to properly characterize the

corresponding voltage output.

Assuming the sensor is linear and

time-invariant, what would we expect the

output sensor voltage y2(t) to be when the

following input is applied?

u2(t) = 3 u̇1(t) − 5u1(t) +

ˆ t
0

6u1(τ)dτ (1)

Exercise lti.water

A system with input u(t) and output y(t) has

the governing dynamical equation

2 ÿ+ 12 ẏ+ 50 y = −10u̇+ 4u. (2)

a. What is the equilibrium y(t) when

u(t) = 6?

b. Demonstrate the stability, marginal

stability, or instability of the system.
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Qualities of transient response

1 In this chapter, we explore the qualities of

transient response—the response of the system

in the interval during which initial conditions

dominate.

2 We focus on characterizing first- and

second-order linear systems; not because they’re

easiest (they are), but because nonlinear systems

can be linearized about an operating point and

because higher-order linear system responses

are just sums of first- and second-order

responses, making “everything look first- and

second-order.” Well, many things, at least.

3 In this chapter, we primarily consider

systems represented by single-input,

single-output (SISO) ordinary differential

equations (also called io ODEs)—with variable

y representing the output, dependent variable

time t, variable u representing the input, forcing

function f, constant coefficients ai, bj, order n,

andm 6 n for n ∈ N0—of the form

dny

dtn
+ an−1

dn−1y

dtn−1
+ · · ·+ a1

dy

dt
+ a0y = f, where

(1a)

f ≡ bm
dmu

dtm
+ bm−1

dm−1u

dtm−1
+ · · ·+ b1

du

dt
+ b0u.

(1b)

Note that the forcing function f is related to but

distinct from the input u. This terminology

proves rather important.
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characteristic response

singularity functions

superposition

differentiation

unit impulse

Dirac delta

1. Technically, δ is a distribution, not a function, butwe use the common,
confusing, comfortably couched terminology.

unit step

trans.char Characteristic transient responses

1 A system’s characteristic responses are

responses to specific forcing functions—called

the singularity functions. The reasons these are

“characteristic” are:

1. the singularity functions model commonly

interesting system inputs (e.g. a sudden

change in the input), and so they can be

said to characterize inputs, and

2. the ways in which the system responds to

these specific functions reveal aspects of

the system (e.g. how quickly it responds),

so these responses can be said to

characterize systems.

2 Now, one may object that Equation 1b shows

that a forcing function needn’t look anything

like an input due to its being composed of a sum

of scaled copies of the input and its derivatives.

Yes, but given two key properties of linear,

time-invariant (LTI) systems—superposition

and the differentiation property—, knowing a

system’s response y1 to a forcing function f1

allows us to construct its response to that input

(that is, y2 for input u2 = f1) as

y2 = bm
dmy1
dtm

+ bm−1
dm−1y1
dtm−1

+ · · ·+ b1
dy1
dt

+ b0y1.

I know.

3 There are three singularity functions, which

are now defined as piecewise functions of time t.

4 First, the unit impulse or Dirac delta

function1 δ is defined as zero everywhere except

at t = 0, when it is undefined, and has unity as

its integral over all time. When δ is scaled (e.g.

5δ), its integral scales by the same factor. This

strange little beast models a sudden “spike” in

the input.

5 Second, the unit step function us is defined

as zero for t 6 0 and unity for t > 0. It models a

http://ricopic.one/resources/mind_blown.gif
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unit ramp

sudden change in the input. Scaling it scales the

amount of change. Often, this is considered to

be the gold-standard for characterizing the

transient response of a system.

6 Third, the unit ramp function ur is defined

as zero for t 6 0 and t for t > 0—that is, it is

linearly increasing with unity slope. It models a

steadily increasing input and is probably the

least useful of the singularity functions. Scaling

it scales the rate of steady change.
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time constant

homogeneous solution

free response yfr

trans.firsto First-order systems in transient response

1 First order systems have input-output

differential equations of the form

τ
dy

dt
+ y = b1

du

dt
+ b0u (1)

with τ ∈ R called the time constant of the

system. Systems with a single energy storage

element—such as those with electrical or

thermal capacitance—can be modeled as

first-order.

2 The characteristic equation yields a single

root λ = −1/τ, so the homogeneous solution yh,

for constant κ ∈ R, is

yh(t) = κ e
−t/τ.

Free response

3 The free response yfr of a system is its

response to initial conditions and no forcing

(f(t) = 0). This is useful for two reasons:

1. perturbations of the system from

equilibrium result in free response and

2. from superposition, the free response can

be added to a forced response to find the

specific response: y(t) = yfr(t) + yfo(t).

This allows us to use tables of solutions

like Table firsto.1 to construct solutions for

systems with nonzero initial conditions

with forcing.

4 The free response is found by applying

initial conditions to the homogeneous solution.

With initial condition y(0), the free response is

yfr(t) = y(0) e
−t/τ, (2)

which begins at y(0) and decays exponentially

to zero.
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forced response yfo

zero initial conditions

Step response

5 In what follows, we develop forced response

yfo solutions, which are the specific solution

responses of systems to given inputs and zero

initial conditions: all initial conditions set to

zero.

6 If we consider the common situation that

b1 = 0 and u(t) = Kus(t) for some K ∈ R, the
solution to Equation 1 is

yfo(t) = Kb0(1− e
−t/τ).

The non-steady term is simply a constant

scaling of a decaying exponential.

7 A plot of the step response is shown in

Figure firsto.1. As with the free response, within

5τ the transient response is less than 1% of the

difference between y(0) and steady-state.

Impulse and ramp responses

8 The response to all three singularity inputs

are included in Table firsto.1. These can be

transient steady-state
y(0)

τ 2τ 3τ 4τ 5τ 6τ 7τ 8τ

0.2Kb0

0.4 Kb0

0.6 Kb0

0.8 Kb0

Kb0

time (s)

forcing Kb0us(t)

free response yfr(t)

forced response yfo(t)

yfr(t) + yfo(t)

Figure firsto.1: free and forced responses and their sum for a first order system with input u(t) = Kus(t), initial condition y(0), and b1 = 0.
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bitchin’

combined with the free response of Equation 2

using superposition. Results could be described

as bitchin’.

Table firsto.1: first-order system characteristic and total forced responses for singularity inputs. The relevant differential equation is of the standard form τẏ+y = f.

u(t) characteristic response total forced response yfo for t > 0
f(t) = u(t) f(t) = b1u̇+ b0u

δ(t)
1

τ
e−t/τ

b1
τ
δ(t) +

(
b0
τ

−
b1
τ2

)
e−t/τ

us(t) 1− e−t/τ b0 −

(
b0 −

b1
τ

)
e−t/τ

ur(t) t− τ(1− e−t/τ) b0t+ (b1 − b0τ)(1− e
−t/τ)

Example trans.firsto-1 re: RC-circuit response the easy way

Consider a parallel RC-circuit with input

current IS(t) = 2us(t) A, initial capacitor

voltage vC(0) = 3 V, resistance R = 1000 Ω,

and capacitance C = 1 mF. Proceeding with

the usual analysis would produce the io

differential equation

C
dvC
dt

+ vC/R = IS.

Use Table firsto.1 to find vC(t).

http://ricopic.one/resources/bitchin.gif
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natural frequency ωn

damping ratio ζ

explode

trans.secondo Second-order systems in transient

response

1 Second-order systems have input-output

differential equations of the form

d2y

dt2
+ 2ζωn

dy

dt
+ω2ny = f(t) (1)

where ωn is called the natural frequency, ζ is

called the (dimensionless) damping ratio, and f

is a forcing function that depends on the input u

as

f(t) = b2
d2u

dt2
+ b1

du

dt
+ b0u. (2)

Systems with two energy storage

elements—such as those with an inertial

element and a spring-like element—can be

modeled as second-order.

2 For distinct roots (λ1 6= λ2), the
homogeneous solution is, for some real

constants κ1 and κ2,

yh(t) = κ1e
λ1t + κ2e

λ2t (3)

where

λ1, λ2 = −ζωn ±ωn
√
ζ2 − 1. (4)

Free response

3 The free response yfr is found by applying

initial conditions to the homogeneous solution.

With initial conditions y(0) and ẏ(0) = 0, the free

response is

yfr(t) = y(0)
1

λ2 − λ1

(
λ2e

λ1t − λ1e
λ2t
)
. (5)

There are five possibilities for the location of the

roots λ1 and λ2, all determined by the value of ζ.

ζ ∈ (−∞, 0): unstable This case is very

undesirable because it means our system

is unstable and, given any nonzero input

or output, will explode to infinity.
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damped natural frequency ωd

ζ = 0: undamped An undamped system will

oscillate forever if perturbed from zero

output.

ζ ∈ (0, 1): underdamped Roughly speaking,

underdamped systems oscillate, but not

forever. Let’s consider the form of the

solution for initial conditions and no

forcing. The roots of the characteristic

equation are

λ1, λ2 = −ζωn±jωn
√
1− ζ2 = −ζωn±jωd

(6)

where the damped natural frequency ωd

is defined as

ωd ≡ ωn
√
1− ζ2. (7)

From Equation (5) for the free response,

using Euler’s formulas to write in terms of

trigonometric functions, and the initial

conditions y(0) and ẏ(0) = 0, we have

yfr(t) = y(0)
e−ζωnt√
1− ζ2

cos(ωdt+ψ) (8)

where the phase ψ is

ψ = − arctan ζ√
1− ζ2

. (9)

This is an oscillation that decays to the

value it oscillates about, y(t)|t→∞ = 0. So

any perturbation of an underdamped

system will result in a decaying oscillation

about equilibrium.

ζ = 1: critically damped In this case, the roots

of the characteristic equation are equal:

λ1 = λ2 = −ωn (10)

So we must modify Equation 3 with a

factor of t for the homogeneous solution.

The free response for initial conditions

y(0) and ẏ(0) = 0, we have

yfr(t) = y(0) (1+ωnt) e
−ωnt. (11)
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forced response yfo

This decays without oscillation, but just

barely.

ζ ∈ (1,∞): overdamped Here the roots of the

characteristic equation are distinct and

real. From Equation (5) with free response

to initial conditions y(0) and ẏ(0) = 0, we

have the sum of two decaying real

exponentials. This response will neither

overshoot nor oscillate—like the critically

damped case—but with even less gusto.

4 Figure secondo.1 displays the free response

results. Note that a small damping ratio results

in overshooting and oscillation about the

equilibrium value. In contrast, large damping

ratio results in neither overshoot nor oscillation.

However, both small and large damping ratios

yield responses that take longer durations to

approach equilibrium than damping ratios near

unity. In terms of system performances, there

are tradeoffs on either side of ζ = 1. Slightly less

than one yields faster responses that overshoot a

small amount. Slightly greater than one yields

slower responses less prone to oscillation.

Step response

5 Second-order systems are subjected to a

variety of forcing functions f. In this lecture, we

examine a common one: step forcing. In what

follows, we develop forced response yfo
solutions.

6 Unit step forcing of the form f(t) = us(t),

where us is the unit step function, models

abrupt changes to the input. The solution is

found by applying zero initial conditions

(y(0) = 0 and ẏ(0) = 0) to the general solution. If

the roots of the characteristic equation λ1 and λ2

are distinct, the forced response is

yfo(t) =
1

ω2n

(
1−

1

λ2 − λ1

(
λ2e

λ1t − λ1e
λ2t
))
(12)
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Figure secondo.1: free response yfr(t) of a second-order system with initial conditions y(0) and ẏ(0) = 0 for different values of ζ. Underdamped, critically
damped, and overdamped cases are displayed.

where

λ1, λ2 = −ζωn ±ωn
√
ζ2 − 1. (13)

Once again, there are five possibilities for the

location of the roots of the characteristic

equation λ1 and λ2, all determined by the value

of ζ. However, there are three stable cases:

underdamped, critically damped, and

overdamped.

ζ ∈ (0, 1) underdamped In this case, the roots

are distinct and complex:

λ1, λ2 = −ζωn ± jωd. (14)

From Equation 12, the forced step

response is

yfo(t) =
1

ω2n

(
1−

e−ζωnt√
1− ζ2

cos(ωdt+ψ)
)

(15)
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where the phase ψ is

ψ = − arctan ζ√
1− ζ2

. (16)

This response overshoots, oscillates about,

and decays to 1/ω2n.

ζ = 1 critically damped The roots are equal

and real:

λ1, λ2 = −ωn (17)

so the forced step of Equation 12 must be

modified; it reduces to

yfo(t) =
1

ω2n

(
1− e−ωnt(1+ωnt)

)
. (18)

This response neither oscillates nor

overshoots its steady-state of
1

ω2n
, but just

barely.

ζ ∈ (1,∞) overdamped In this case, the roots

are distinct and real, given by Equation 13.

The forced step given by Equation 12 is

the sum of two decaying real exponentials.

These responses neither overshoot nor

oscillate about their steady-state of 1/ω2n.

With increasing ζ, approach to

steady-state slows.

7 Figure secondo.2 displays the forced step

response results. These responses are inverted

versions of the free responses of

Lecture trans.secondo. Note that a small

damping ratio results in overshooting and

oscillation about the steady-state value. In

contrast, large damping ratio results in neither

overshoot nor oscillation. However, both small

and large damping ratios yield responses that

take longer durations to approach equilibrium

than damping ratios near unity. For this reason,

the damping ratio of a system should be close to

ζ = 1. There are tradeoffs on either side of one.

Slightly less yields faster responses that

overshoot a small amount. Slightly greater than

one yields slower responses less prone to

oscillation.
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Figure secondo.2: forced step response yfo(t) of a second-order system for different values of ζ. Underdamped, critically damped, and overdamped cases are
displayed.

Impulse and ramp responses

8 The response to all three singularity inputs

are included in Table secondo.1. These can be

combined with the free response of Equation 2

using superposition.

An example with superposition

9 The results of the above are powerful not so

much in themselves, but when they are wielded

with the principle of superposition, as the

following example shows.

Example trans.secondo-1 re: MRFM cantilever beam with initial

condition and forcingIn magnetic resonance force microscopy

(MRFM), the primary detector is a small

cantilever beam with a magnetic tip. Model the

beam as a spring-mass-damper system with

massm = 6 pg,a spring constant k = 15mN/m,
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Table secondo.1: responses of system
d2y

dt2
+ 2ζωn

dy

dt
+ω2ny = f to different singularity forcing. Note that τ1 = −1/λ1, τ2 = 1/λ2, and

ψ = − arctan(ζ/
√
1− ζ2).

damping f(t) characteristic response

0 6 ζ < 1 δ(t)
e−ζωnt

ωn
√
1− ζ2

sin(ωdt)

us(t)
1

ω2n

(
1−

e−ζωnt√
1− ζ2

cos(ωdt+ψ)
)

ur(t)
1

ω2n

(
t+

e−ζωnt

ωn

(
2ζ cosωdt+

2ζ2 − 1√
1− ζ2

sinωdt
)

−
2ζ

ωn

)

ζ = 1 δ(t) te−ωnt

us(t)
1

ω2n

(
1− e−ωnt −ωnte

−ωnt
)

ur(t)
1

ω2n

(
t+

2

ωn
e−ωnt + te−ωnt −

2

ωn

)
ζ > 1 δ(t)

1

2ωn
√
ζ2 − 1

(
e−t/τ1 − e−t/τ2

)
us(t)

1

ω2n

(
1−

ωn

2
√
ζ2 − 1

(
τ1e

−t/τ1 − τ2e
−t/τ2

))

ur(t)
1

ω2n

(
t−

2ζ

ωn
+

ωn

2
√
ζ2 − 1

(
τ21e

−t/τ1 − τ22e
−t/τ2

))

and damping coefficient B = 37.7 · 10−15

N·s/m. Magnetic input forces on the beam

u(t) are applied directly to the magnetic tip.

That is, a Newtonian force-analysis yields the

input-output ODE

mÿ+ Bẏ+ ky = u,

where ymodels the motion of the tip.

1. What is the natural frequency ωn?

2. What is the damping ratio ζ?

3. Find the free response for initial

conditions y(0) = 10 nm and ẏ(0) = 0.

4. Find the impulse (forced) response for

input u(t) = 3δ(t).

5. Find the total response for the initial

condition and forcing, from above, are

both applied.
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a. One pg = 10−12g = 10−15kg.
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Exercise trans.truman

Consider the i/o ODE with independent

variable t and dependent variable y:

7ẏ+ y = u̇− 5u

with input

u(t) = ur

the unit ramp function.

a. What is the time constant τ?

b. Find the characteristic response yr of the

system to the unit ramp input. Stongly

consider using Table firsto.1.

c. What is the forced response yfo to the

same input?

d. What is the free response of the yfr to

initial condition y(0) = 8?

e. What is the total response yt when both

the input u and intitial condition y(0) are

applied simultaneously?

Exercise trans.mogul

Consider the i/o ODE with independent

variable t and dependent variable y:

ÿ+ 5ẏ+ 25y = 2u̇+ 3u

with input

u(t) = us

the unit step function.

a. What are the natural frequency ωn and

damping ratio ζ?

b. Find the characteristic response of the

system to the unit step input. Stongly

consider using Table secondo.1.

c. What is the forced response to the unit

step input?



ssresp Qualities of transient response Exercises for Chapter trans p. 2

/30 p.

Exercise trans.canada

Given a differential equation,

d2y

dt2
+ 3

dy

dt
+ 25y = f(t),

with initial conditions dydt
∣∣
t=0

= 0 and y(0) = 8,

find

1. the undamped natural frequency ωn and

damping ratio ζ,

2. the free response yfr(t),

3. the forced response due to a Dirac delta

forcing function f(t) = δ(t),

4. the forced response due to a unit step

forcing function f(t) = us(t),

5. the forced response due to a unit ramp

forcing function f(t) = r(t),

6. the forced response to the forcing function,

f(t) = 7δ(t) − 4us(t) + 6r(t),

and

7. the total response from the initial

condition and the forcing function in part

6.



state-space model

1. Technically, since x and u are themselves functions, f and g are
functionals.

ssresp

State-space response

1 Recall that, for a state-space model, the state

x, input u, and output y vectors interact

through two equations:

dx

dt
= f(x,u, t) (1a)

y = g(x,u, t) (1b)

where f and g are vector-valued functions that

depend on the system. Together, they comprise

what is called a state-space model of a system.

2 In accordance with the definition of a

state-determined system, given an initial

condition x(t0) and input u, the state x is

determined for all t > t0. Determining the state

response requires the solution—analytic or

numerical—of the vector differential equation

Eq. 1a.

3 The second equation (1b) is algebraic. It

expresses how the output y can be constructed

from the state x and input u. This means we

must first solve the state equation (1a) for x,

then the output y is given by Eq. 1b.

4 Just because we know that, for a

state-determined system, there exists a solution

to Eq. 1a, doesn’t mean we know how to find it.

In general, f : Rn × Rr × R → Rn and

g : Rn × Rr × R → Rm can be nonlinear

functions.1 We don’t know how to solve most

nonlinear state equations analytically. An

additional complication can arise when, in

addition to states and inputs, system parameters
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are themselves time-varying (note the explicit

time t argument of f and g). Fortunately, often a

linear, time-invariant (LTI) model is sufficient.

5 Recall that an LTI state-space model is of the

form

dx

dt
= Ax+ Bu (2a)

y = Cx+Du, (2b)

where A, B, C, and D are constant matrices

containing system lumped-parameters such as

mass or inductance. See Chapter ss for details

on the derivation of such models.

6 In this chapter, we learn to solve Eq. 2a for

the state response and substitute the result into

Eq. 2b for the output response. First, we learn

an analytic solution technique. Afterward, we

learn simple software tools for numerical

solution techniques.
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state response

output response

matrix exponential

ssresp.response Solving for the state-space response

1 In this lecture, we solve the state equation

for the state response x(t) and substitute this

into the output equation for the output response

y(t).

State response

2 The state equation can be solved by a

synthesis of familiar techniques, as follows.

First, we rearrange:

dx

dt
−Ax = Bu. (1)

An integrating factor would be clutch, but what

should it be? It looks analogous to a scalar ODE

that would use the natural exponential exp(−at)
(for positive constant a), but we have a vector

ODE. We need a matrix-version of the

exponential. Recall that a series definition of the

scalar exponential function exp : C → C is

exp z =
∞∑
k=0

1

k!z
k.

We define the matrix exponential

exp : Cn × Cn → Cn × Cn (we use the same

symbol) to be, for n× n complex matrix Z,

expZ =

∞∑
k=0

1

k!Z
k. (2)

because why not? For the hell of it, let’s see if

the matrix exponential

exp(−At) (3)

works as an integrating factor, if for no other

reason than it was constructed to be a sort of

matrix-analog of exp(−at), which would work

for the scalar case. Premultiplying (1) on both

sides:
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state response solution

state transition matrix

free response

forced response

initial-value property

exp(−At)dx
dt

− exp(−At)Ax = exp(−At)Bu ⇒

(exercise: prove d exp(−At)/dt = − exp(−At)A)
d

dt
(exp(−At)x) = exp(−At)Bu.

Rearranging and integrating over the interval

(0, t),

d (exp(−At)x) = exp(−At)Budt ⇒ˆ t
0

d (exp(−Aτ)x(τ)) =
ˆ t
0

exp(−Aτ)Bu(τ)dτ ⇒

exp(−At)x− x(0) =

ˆ t
0

exp(−Aτ)Bu(τ)dτ.

(exp(0) = I)

This last expression can be solved for x, the state

response solution. Before we do this, however,

let’s define the matrix function called the state

transition matrix Φ to be the matrix-valued

function

Φ(t) = exp(At), (4)

Substituting Φ and solving,

x = Φ(t)x(0) +Φ(t)

ˆ t
0

Φ(−τ)Bu(τ)dτ (5a)

= Φ(t)x(0) +

ˆ t
0

Φ(t− τ)Bu(τ)dτ. (5b)

Note that the first term of each version of Eq. 5

is the free response (due to initial conditions)

and the second term is the forced response (due

to inputs).

State transition matrix

3 The state transition matrix Φ introduced in

Eq. 4 wound up being a key aspect of the

response, which is why we call it that. We used

two of its properties (in matrix exponential

form) during that derivation: the initial-value
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inverse property

bootstrapping property

2. As is common, we refer to it as the “state transition matrix at a certain
time,” but, technically, it’s the image of the state transitionmatrix (which
is actually a matrix-valued function) at a certain time. It is good to
occasionally acknowledge the violence we do to math.

diagonal property

deriving Φ

output response solution

Φ(0) = I (where I is the identity matrix)

and the inverse

Φ−1(t) = Φ(−t). (6)

4 There is a third property that might be called

the bootstrapping property: for time intervals

∆ti,

Φ(∆t1 + ∆t2 + · · · ) = Φ(∆t1)Φ(∆t2) · · · . (7)

This allows one to compute the state transition

matrix2 incrementally, from one previously

computed.

5 A final property we’ll consider is the

special-case of a diagonal A with diagonal

elements a11, a22, · · · , ann, which yields a

diagonal state transition matrix

Φ(t) =


ea11t 0

ea22t

. . .

0 eannt

 .

6 The last property turns out to be quite

convenient for deriving Φ for a given system, as

we will see in Lec. ssresp.diag. For now, we

must rely on the definition of Φ from Eq. 4 and

the series definition of the matrix exponential

from Eq. 2. This requires us to derive the first

several terms of the series solution and attempt

to divine the corresponding scalar exponential

series, a rather tedious task. Other than to

familiarize ourselves with the definition

through exercises, we prefer the derivation

method of Lec. ssresp.diag.

Output response

7 The output response y(t) requires little

additional solution: assuming we have solved

for the state response x(t), the output is given in
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the output equation Eq. 2b. Through direct

substitution, we find the output response

solution

y(t) = Cx(t) +Du(t) (8a)

= CΦ(t)x(0) + C

ˆ t
0

Φ(t− τ)Bu(τ)dτ+Du(t).

(8b)



ssresp State-space response eig Linear algebraic eigenproblem p. 1

eigenproblem

eigenvector

eigenvalue

characteristic equation

eigenvalues

ssresp.eig Linear algebraic eigenproblem

1 The linear algebraic eigenproblem can be

simply stated. For n× n real matrix A, n× 1
complex vectorm, and λ ∈ C,m is defined as an

eigenvector of A if and only if it is nonzero and

Am = λm (1)

for some λ, which is called the corresponding

eigenvalue. That is,m is an eigenvector of A if

its linear transformation by A is equivalent to its

scaling; i.e. an eigenvector of A is a vector of

which A changes the length, but not the

direction.

2 Since a matrix can have several eigenvectors

and corresponding eigenvalues, we typically

index them with a subscript; e.g.mi pairs with

λi.

Solving for eigenvalues

Eq. 1 can be rearranged:

(λI−A)m = 0. (2)

For a nontrivial solution form,

det(λI−A) = 0, (3)

which has as its left-hand-side a polynomial in λ

and is called the characteristic equation. We

define eigenvalues to be the roots of the

characteristic equation.

Box ssresp.1 eigenvalues and roots

of the characteristic equation

If A is taken to be the linear state-space

representation A, and the state-space

model is converted to an input-output

differential equation, the resulting ODE’s

“characteristic equation” would be

identical to this matrix characteristic

equation. Therefore, everything we
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3. Also of note is that λi andmi can be complex.

already understand about the roots of the

“characteristic equation” of an i/o ODE—

especially that they govern the transient

response and stability of a system—holds

for a system’s A-matrix eigenvalues.

3 Here we consider only the case of n distinct

eigenvalues. For eigenvalues of (algebraic)

multiplicity greater than one (i.e. repeated

roots), see the discussion of Appendix adv.eig.

Solving for eigenvectors

4 Each eigenvalue λi has a corresponding

eigenvectormi. Substituting each λi into Eq. 2,

one can solve for a corresponding eigenvector.

It’s important to note that an eigenvector is

unique within a scaling factor. That is, ifmi is

an eigenvector corresponding to λi, so is 3mi.3

Example ssresp.eig-1 re: eigenproblem for a 2× 2 matrix

Let

A =

[
2 −4

−1 −1

]
.

Find the eigenvalues and eigenvectors of A.



ssresp State-space response eigcomp Linear algebraic eigenproblem p. 2

5 Several computational software packages

can easily solve for eigenvalues and

eigenvectors. See Lec. ssresp.eigcomp for

instruction for doing so in Matlab and Python.
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ssresp.eigcomp Computing eigendecompositions

1 Computing eigendecompositions is rather

straightforward with a numerical or symbolic

computing tool such as those available in

Matlab or Python. The following sections show

how to use Matlab and Python to compute

numerical and symbolic eigendecompositions.

Matlab eigendecompositions

Matlab numerical eigendecompositions

Consider the following matrix A.

A = [ ...
-3, 5, 9; ...
0, 2, -10; ...
5, 0, -4 ...

];

What are its eigenvalues and eigenvectors?

Let’s use the MATLAB function eig. From the

documentation:

[V,D] = EIG(A) produces a
diagonal matrix D of
eigenvalues and a full matrix
V whose columns are the
corresponding eigenvectors so
that A*V = V*D.

Let’s try it.

[Ve,De] = eig(A);
disp(vpa(Ve,3))

[ -0.769, 0.122 - 0.537i, 0.122 + 0.537i]
[ 0.381, 0.767, 0.767]
[ 0.514, - 0.0953 - 0.316i, - 0.0953 + 0.316i]

The eigenvalues are on the diagonal of De.

disp(diag(De))
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-11.487 + 0i
3.2433 + 4.122i
3.2433 - 4.122i

The eigenevectors are normalized to have unit

length.

disp(norm(Ve(:,3))) % for instance

1

Matlab symbolic eigendecompositions

Sometimes symbolic parameters in a matrix

require symbolic eigendecomposition. In

Matlab, this requires the symbolic toolbox.
First, declare symbolic variables.

syms a b c

Now form a symbolic matrix.

A = [ ...
a,b; ...
0,c; ...

]

A =
[ a, b]
[ 0, c]

The function eig is overloaded and if A is
symbolic, the symbolic routine is called, which

has a syntax similar to the numerical version

above.

[Ve_sym,De_sym] = eig(A)

Ve_sym =
[ 1, -b/(a - c)]
[ 0, 1]
De_sym =
[ a, 0]
[ 0, c]

Again, the eigenvalues are on the diagonal of

the eigenvalue matrix.
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disp(diag(De_sym))

a
c

Python eigendecompositions

Python numerical eigendecompositions

In Python, we first need to load the appropriate

packages.

import numpy as np # for numerics
from numpy import linalg as la # for eig
from IPython.display import display, Markdown, Latex # prty
np.set_printoptions(precision=3) # for pretty

Consider the same numerical Amatrix from the

section above. Create it as a numpy.array object.

A = np.array(
[
[-3, 5, 9],
[0, 2, -10],
[5, 0, -4],

]
)

The numpy.linalgmodule (loaded as la) gives
us access to the eig function.

e_vals,e_vecs = la.eig(A)
print(f'e-vals: {e_vals}')
print(f'modal matrix:\n {e_vecs}')

e-vals: [-11.487+0.j 3.243+4.122j 3.243-4.122j]
modal matrix:
[[-0.769+0.j 0.122-0.537j 0.122+0.537j]
[ 0.381+0.j 0.767+0.j 0.767-0.j ]
[ 0.514+0.j -0.095-0.316j -0.095+0.316j]]

Note that the eigenvalues are returned as a

one-dimensional array, not along the diagonal

of a matrix as with Matlab.

print(f"the third eigenvalue is {e_vals[2]:.3e}")

the third eigenvalue is 3.243e+00-4.122e+00j
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Python symbolic eigendecompositions

We use the sympy package for symbolics.

import sympy as sp

Declare symbolic variables.

sp.var('a b c')

(a, b, c)

Define a symbolic matrix A.

A = sp.Matrix([
[a,b],
[0,c]

])
display(A)

[
a b

0 c

]
The sympy.Matrix class has methods eigenvals
and eigenvects. Let’s consider them in turn.

A.eigenvals()

{a: 1, c: 1}

What is returned is a dictionary with our

eigenvalues as its keys and the multiplicity

(how many) of each eigenvalue as its

corresponding value.

The eigenvectsmethod returns even more

complexly structured results.

A.eigenvects()

[(a, 1, [Matrix([
[1],
[0]])]), (c, 1, [Matrix([
[-b/(a - c)],
[ 1]])])]

This is a list of tuples with structure as

follows.



ssresp State-space response diag Computing eigendecompositions p. 3

(<eigenvalue>,<multiplicity>,<eigenvector>)

Each eigenvector is given as a list of symbolic

matrices.

Extracting the second eigenvector can be

achieved as follows.

A.eigenvects()[1][2][0]

[
− b
a−c

1

]
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diagonalizes

4. See Appendix adv.eig for general considerations.

transformation matrix

5. We are being a bit fast-and-loose with terminology here: a vector
is an object that does not change under basis transformation, only
its components and basis vectors do. However, we use the common
notational and terminological abuses.

eigenvalue matrix

modal matrix

ssresp.diag Diagonalizing basis

1 It is useful to transform a system’s state

vector x into a special basis that

diagonalizes—leaves nonzero components

along only the diagonal—the system’s A-matrix.

For systems with n distinct eigenvalues, to

which we limit ourselves in this discussion,4

this is always possible. In diagonalized form, it

will be relatively easy to solve for the state

transition matrix Φ.

Changing basis in the state equation

2 As with all basis transformations, the basis

transformation we seek can be written

x = Px ′ ⇒ x ′ = P−1x, (1)

where P is the transformation matrix, x is a

representation of the state vector in the original

basis, and x ′ is a representation of the state

vector in the new basis.5

3 Substituting this transformation into the

standard linear state-model equations yields the

model

ẋ ′ = P−1AP︸ ︷︷ ︸
A ′

x ′ + P−1B︸ ︷︷ ︸
B ′

u (2a)

y = CP︸︷︷︸
C ′

x ′ + D︸︷︷︸
D ′

u. (2b)

Modal and eigenvalue matrices

4 Let a state equation have matrix A with n

distinct eigenvalues (λi) and eigenvectors (mi).

Let the eigenvalue matrix Λ be defined as

Λ =


λ1 0

λ2
. . .

0 λn

 .

5 Furthermore, let the modal matrixM be
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6. As long as there are n distinct eigenvalues,M is invertible.

diagonalized

diagonal property

defined as

M =

 m1 m2 · · · mn

 (3)

Diagonalization of the state equation

6 Let the modal matrixM be the

transformation matrix for our state-model.

Then6 x ′ =M−1x.

7 The state equation becomes

ẋ ′ =M−1AMx ′ +M−1Bu. (4)

The eigenproblem implies that

A
[
m1 m2 · · · mn

]
=
[
m1 m2 · · · mn

]
Λ ⇒

AM =MΛ ⇒

M−1AM =M−1MΛ

= Λ.

That is, A ′ = Λ! Recall that Λ is diagonal;

therefore, we have diagonalized the state-space

model. In full-form, the diagonalized model is

ẋ ′ = Λ︸︷︷︸
A ′

x ′ +M−1B︸ ︷︷ ︸
B ′

u (5a)

y = CM︸︷︷︸
C ′

x ′ + D︸︷︷︸
D ′

u. (5b)

Computing the state transition matrix

8 Recall our definition of the state transition

matrix Φ(t) = eAt. Directly applying this to the

diagonalized system of Eq. 5,

Φ ′(t) = eΛt (6a)

=


eλ1t 0

eλ2t

. . .

0 eλnt

 . (6b)

In this last equality, we have used the diagonal
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property of the state transition matrix, defined

in Lec. ssresp.response.

9 Recall that the free response solution to the

state equation is given by the initial condition

and state transition matrix, so

x ′
fr(t) = Φ

′(t)x ′(0) (7a)

= x ′1(0)e
λ1t + x ′2(0)e

λ2t + · · ·+ x ′n(0)eλnt

(7b)

where the initial conditions are x ′(0) =M−1x(0).

We have completely decoupled each state’s free

response, one of the remarkable qualities of the

diagonalized system.

10 At this point, one could simply solve the

diagonalized system for x ′(t), then convert the

solution to the original basis with x(t) =Mx ′(t).

11 Sometimes, we might prefer to transform

the diagonalized-basis state transition matrix

into the original basis. The following is a

derivation of that transformation.

12 Beginning with the free response solution

in the diagonalized-basis and transforming the

equation into the original basis, we find an

expression for the original state transition

matrix, as follows.

x ′
fr(t) = Φ

′(t)x ′(0) ⇒

M−1xfr(t) = Φ
′(t)M−1x(0) ⇒

xfr(t) =MΦ
′(t)M−1︸ ︷︷ ︸
Φ(t)

x(0).

This last expression is just the free response

solution in the original basis, so we can identify

Φ(t) =MΦ ′(t)M−1. (8)

This is a powerful result. Eq. 8 is the preferred

method of deriving the state transition matrix

for a given system. The eigenvalues give Φ ′ and

the eigenvectors giveM.
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Example ssresp.diag-1 re: state free response

For the state equation

ẋ =

[
−2 2

2 −3

]
x+

[
1

−1

]
u

find the state’s free response to initial condition

x(0) =
[
2 −1

]>
.
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ssresp.vibe A vibration example with two modes

1 In the following example, we explore the a

mechanical vibration example, especially with

regard to its modes of vibration. Both

undamped and (under)damped cases are

considered and we discover the effects of

damping.

Example ssresp.vibe-1 re: vibration with two modes

m2m1

k1
k2

B2

Vs

Figure vibe.1: schematic of the two-mass system.

2 Consider the system of Fig. vibe.1 inwhich a

velocity sourceVS is applied to springK1, which

connects tomassm1, which in turn is connected

via spring K2 and damper B to massm2 which.a

3 The state-space model A-matrix is given as

A =


−B/m1 −1/m1 B/m1 0

K1 0 −K1 0

B/m2 1/m2 −B/m2 −1/m2

0 0 K2 0

 (1)

with parameters as follows.b

m_1 = 0.1;
m_2 = 1.1;
K_1 = 8;
K_2 = 9;

4 Two different values for B are given: 0

and 20 N-s/m. We will explore the modes of

vibration in each case and plot a corresponding

free response.

a. This common situation appears in a slightly modified form in
Rowell and Wormley. (Rowell and Wormley, System Dynamics:
An Introduction)

b. The programming language used in this example is Matlab.

Without damping

5 Without damping, we expect the system
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to be marginally stable and have two pairs of

second-order undamped subsystems with their

own unique natural frequencies.

B = 0;
A = [...
-B/m_1, -1/m_1, B/m_1, 0; ...
K_1, 0, -K_1, 0; ...
B/m_2, 1/m_2, -B/m_2, -1/m_2; ...
0, 0, K_2, 0 ...

]

A =

0 -10.0000 0 0
8.0000 0 -8.0000 0

0 0.9091 0 -0.9091
0 0 9.0000 0

6 To explore the modes of vibration, we

consider the eigendecomposition of A.

[M,L] = eig(A);

7 Let’s take a closer look at the eigenvalues.

disp(diag(L))

0.0000 + 9.3818i
0.0000 - 9.3818i
0.0000 + 2.7270i
0.0000 - 2.7270i

8 So we have two pairs of purely imaginary

eigenvalues. We would say, then, that there

are two “modes of vibration,” and similarly two

second-order systems comprising this fourth-

order system. When we consider what the

natural frequency and damping ratio is for each

pair, we’re considering the natural frequencies

associated with each “mode of vibration.”

9 For a second-order system (see

Lec. trans.secondo), the roots of the

characteristic equation, which are equal

to the eigenvalues corresponding to that
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second-order pair, are given in terms of natural

frequency ωn and damping ratio ζ:

−ωnζ±ωn
√
ζ2 − 1.

10 So the imaginary part is nonzero only

when ζ ∈ [0, 1), that is, when the system is

underdamped or undamped. In this case,

−ωnζ± jωn
√
1− ζ2. (2)

11 This, taken with the fact that the

eigenvalues L have zero real parts, implies

either ωn or ζ is zero. But if ωn is zero, the

eigenvalues L would all be zero, which they

are not. Therefore, ζ = 0 for both pairs of

eigenvalues.

12 This leaves us with eigenvalues:

±jωn1 and ± jωn2 . (3)

13 So we can easily identify the natural

frequencies ωn1 and ωn2 associated with each

mode as follows.

wn1 = imag(L(1,1));
wn2 = imag(L(3,3));
disp(sprintf('natural frequencies: %g, %g',wn1,wn2))

natural frequencies: 9.38179, 2.72699

Free response

14 Let’s compute the free response to some

initial conditions. The free state response is

given by

x(t) = Φ(t)x(0).

15 Sowe can find this from the state transition

matrixΦ, which is known from Lec. ssresp.diag

to be .

16 First, we construct Φ ′ symbolically.
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syms t
Phi_p = @(t) diag(diag(exp(L*t)));
vpa(Phi_p(t),3)

ans =

[ exp(t*9.38i), 0, 0,
0]↪→

[ 0, exp(-t*9.38i), 0,
0]↪→

[ 0, 0, exp(t*2.73i),
0]↪→

[ 0, 0, 0,
exp(-t*2.73i)]↪→

17 Now we can apply our transformation.

M_inv = M^-1; % compute just once, not on every call
Phi = @(t) M*Phi_p(t)*M_inv; % messy to print

18 So our symbolic solution is to multiply the

initial conditions by this matrix.

x_0 = [1;0;0;0]; % initial conditions
x = Phi(t)*x_0; % free response, symbolically
vpa(x,3)

ans =

0.45*exp(-t*9.38i) + 0.45*exp(t*9.38i) +
0.0498*exp(-t*2.73i) +
0.0498*exp(t*2.73i)

↪→

↪→

exp(-t*9.38i)*0.422i - exp(t*9.38i)*0.422i +
exp(-t*2.73i)*0.0136i - exp(t*2.73i)*0.0136i↪→

- 0.0451*exp(-t*9.38i) - 0.0451*exp(t*9.38i) +
0.0451*exp(-t*2.73i) + 0.0451*exp(t*2.73i)↪→

- exp(-t*9.38i)*0.0433i + exp(t*9.38i)*0.0433i +
exp(-t*2.73i)*0.149i - exp(t*2.73i)*0.149i↪→

Plotting a free response

19 Let’s make the symbolic solution into

something we can evaluate numerically and

plot.

x_fun = matlabFunction(x);
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20 Now let’s set up our time array for the plot.

t_a = linspace(0,5,300);

21 Plot the state responses through time. The

output is shown in Fig. vibe.2.

1 2 3 4 5

−1

−0.5

0.5

1

time (s)

st
at
e
fr
ee

re
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o
n
se

x1
x2
x3
x4

Figure vibe.2: state free response with zero damping. Note the visible
vibrations modes, which are clearly mixing in x3 and x4.

figure
plot(t_a,real(x_fun(t_a)))
xlabel('time (s)')
ylabel('state free response')
legend('x_1','x_2','x_3','x_4')

With a little damping

22 Now consider the case when the damping

coefficent B is nonzero. Let’s recompute A and

the eigendecomposition.

B = 20;
A = [...
-B/m_1, -1/m_1, B/m_1, 0; ...
K_1, 0, -K_1, 0; ...
B/m_2, 1/m_2, -B/m_2, -1/m_2; ...
0, 0, K_2, 0 ...

]

A =

-200.0000 -10.0000 200.0000 0
8.0000 0 -8.0000 0
18.1818 0.9091 -18.1818 -0.9091

0 0 9.0000 0

[M,L] = eig(A);

23 Let’s take a closer look at the eigenvalues.

disp(diag(L));

1.0e+02 *

-2.1778 + 0.0000i
-0.0000 + 0.0274i
-0.0000 - 0.0274i
-0.0040 + 0.0000i
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24 We can see that one of the second-order

systems is now “overdamped” or, equivalently,

has split into two first-order systems. The other

is now underdamped (but barely damped).

Let’s compute the natural frequency of the

remaining vibratory mode.

wn1 = abs(L(2,2))

wn1 =

2.7384

25 So the effect of damping was to eliminate

the≈ 10 rad/smode and leave uswith a slightly

modified version of the ≈ 2.7 rad/s mode.

Free response now

syms t
Phi_p = @(t) diag(diag(exp(L*t)));
vpa(Phi_p(t),3)

ans =

[ exp(-218.0*t), 0,
0, 0]↪→

[ 0, exp(t*(- 0.00154 + 2.74i)),
0, 0]↪→

[ 0, 0,
exp(t*(- 0.00154 - 2.74i)), 0]↪→

[ 0, 0,
0, exp(-0.401*t)]↪→

26 Now we can apply our transformation.

M_inv = M^-1; % compute just once, not on every call
Phi = @(t) M*Phi_p(t)*M_inv; % messy to print

27 So our symbolic solution is to multiply the

initial conditions by this matrix.

x_0 = [1;0;0;0]; % initial conditions
x = Phi(t)*x_0; % free response, symbolically
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Plotting a free response

28 Let’s make the symbolic solution into

something we can evaluate numerically and

plot.

x_fun = matlabFunction(x);

29 Now let’s set up our time array for the plot.

t_a = linspace(0,5,300);

30 Plot the state responses through time. The

output is shown in Fig. vibe.3.
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Figure vibe.3: state free response with some damping. Note that there’s only
one remaining vibration mode because the other mode is now overdamped. The remaining
mode is very lightly damped and does not decay appreciably in five seconds.

figure
plot(t_a,real(x_fun(t_a)))
xlabel('time (s)')
ylabel('state free response')
legend('x_1','x_2','x_3','x_4')
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ssresp.mixed Analytic and numerical output response

example in Matlab

1 In the following example, we explore the

output response derived both analytically and

numerically in Matlab.

Example ssresp.mixed-1 re: analytic and numerical output response

solution in MatlabConsider a state-space model with the

following standard matrices.

A = [...
-1, 3, 5, 7;...
0, -2, 0, 6;...
-2, 1, -3, 0;...
0, 1, 3, -4;...

];
n = length(A); % order
B = [...
0; 1; 0; 2; ...

];
C = eye(n);
D = zeros([n,1]);

Solve for the unit step response output y given

the following initial condition.

x0 = [2;0;2;0];

Analytic solution

We use the solution of Eq. 8:

y(t) = CΦ(t)x(0) + C

ˆ t
0

Φ(t− τ)Bu(τ)dτ+Du(t).

(1)

First we needΦ(t). The “primed” basis requires

the eigendecomposition.

[M,L] = eig(A);

We can find Φ from the primed-basis version

Φ ′, which is easy to compute.
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Phi_p = @(t) diag(diag(exp(L*t)));

Now the basis transformation.

M_inv = M^-1; % compute just once, not on every call
Phi = @(t) M*Phi_p(t)*M_inv;

Declare symbolic variables.

syms T tt

Apply Eq. 8.

y_sym = C*Phi(tt)*x0 + C*int(Phi(tt-T)*B*1,T,0,tt) + D*1;

Convert this to a numerically evaluable

function.

y_num = matlabFunction(y_sym);
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Figure mixed.1: the analytic output response.

Plot it; the result is shown in Fig. mixed.1.

figure
t_num = linspace(0,8,200);
plot(t_num,y_num(t_num),'linewidth',1)
xlabel('time (s)')
ylabel('analytic output response')
legend('y_1','y_2','y_3','y_4')

Numerical solution

sys = ss(A,B,C,D);

Using lsim

First, use lsim to compute the response

numerically.

u_s = ones(size(t_num)); % a one for every time
y_lsim = lsim(sys,u_s,t_num,x0); % simulate

Now plot it; the result is shown in Fig. mixed.2.

1 2 3 4 5 6 7 8

−2

2

4

time (s)

n
u
m
er
ic
al
o
u
tp
u
t
re
sp
o
n
se y1

y2
y3
y4

Figure mixed.2: numerical (using lsim) output response.
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figure
plot(t_num,y_lsim,'linewidth',1)
xlabel('time (s)')
ylabel('numerical output response')
legend('y_1','y_2','y_3','y_4')
hgsave(h,'figures/temp');
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Figure mixed.3: comparison of analytic and numerical output responses.

Now take the difference between the two

solutions and plot the error. As Fig. mixed.3

shows, the differences are minimal.

figure
plot(t_num,y_lsim-y_num(t_num).','linewidth',1)
xlabel('time (s)')
ylabel('error in output response')
legend('y_1','y_2','y_3','y_4')

Using the step and initial commands with

superposition

Just for fun, here’s how we could use step and
initial (instead of lsim) with superposition to

numerically solve.

y_step = step(sys,t_num); % forced response
y_initial = initial(sys,x0,t_num); % free response
y_total = y_initial + y_step; % (superposition)
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7. The source of this lecture can be downloaded as a Matlab
m-file at http://ricopic.one/dynamic_systems/source/
simulating_state_space_response.m.

8. Although we call this the ”analytic” solution, we are not solving
for a detailed symbolic expression, although we *could*. In fact, Eq. 2
*is* the analytic solution and what follows is an attempt to represent it
graphically.

ssresp.sim Simulating state-space response

1 Ahem.7

For many nonlinear models, numerical solution

of the state equation is required. For linear

models, we can always solve them analytically

using the methods of this chapter. However,

due to its convenience, we will often want to use

numerical techniques even when analytic ones

are available.

Matlab has several built-in and Control Systems

Toolbox functions for analyzing state-space

system models, especially linear models. We’ll

explore a few, here.

Consider, for instance, a linear state model with

the following A, B, C, and Dmatrices:

A =

−3 4 5

0 −2 3

0 −6 1

 B =

10
1

 C =

[
1 0 0

0 −1 0

]
D =

[
0

0

]
.

(1a)

A = [-3,4,5;0,-2,3;0,-6,1];
B = [1;0;1];
C = [1,0,0;0,-1,0];
D = [0;0];

For a step input u(t) = 3us(t) and initial state

x(0) =
[
1 2 3

]>
, let’s compare analytic and

numerical solutions for the output response

y(t).

u = @(t) 3*ones(size(t)); % for t>=0
x_0 = [1; 2; 3];

Analytic solution

For an analytic solution, we’ll use a rearranged

version of ??.8

y(t) = CΦ(t)x(0) + CΦ(t)

ˆ t
0

Φ(−τ)Bu(τ)dτ+Du(t).

(2a)

http://ricopic.one/dynamic_systems/source/simulating_state_space_response.m
http://ricopic.one/dynamic_systems/source/simulating_state_space_response.m
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First, we need the state transition matrix Φ(t), so

we consider the eigenproblem.

[M,L] = eig(A)

M =

1.0000 + 0.0000i 0.7522 + 0.0000i 0.7522 +
0.0000i↪→

0.0000 + 0.0000i 0.3717 + 0.0810i 0.3717 -
0.0810i↪→

0.0000 + 0.0000i 0.0787 + 0.5322i 0.0787 -
0.5322i↪→

L =

-3.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 +
0.0000i↪→

0.0000 + 0.0000i -0.5000 + 3.9686i 0.0000 +
0.0000i↪→

0.0000 + 0.0000i 0.0000 + 0.0000i -0.5000 -
3.9686i↪→

Note that, when assigning its output to two

variables M and L, the eig function returns the

modal matrix to M and the eigenvalue matrix to

L. The modal matrix of eigenvectors M has each
column (eigenvector) normalized to unity. Also

notice that M and L are complex. The imaginary

parts of two eigenvalues and their

corresponding eigenvectors are significant.

Finally, since the real parts of the all eigenvalues

are negative, the system is stable.

The “diagonal”-basis state transition matrix

Φ ′(t) is simply

Φ ′(t) = eΛt. (3)

Let’s define this as an “anonymous” function.

Phi_p = @(t) diag(diag(exp(L*t))); % diags to get diagonal mat

The original-basis state transition matrix Φ(t) is,

from ??,

Φ(t) =MΦ ′(t)M−1. (4)
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Figure sim.1: free response yfr.

M_inv = M^-1; % compute just once, not on every call
Phi = @(t) M*Phi_p(t)*M_inv;

Free response

The free response is relatively straightforward

to compute.

t_a = 0:.05:5; % simulation time
y_fr = NaN*ones(size(C,1),length(t_a)); % initialize
for i = 1:length(t_a)

y_fr(:,i) = C*Phi(t_a(i))*x_0;
end
y_fr(:,1:3) % first three columns

ans =

1.0000 - 0.0000i 1.8922 - 0.0000i 2.5646 -
0.0000i↪→

-2.0000 + 0.0000i -2.2030 + 0.0000i -2.3105 +
0.0000i↪→

A time array t_awas defined such that Phi
could be evaluated. The first three columns of

yfr are printed for the first three moments in

time. Note how there’s a “hanging chad” of

imaginary components. Before we realize
them, let’s make sure they’re negligibly tiny.

max(max(abs(imag(y_fr))))
y_fr = real(y_fr);

ans =

5.2907e-16
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9. Mathematica or SageMath would be preferrable for this.

The results are plotted in Fig. sim.1. As we

might expect from the eigenvalues, the free

responses of both outputs oscillate and decay.

Forced response

Now, there is the matter of integration in Eq. 2.

Since Matlab does not excel in symbolic

manipulation, we have chosen to avoid

attempting to write the solution, symbolically.9

For this reason, we choose a simple numerical

(trapezoidal) approximation of the integral

using the trapz function.
First, the integrand can be evaluated over the

simulation interval.

integrand_a = NaN*ones(size(C,2),length(t_a)); % initialize
for i = 1:length(t_a)

tau = t_a(i);
integrand_a(:,i) = Phi(-tau)*B*u(tau);

end

Now, numerically integrate.

integral_a = zeros(size(integrand_a));
for i = 2:length(t_a)

i_up = i; % upper limit of integration
integral_a(:,i) = ... % transposes for trapz

trapz(t_a(1:i_up)',integrand_a(:,1:i_up)')';
end

Now, evaluate the forced response at each time.

y_fo = NaN*ones(size(C,1),length(t_a)); % initialize
for i = 1:length(t_a)

y_fo(:,i) = C*Phi(t_a(i))*integral_a(:,i);
end
y_fo(:,1:3) % first three columns

ans =

0.0000 + 0.0000i 0.1583 - 0.0000i 0.3342 -
0.0000i↪→

0.0000 + 0.0000i -0.0109 + 0.0000i -0.0426 +
0.0000i↪→

max(max(abs(imag(y_fo))))
y_fo = real(y_fo);
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Figure sim.2: forced response yfo.
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Figure sim.3: total response y.

ans =

2.1409e-16

The forced response is shown in Fig. sim.2,

which shows damped oscillations.

Total response

The total response is found from the sum of the

free and forced responses: y(t) = yfr + yfo. We

can simply sum the arrays.

y_t = y_fr + y_fo;

The result is plotted in Fig. sim.3.

Numerical solution

The numerical solution of the state equations is

rather simple using Matlab’s ss and step or
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Figure sim.4: total response y from lsim.

lsim commands, as we show, here. First, we

define an ssmodel object—a special kind of

object that encodes a state-space model.

sys = ss(A,B,C,D);

At this point, using the step function would be

the easiest way to solve for the step response.

However, we choose the more-general lsim for
demonstration purposes.

y_t_num = lsim(sys,u(t_a),t_a,x_0);

This total solution is shown in Fig. sim.4.

d_y = y_t-y_t_num';

Fig. sim.5 shows a plot of the differences

between the analytic total solution y_t and the

numerical y_t_num for each output. Note that

calling this “error” is a bit presumptuous, given

that we used numerical integration in the

analytic solution. If a more accurate method is

desired, working out the solution, symbolically,

is the best.
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Figure sim.5: total response error y_t-y_t_num.
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ssresp.exe Exercises for Chapter ssresp

Exercise ssresp.larry

Let a system have the following state and

output equation matrices:

A =

[
−3 0

1 −2

]
B =

[
0

1

]
C =

[
0 1

]
D =

[
0
]
.

For this system, answer the following

imperatives.

a. Find the eigenvalue matrix Λ and

comment on the stability of the system

(justify your comment). Use the

convention that λ1 6 λ2 and order Λ

accordingly.

b. Find the eigenvectors and the modal

matrixM.

c. Find the state transition matrix Φ(t). Hint:

first find the “diagonalized” state

transition matrix Φ′(t).

d. Using the state transition matrix, find the

output homogeneous solution for initial

condition

x(0) =

[
1

0

]
.

Exercise ssresp.mo

Let a system have the following state and

output equation matrices:

A =

[
−1 1

0 −2

]
B =

[
1

0

]
C =

[
1 0

]
D =

[
0
]
.

For this system, answer the following

imperatives.

a. Find the eigenvalue matrix Λ and

comment on the stability of the system

(justify your comment). Use the

convention that λ1 6 λ2 and order Λ

accordingly.
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b. Find the eigenvectors and the modal

matrixM.

c. Find the state transition matrix Φ(t). Hint:

first find the “diagonalized” state

transition matrix Φ′(t).

d. Using the state transition matrix, find the

output homogeneous solution for initial

condition

x(0) =

[
0

1

]
.

Exercise ssresp.curly

Use a computer for this exercise. Let a system

have the following state A-matrix:

A =

−2 2 0

−1 −2 2

0 −1 −2

 .
For this system, answer the following

imperatives.

a. Find the eigenvalue matrix Λ and modal

matrixM.

b. Comment on the stability of the system

(justify your comment).

c. Find the diagonalized state transition

matrix Φ ′(t). Be sure to print the

expression. Furthermore, find the state

transition matrix Φ(t).

d. Using the state transition matrix, find the

state free response for initial condition

x(0) =

00
1

 .
Do not print this expression.

e. Plot the free response found above for

t ∈ [0, 4] seconds.
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Exercise ssresp.lonely

Use a computer for this exercise. Let a system

have the following state and output equation

matrices:

A =

−1 0 8

0 −2 0

0 0 −3

 B =

0 2

3 0

0 0

 C =
[
1 0 −1

]
D =

[
0 0

]
.

For this system, answer the following

imperatives.

a. Find the eigenvalue matrix Λ and

comment on the stability of the system

(justify your comment). Use the

convention that λ1 > λ2 > λ3 and order Λ

accordingly.

b. Find the eigenvectors and the modal

matrixM.

c. Find the state transition matrix Φ(t). Hint:

first find the “diagonalized” state

transition matrix Φ′(t).

d. Let the input be

u(t) =

[
4

sin(2πt)

]
.

Solve for the forced state response xfo(t).

Express it simply—it’s not that bad.

e. Solve for the forced output response

yfo(t). Express it simply—it’s not that bad.

f. Plot yfo(t) for t ∈ [0, 7] sec.

Exercise ssresp.argentina

Given a state space system,

ẋ = Ax+ Bu

y = Cx+Du,

with,
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A =

[
−8 −6

3 1

]
and

C =
[
2 −1

]
,

find

1. the system’s Eigen values λi,

2. the Eigen vectorsmi and modal matrixM,

3. the diagonalized state transition matrix

Φ ′(t),

4. the state transition matrix in the original

basis Φ(t), and

5. the output free response yfr(t) due to an

initial condition x(0) = [4,−1]T .



Part III

Modeling other systems



lumped-parameter modeling

fluid systems

thermal systems

thermoflu

Lumped-parameter modeling fluid and
thermal systems

1 We now consider the lumped-parameter

modeling of fluid systems and thermal systems.

The linear graph-based, state-space modeling

techniques of Chapters graphs to emech are

called back up to service for this purpose. Recall

that this method defines several types of

discrete elements in an energy domain—in

Chapters graphs and ss, the electrical and

mechanical energy domains. Also recall from

Chapter emech that energy transducing

elements allow energy to flow among domains.

In this chapter, we introduce fluid and thermal

energy domains and discrete and transducing

elements associated therewith.

2 The analogs between the mechanical and

electrical systems from Chapter graphs are

expanded to include fluid and thermal systems.

This generalization allows us to include, in

addition to electromechanical systems,

inter-domain systems including electrical,

mechanical, fluid, and thermal systems.

3 This chapter begins by defining discrete

lumped-parameter elements for fluid and

thermal systems. We then categorize these into

energy source, energy storage (A-type and

T-type), and energy dissapative (D-type)

elements, allowing us to immediately construct

linear graphs and normal trees in the manner of

Chapter graphs. Then we can directly apply the

methods of Chapter ss to construct state-space
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models of systems that include fluid and

thermal elements.
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volumetric flowrate

pressure drop

power-flow variables

ground

work

pressure momentum

volume

thermoflu.flu Fluid system elements

1 Detailed distributed models of fluids, such

as the Navier-Stokes equations, are necessary

for understanding many aspects of fluid

systems and for guiding their design (e.g. a

pump or an underwater vehicle). However, a

great many fluid systems are networks of pipes,

tanks, pumps, valves, orifices, and elevation

changes—and at this system-level, a different

approach is required.

2 As with electrical and mechanical systems,

we can describe fluid systems as consisting of

discrete lumped-parameter elements. The

dynamic models that can be developed from

considering these elements are often precisely

the right granularity for system-level design.

3 We now introduce a few lumped-parameter

elements for modeling fluid systems. Let a

volumetric flowrate Q and pressure drop P be

input to a port in a fluid element. Since, for fluid

systems, the power into the element is

P(t) = Q(t)P(t) (1)

we call Q and P the power-flow variables for

fluid systems. A fluid element has two distinct

locations between which its pressure drop is

defined. We call a reference pressure ground.

4 Work done on the system over the time

interval [0, T ] is defined as

W ≡
ˆ T
0

P(τ)dτ. (2)

Therefore, the work done on a fluid system is

W =

ˆ T
0

Q(τ)P(τ)dτ. (3)

5 The pressure momentum Γ is

Γ(t) =

ˆ t
0

P(τ)dτ+ Γ(0). (4)

Similarly, the volume is
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energy storage elements

energy dissipative elements

source elements

fluid inertance

linear inertance

inertance

constitutive equation

elemental equation

V(t) =

ˆ t
0

Q(τ)dτ+ V(0). (5)

6 We now consider two elements that can

store energy, called energy storage elements; an

element that can dissipate energy to a system’s

environment, called an energy dissipative

element; and two elements that can supply

power from outside a system, called source

elements.

Fluid inertances

7 When fluid flows through a pipe, it has a

momentum associated with it. The more mass

(fluid density by its volume) moving in one

direction and the faster it moves, the more

momentum. This is stored kinetic energy. The

discrete element we now introduce models this

aspect of fluid systems.

8 A fluid inertance is defined as an element for

which the pressure momentum Γ across it is a

monotonic function of the volumetric flowrate

Q through it. A linear inertance is such that

Γ(t) = IQ(t), (6)

where I is called the inertance and is typically a

function of pipe geometry and fluid properties.

This is called the element’s constitutive equation

because it constitutes what it means to be an

inertance.

9 Although there are nonlinear inertances, we

can often use a linear model for analysis in some

operating regime. The elemental equation for a

linear inertance can be found by

time-differentiating Equation 6 to obtain

dQ

dt
=
1

I
P.

We call this the elemental equation because it

relates the element’s power-flow variables Q

and P.
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Figure flu.1: a section of pipe for deriving its inertance.

10 An inertance stores energy as kinetic

energy, making it an energy storage element.

The amount of energy it stores depends on the

volumetric flowrate it contains. For a linear

inertance,

E(t) =
1

2
IQ(t)2. (7)

11 The inertance I for a uniform pipe can be

derived, as follows, with reference to the

sectioned pipe of Fig. flu.1. For an

incompressible fluid flowing through a pipe of

uniform area A and length L, with uniform

velocity profile (a convenient fiction), an

element of fluid obey’s Newton’s second law,

from which several interesting equalities can be

derived:

F = m
dv

dt
⇒

F

A
=
m

A

dv

dt
⇒

P =
ρAL

A

dv

dt

= ρL
d

dt

(
Q

A

)
=
ρL

A

dQ

dt
⇒

dQ

dt
=

A

ρL︸︷︷︸
1/I

P.

12 From this last equality, it is clear that, for a

uniform pipe and the assumptions, above,

I =
ρL

A
. (8)

Clearly, long, thin pipes will have more

inertance. In fact, we often ignore inertance in

modeling a pipe, unless it is relatively long and

thin.

Fluid capacitors

13 When fluid is stored in tanks or in pressure

vessels, it stores potential energy via its
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fluid capacitors

fluid resistors

linear fluid resistors

fluid resistance

ideal volumetric flowrate source

pressure drop P. For instance, a tank with a

column of fluid will have a pressure drop

associated with the height of the column. This is

analogous to how an electronic capacitor stores

its energy via its voltage. For this reason, we call

such fluid elements fluid capacitors.

14 A linear fluid capacitor with capacitance C,

pressure drop P, and volume V has the

constitutive equation

V = CP. (9)

Once again, time-differentiating the constitutive

equation gives us the elemental equation:

dP

dt
=
1

C
Q,

15 Fluid capacitors can store energy (making

them energy storage elements) in fluid potential

energy, which, for a linear capacitor is

E(t) =
1

2
CP2. (10)

Fluid resistors

Fluid resistors are defined as elements for which

the volumetric flowrate Q through the element

is a monotonic function of the pressure drop P

across it. Linear fluid resistors have constitutive

equation (and, it turns out, elemental equation)

Q =
1

R
P (11)

where R is called the fluid resistance.

16 Fluid resistors dissipate energy from the

system (to heat), making them energy

dissipative elements.

Flowrate and pressure drop sources

17 Fluid sources include pumps, runoff, etc.

18 An ideal volumetric flowrate source is an

element that provides arbitrary energy to a
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ideal pressure drop source

across-variable

through-variable

A-type

T-type

D-type

system via an independent (of the system)

volumetric flowrate. The corresponding

pressure drop across the element depends on

the system.

19 An ideal pressure drop source is an element

that provides arbitrary energy to a system via

an independent (of the system) pressure drop.

The corresponding volumetric flowrate through

the element depends on the system.

20 Real sources, usually pumps, cannot be

ideal sources, but in some instances can

approximate them. More typical is to include a

fluid resistor in tandem with an ideal source, as

we did with electrical resistors for real electrical

sources.

Generalized element and variable types

21 In keeping with the definitions of

Chapter intro, pressure P is an across-variable

and flowrate Q is a through-variable.

22 Consequently, the fluid capacitor is

considered an A-type energy storage element.

Similarly, the fluid inertance is a T-type energy

storage element. Clearly, a fluid resistor is a

D-type energy dissipative element.

23 Pressure sources are, then, across-variable

sources and volumetric flowrate sources are

through-variable sources.



thermoflu Lumped-parameter modeling fluid and thermal systems therm Fluid system elements p. 2

Example thermoflu.flu-1 re: fluid system graph

CC

R2

Qs

R1,

1

I
1 2

Figure flu.2: schematic of a fluid system for Example thermoflu.flutrans-1.

Use the schematic in Fig. flu.2 to draw a linear

graph of the system.
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thermal systems

conduction

convection

radiation

heat flow rate

temperature

first difference

ground

heat

thermoflu.therm Thermal system elements

1 Systems in which heat flow is of interest are

called thermal systems. For instance, heat

generated by an engine or a server farm flows

through several bodies via the three modes of

heat transfer: conduction, convection, and

radiation. This is, of course, a dynamic process.

2 A detailed model would require a spatial

continuum. However, we are often concerned

with, say, the maximum temperature an engine

will reach for different speeds or the maximum

density of a server farm while avoiding

overheating. Or, more precisely, how a given

heat generation affects the temperature

response of system components.

3 As with electrical, mechanical, and fluid

systems, we can describe thermal systems as

consisting of discrete lumped-parameter

elements. The dynamic models that can be

developed from considering these elements are

often precisely the right granularity for

system-level design.

4 We now introduce a few lumped-parameter

elements for modeling thermal systems. Let a

heat flow rate q (SI units W) and temperature T

(SI units K or C) be input to a port in a thermal

element. There are three structural differences

between thermal systems and the other types

we’ve considered. We are confronted with the

first, here, when we consider that heat power is

typically not considered to be the product of

two variables; rather, the heat flow rate q is

already power:

P(t) = q(t). (1)

A thermal element has two distinct locations

between which its temperature drop is defined.

We call a reference temperature ground.

5 The heat energy H of a system with initial
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energy storage element

source elements

second difference

thermal capacitors

extensive property

specific heat capacity

intensive property

thermal resistors

heat H(0) is

H(t) =

ˆ t
0

P(τ)dτ+H(0). (2)

6 We now consider an element that can store

energy, called an energy storage element; an

element that resists power flow; and two

elements that can supply power from outside a

system, called source elements. The second

difference is that there is only one type of

energy storage element in the thermal domain.

Thermal capacitors

7 When heat is stored in an object, it stores

potential energy via its temperature T . This is

analogous to how an electronic capacitor stores

its energy via its voltage. For this reason, we call

such thermal elements thermal capacitors.

8 A linear thermal capacitor with thermal

capacitance C (SI units J/K), temperature T , and

heat H has the constitutive equation

H = CT. (3)

Once again, time-differentiating the constitutive

equation gives us the elemental equation:

dT

dt
=
1

C
q,

9 The thermal capacitance C is an extensive

property—that is, it depends on the amount of

its substance. This is opposed to the specific

heat capacity c (units J/K/kg), an intensive

property: one that is independent of the amount

of its substance. These quantities are related for

an object of massm by the equation

C = mc. (4)

Thermal resistors

10 Thermal resistors are defined as elements



thermoflu Lumped-parameter modeling fluid and thermal systems therm Thermal system elements p. 2

linear thermal resistors

thermal resistance

third difference

1. We use the term “object” loosely, here, to mean a grouping of
continuous matter in any phase.

thermal conductivity

2. Thermal resistance can also be defined as an intensive property ρ−1,
the reciprocal of the thermal conductivity. Due to our lumped-parameter
perspective, we choose the extensive definition.

fluid advection

convection heat transfer coefficient

for which the heat flowrate q through the

element is a monotonic function of the

temperature drop T across it. Linear thermal

resistors have constitutive equation (and, it

turns out, elemental equation)

q =
1

R
T (5)

where R is called the thermal resistance.

11 Thermal resistors do not dissipate energy

from the system, which is the third difference

between thermal and other energy domains

we’ve considered. After all, the other “resistive”

elements all dissipate energy to heat. Rather

than dissipate energy, they simply impede its

flow.

12 All three modes of heat transfer are

modeled by thermal resistors, but only two of

them are well-approximated as linear for a

significant range of temperature.

conduction Heat conduction is the transfer of

heat through an object’s microscopic

particle interaction.1 It is characterized by

a thermal resistance

R =
L

ρA
, (6)

where L is the length of the object in the

direction of heat transfer, A is the

transverse cross-sectional area, and ρ is

the material’s thermal conductivity (SI

units W/K/m).2

convection Heat convection is the transfer of

heat via fluid advection: the bulk motion

of a fluid. It is characterized by a thermal

resistance

R =
1

hA
, (7)

where h is the convection heat transfer

coefficient (SI units W/m2/K) and A is the

area of fluid-object contact (SI units m2).
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effective emissivity/absorptivity

3. The parameter ε is taken to be the combined “gray body”
emissivity/absorptivity. Consult a heat transfer text for details.

Stefan-Boltzmann constant

ideal heat flow rate source

ideal temperature source

The convection heat transfer coefficient h

is highly and nonlinearly dependent on

the velocity of the fluid. Furthermore, the

geometry of the objects and the fluid

composition affect h.

radiation Radiative heat transfer is

electromagnetic radiation emitted from

one body and absorbed by another. For T1

the absolute temperature of a “hot” body,

T2 the absolute temperature of a “cold”

body, ε the effective

emissivity/absorptivity,3 and A the area

of the exposed surfaces, the heat transfer is

characterized by

q = εσA(T41 − T42 ), (8)

where σ is the Stefan-Boltzmann constant

σ = 5.67 · 10−8 W

m2K4
. (9)

Clearly, this heat transfer is highly

nonlinear. Linearization of this heat

transfer is problematic because the

temperature difference T between the

bodies does not appear in the expression.

For many system models, radiative heat

transfer is assumed negligible. We must

be cautious with this assumption,

however, especially when high operating

temperatures are anticipated.

Heat flow rate and temperature sources

13 Thermal sources include many physical

processes—almost everything generates heat!

14 An ideal heat flow rate source is an element

that provides arbitrary heat flow rate Qs to a

system, independent of the temperature across

it, which depends on the system.

15 An ideal temperature source is an element

that provides arbitrary temperature Ts to a

system, independent of the heat flow rate

through it, which depends on the system.



thermoflu Lumped-parameter modeling fluid and thermal systems flutrans Thermal system elements p. 2

across-variable

through-variable

A-type

D-type

Generalized element and variable types

16 In keeping with the definitions of

Chapter intro, temperature T is an

across-variable and heat flow rate q is a

through-variable.

17 Consequently, the thermal capacitor is

considered an A-type energy storage element. A

thermal resistor is considered to be a D-type

energy dissipative element, although it does not

actually dissipate energy. It does, however,

resist its flow and relates its across- and

through-variables algebraically, both signature

characteristics of D-type elements.

18 Temperature sources are, then,

across-variable sources and heat flow rate

sources are through-variable sources.

Example thermoflu.therm-1 re: thermal system graph

Figure therm.1: Careless Carlton’s fish’s sad situation.

Careless Carlton left a large pot of water

boiling on the stove. Worse, a cast-iron pan

is bumped so that it is in solid contact with

the pot and his glass fish tank, which was

carelessly left next to the stove, as shown in

Fig. therm.1. Draw a linear graph of the sad

situation to determine what considerations

determine if Careless Carlton’s fish goes from

winner to dinner.
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thermoflu.flutrans Fluid transducers

1 Although thermal systems often exchange

energy with other energy domains, it is much

more common to consider those systems that

interact with thermal systems to be generating

or sinking heat (often modeled as a dependent

source) than to see a proper transducer.

2 Fluid systems, on the other hand, very

naturally interact with mechanical systems. For

instance, piston-cylinder mechanisms,

propellers, turbines, and impellers (backward

turbines) are just a few energy transducing

elements.

3 These systems are often driven by motors

(e.g. a pump’s impeller) or drive generators (e.g.

a dam’s turbine). Therefore, it is common to

require a fluid-electromechanical dynamic

model.

Example thermoflu.flutrans-1 re: microhydroelectric power generation

Intake

Penstock

Generator

Turbine
River

Long Distance
Power LinesPowerhouse

Hydroelectric Dam

Reservoir

Figure flutrans.1: chematic of a hydroelectric dam (Authority and Tomia,
Hydroelectric dam—Wikipedia, The Free Encyclopedia).

Dams, even small, “micro” dams, generate

hydroelectric power by directingwater through

turbines, which rotate, creating mechanical

power, and drive electric generators,

generating electric power. For large-scale

dams, the flowrate is regulated such that an AC

generator produces a nice 60 Hz. However, a

microhydroelectric generator typically cannot

expect well-regulated flowrates, so sometimes

they use a brushed DC generator (brush

replacement being the primary drawback).

Assuming a microhydroelectric dam can be set

up in a manner similar to a large-scale dam,

draw a linear graph model from the schematic

of Fig. flutrans.1.
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normal tree

transformer

thermoflu.dam State-space model of a hydroelectric

dam

1 Consider the microhydroelectric dam of

Example thermoflu.flutrans-1. We derived the

linear graph of Fig. dam.1. In this lecture, we

will derive a state-space model for the

system—specifically, a state equation.

Normal tree, order, and variables

2 Now, we define a normal tree by overlaying

it on the system graph in Fig. dam.1. There are

six independent energy storage elements,

making it a sixth-order (n = 6) system. We

define the state vector to be

x =
[
PC1 PC2 QL1 ΩJ iL2 vC3

]>
. (1)

The input vector is defined as

u =
[
Qs Ps1 Ps2

]>
.

Elemental equations

3 Yet to be encountered is a turbine’s

transduction. A simple model is that the torque

T2 is proportional to the flowrate Q1, which are

both through-variables, making it a transformer,

so

T2 = −αQ1 and Ω2 =
1

α
P1, (2)

Qs

C1

R1 L1
Ps1

1

Ps2
R2

C2

2 J B 3 4

R3 L2

C3 R4

Figure dam.1: a linear graph for a microhydroelectric dam.
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transformer ratiowhere α is the transformer ratio.

4 The other elemental equations have been

previously encountered and are listed, below.

el. elemental eq.

C1
dPC1
dt

=
1

C1
QC1

C2
dPC2
dt

=
1

C2
QC2

L1
dQL1
dt

=
1

L1
PL1

J
dΩJ
dt

=
1

J
TJ

L2
diL2
dt

=
1

L2
vL2

el. elemental eq.

C3
dvC3
dt

=
1

C3
iC3

R1 PR1 = QR1R1

R2 PR2 = QR2R2

1 T2 = −αQ1

2 Ω2 =
1

α
P1

el. elemental eq.

B ΩB =
1

B
TB

3 i4 =
−1

km
T3

4 v4 = kmΩ3

R3 vR3 = iR3R3

R4 iR4 =
1

R4
vR4

Continuity and compatibility equations

5 Continuity and compatibility equations can

be found in the usual way—by drawing

contours and temporarily creating loops by

including links in the normal tree. We proceed

by drawing a table of all elements and writing a

continuity equation for each branch of the

normal tree and a compatibility equation for

each link.
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el. eq.

C1 QC1 = Qs −QL1

C2 QC2 = QL1

L1 PL1 = −PR1 + PC1 − PC2+

−PR2 + Ps2 − P1 + Ps1

J TJ = −T2 − TB − T3

L2 vL2 = −vR3 + v4 − vC3

el. eq.

C3 iC3 = iL2 − iR4

R1 QR1 = QL1

R2 QR2 = QL1

1 Q1 = QL1

2 Ω2 = ΩJ

el. eq.

B ΩB = ΩJ

3 Ω3 = ΩJ

4 i4 = −iL2

R3 iR3 = iL2

R4 vR4 = vC3

State equation

6 The system of equations composed of the

elemental, continuity, and compatibility

equations can be reduced to the state equation.

There is a substantial amount of algebra

required to eliminate those variables that are

neither state nor input variables. Therefore, we

use the Mathematica package

StateMint (Cameron N. Devine and

Rico A.R. Picone. Statum.

https://github.com/CameronDevine/Statum.

2018). The resulting system model is:

dx

dt
= Ax+ Bu,

A =



0 0 −1/C1 0 0 0

0 0 1/C2 0 0 0

1/L1 −1/L1 −(R1 + R2)/L1 −α/L1 0 0

0 0 α/J −B/J −km/J 0

0 0 0 km/L2 −R3/L2 −1/L2

0 0 0 0 1/C3 −1/(R4C3)


,

B =



1/C1 0 0

0 0 0

0 1/L1 1/L1

0 0 0

0 0 0

0 0 0


.

7 The rub is estimating all these parameters.

8 The Mathematica notebook used above can

be found in the source repository for this text.

https://github.com/CameronDevine/Statum
http://ricopic.one/dynamic_systems/source/


thermoflu Lumped-parameter modeling fluid and thermal systems fem Thermal finite element model p. 1

thermoflu.fem Thermal finite element model

Example thermoflu.fem-1 re: thermal finite element model

x

L

TS insulation

Figure fem.1: an insulated bar.

Consider the long homogeneous copper bar of

Fig. fem.1, insulated around its circumference,

and initially at uniform temperature. At time

t = 0, the temperature at one end of the bar

(x = 0) is increased by one Kelvin. We wish to

find the dynamic variation of the temperature at

any location x along the bar, at any time t > 0.

Construct a discrete element model of thermal

conduction in the bar, for which the following

parameters are given for its length L and

diameter d.

L = 1; % m
d = 0.01; % m

Geometrical considerations

The cross-sectional area for the bar is as follows.

a = pi/4*d^2; % m^2 x-sectional area

Dividing the bar into n sections (“finite

elements”) such that we have length of each dx
gives the following.

n = 100; % number of chunks
dx = L/n; % m ... length of chunk

Material considerations

The following are the material properties of

copper.

cp = 390; % SI ... specific heat capacity
rho = 8920; % SI ... density
ks = 401; % SI ... thermal conductivity
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Lumping

From the geometrical and material

considerations above, we can develop a

lumped thermal resistance R and thermal

capacitance c of each cylindrical section of the

bar of length dx. From Eq. 6 and Eq. 4, these

parameters are as follows.

R = dx/(ks*a); % thermal resistance
dV = dx*a; % m^3 ... section volume
dm = rho*dV; % kg ... section mass
c = dm*cp; % section volume

Linear graph model

The linear graph model is shown in Fig. fem.2

with the corresponding normal tree overlayed.

Figure fem.2: a linear graph of the insulated bar.

State-space model

The state variables are clearly the temperatures

of Ci: TC1 , · · · , TCn . Therefore, the order of the
system is n.

The state, input, and output variables are

x =
[
TC1 · · · TCn

]>
, u =

[
TS

]
, and y = x.

(1)

Elemental, continuity, and compatibility

equations Consider the elemental, continuity,

and compatibility equations, below, for

the first, a middle, and the last elements.

The following makes the assumption of

homogeneity, which yields Ri = R and Ci = C.
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element elemental eq. continuity eq. compatibility eq.

C1 ṪC1 =
1
CqC1 qC1 = qR1 − qR2

R1 qR1 =
1
RTR1 TR1 = TS − TC1

Ci ṪCi =
1
CqCi qCi = qRi − qRi+1

Ri qRi =
1
RTRi TRi = TCi−1 − TCi

Cn ṪCn = 1
CqCn qCn = qRn

Rn qRn = 1
RTRn TRn = TCn−1 − TCn

Deriving the state equations for sections 1, i,

and n For each of the first, a representative

middle, and the last elements, we can derive the

state equation with relatively few substitutions,

as follows.

ṪC1 =
1

C
qC1 (elemental)

=
1

C
(qR1 − qR2) (continuity)

=
1

RC
(TR1 − TR2) (elemental)

=
1

RC
(TS − TC1 − TC1 + TC2)

(compatibility)

=
1

RC
(TS − 2TC1 + TC2).

ṪCi =
1

C
qCi (elemental)

=
1

C
(qRi − qRi+1) (continuity)

=
1

RC
(TRi − TRi+1) (elemental)

=
1

RC
(TCi−1 − 2TCi + TCi+1).

(compatibility)

ṪCn =
1

C
qCn (elemental)

=
1

C
qRn (continuity)

=
1

RC
TRn (elemental)

=
1

RC
(TCn−1 − TCn). (compatibility)
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Let τ = RC. The A and Bmatrices are, then

A =



−2/τ 1/τ 0 · · · 0 0 0 · · · 0 0 0

1/τ −2/τ 1/τ · · · 0 0 0 · · · 0 0 0

. . .
. . .

. . .
... 1/τ −2/τ 1/τ

...
. . .

. . .
. . .

0 0 0 · · · 0 0 0 · · · 1/τ −2/τ 1/τ

0 0 0 · · · 0 0 0 · · · 0 1/τ −1/τ



B =


1/τ

0
...

0


n×1

. (2)

The outputs are the states: y = x. Or, in

standard form with identity matrix I, the

matrices are:

C = In×n and D = 0n×1. (3)

Simulation of a step response

Define the Amatrix.

A = zeros(n);
% first row
A(1,1) = -2/(R*c);
A(1,2) = 1/(R*c);
% last row
A(n,n-1) = 1/(R*c);
A(n,n) = -1/(R*c);
% middle rows
for i = 2:(n-1)
A(i,i-1) = 1/(R*c);
A(i,i) = -2/(R*c);
A(i,i+1) = 1/(R*c);

end

Now define B, C, and D.

B = zeros([n,1]);
B(1) = 1/(R*c);
C = eye(n);
D = zeros([n,1]);

Create a state-space model.
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sys = ss(A,B,C,D);

Simulate a unit step in the input temperature.

Tmax = 1200; % sec ... final sim time
t = linspace(0,Tmax,100);
y = step(sys,t);

Plot the step response To prepare for creating

a 3D plot, we need to make a grid of points.

x = dx/2:dx:(L-dx/2);
[X,T] = meshgrid(x,t);

Nowwe’re ready to plot. The result is shown in

Fig. fem.3. 0.2 0.4 0.6 0.8
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Figure fem.3: spatiotemporal thermal response.figure
contourf(X,T,y)
shading(gca,'interp')
xlabel('x')
ylabel('time')
zlabel('temp (K)')
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thermoflu.exe Exercises for Chapter thermoflu

Exercise thermoflu.tinker

Draw a linear graph of the fluid system with

schematic below.

C
C

Qs

R1,

1

I
1

2

2

R2

Exercise thermoflu.tailor

Draw a linear graph of the fluid system with

schematic below.

CC
R1,

1

I
1 2

QS1
QS2

2

R2

Exercise thermoflu.soldier

(a) Draw a linear graph of the fluid system with

schematic below. (b) Draw a normal tree and

identify the state variables and system order.

CC
R2,

1

I

1

R1
1 2

QS1

PS

R3Lorem ipsum

Exercise thermoflu.tpain

Consider an apparatus with two chambers filled

with gas at potentially different temperatures

illustrated in Fig. exe.1. Temperature sensors
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4. This technique of adding capacitance for smoothing a signal is useful
in all energy domains!

Figure exe.1: a diagram of the two-chamber apparatus.

/20 p.

are embedded in the two “sensor blocks,” made

of copper for low thermal resistance and made

large enough to provide enough thermal

capacitance to smooth out temperature

fluctuations.4 The “structural conduit” is made

of steel, less thermally conductive, but

conductive nonetheless. The conduit provides

structure to the apparatus and is hollow to

allow the sensor wires to run through.

A concern with this apparatus is that the

temperature in one chamber will affect the

temperature in the other, most conspicuously by

heat conducting through the structural conduit.

We will begin an analysis of the thermal

isolation of the two chambers and temperature

measurements. Develop a thermal

lumped-parameter model as follows.

a. Describe the lumped-parameter elements

you will use to model the system.

b. Draw a linear graph of the

lumped-parameter model.

c. Superimpose a normal tree on the graph,

identify the system order, and choose the

state variables.

Exercise thermoflu.morocco

For the system below with a pressure source Ps,

fluid resistances Ri, fluid inertances Ii, and fluid

capacitances Ci, find

1. the linear graph,

2. the normal tree, and

3. the system state variables and system

order.

PS
C2

C1

R1 I1 R2 I2 R3
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Exercise thermoflu.taiwan

The cooling system for a desktop computer CPU

is shown below. We can consider the CPU as a

heat flow source Qs. A thermal interface

material is then used to transfer heat from the

CPU to the cooling system. However, this

thermal interface material is not a perfect

thermal conductor. The cooling system then

consists of a base plate with thermal capacitance

and a “heat pipe” which moves the heat away

from the CPU. The “heat pipe” is again an

imperfect thermal conductor. At the other end

of the “heat pipe” is a constant temperate

(which we can model as a temperature source).

For this system, find

1. the linear graph,

2. the normal tree, and

3. the system state variables and system

order.



Part IV

Fourier analysis



four

Fourier series and transforms



four Fourier series and transforms series Fourier series p. 1

frequency domain

Fourier analysis

1. It’s important to note that the symbol ωn, in this context, is not the
natural frequency, but a frequency indexed by integer n.

frequency spectrum

four.series Fourier series

1 Fourier series are mathematical series that

can represent a periodic signal as a sum of

sinusoids at different amplitudes and

frequencies. They are useful for solving for the

response of a system to periodic inputs.

However, they are probably most important

conceptually: they are our gateway to thinking

of signals in the frequency domain—that is, as

functions of frequency (not time). To represent a

function as a Fourier series is to analyze it as a

sum of sinusoids at different frequencies1 ωn

and amplitudes an. Its frequency spectrum is

the functional representation of amplitudes an

versus frequency ωn.

2 Let’s begin with the definition.

Definition four.1: Fourier series: trigonometric

form
The Fourier analysis of a periodic function y(t)

is, for n ∈ N0, period T , and angular frequency

ωn = 2πn/T ,

an =
2

T

ˆ T/2
−T/2

y(t) cos(ωnt)dt (1)

bn =
2

T

ˆ T/2
−T/2

y(t) sin(ωnt)dt. (2)

The Fourier synthesis of a periodic function

y(t) with analysis components an and bn

corresponding to ωn is

y(t) =
a0
2

+

∞∑
n=1

an cos(ωnt) + bn sin(ωnt).

(3)

3 Let’s consider the complex form of the

Fourier series, which is analogous to

Definition four.1. It may be helpful to review

Euler’s formula(s) – see Appendix com.euler.
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harmonic

harmonic frequency

fundamental frequency

harmonic amplitude

Definition four.2: Fourier series: complex form

The Fourier analysis of a periodic function y(t)

is, for n ∈ N0, period T , and angular frequency

ωn = 2πn/T ,

c±n =
1

T

ˆ T/2
−T/2

y(t)e−jωntdt. (4)

The Fourier synthesis of a periodic function y(t)

with analysis components cn corresponding to

ωn is

y(t) =

∞∑
n=−∞ cne

jωnt. (5)

4 We call the integer n a harmonic and the

frequency associated with it,

ωn = 2πn/T, (6)

the harmonic frequency. There is a special name

for the first harmonic (n = 1): the fundamental

frequency. It is called this because all other

frequency components are integer multiples of

it.

5 It is also possible to convert between the two

representations above.

Definition four.3: Fourier series: converting

between forms
The complex Fourier analysis of a periodic

function y(t) is, for n ∈ N0 and an and bn as

defined above,

c±n =
1

2

(
a|n| ∓ jb|n|

)
(7)

The sinusoidal Fourier analysis of a periodic

function y(t) is, for n ∈ N0 and cn as defined

above,

an = cn + c−n and (8)

bn = j (cn − c−n) . (9)

6 The harmonic amplitude Cn is
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magnitude line spectrum

harmonic phase

Cn =
√
a2n + b2n (10)

= 2
√
cnc−n. (11)

A magnitude line spectrum is a graph of the

harmonic amplitudes as a function of the

harmonic frequencies. The harmonic phase is

θn = − arctan2(bn, an)

(see Appendix math.trig)

= arctan2(Im(cn),Re(cn)). (12)

7 The illustration of Fig. series.1 shows how

sinusoidal components sum to represent a

square wave. A line spectrum is also shown.

time

frequency

spectral amplitude
amplitude

Figure series.1: a partial sum of Fourier components of a square wave shown through time and frequency. The spectral amplitude shows the amplitude of the
corresponding Fourier component.

8 Let us compute the associated spectral

components in the following example.

Example four.series-1 re: Fourier series analysis: line spectrum

Compute the first five harmonic amplitudes

that represent the line spectrum for a square

wave in the figure above.
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four.fsexa Complex Fourier series example

1 There are several flavors of Fourier series

problem: trigonometric/exponential,

analysis/synthesis, plotting partial

sums/plotting spectra. Of course, problems just

present us an opportunity to traverse part of the

landscape (to mix two metaphors like 31

similies).

Example four.fsexa-1

-2π -π π 2π

A

dimensionless time ωt

f(
t)

Figure fsexa.1: the function f(t) = |A cos(ωt)| plotted for several
periods.

2 Consider a recified sinusoid

f(t) = |A cos(ωt)|

for A,ω, t ∈ R, shown in Fig. fsexa.1. The

fundamental period is T = π/ω, half the

unrectified period.

a. Perform a complex Fourier analysis on

f(t), computing the complex Fourier

components c±n.

b. Compute and plot the magnitude and

phase spectra.

c. Convert c±n to trigonometric components

an and bn.

Part a: complex Fourier analysis

3 The complex Fourier analysis of

Definition four.2 will be applied in a moment.

However, it is convenient to first convert f into

an . We can write f over a

single period t ∈ [−T/2, T/2) as
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|A cos(ωt)| = |A|| cos(ωt)|

(absolute value property)

= |A| cos(ωt)
(already positive)

= |A|
1

2

(
ejωt + e−jωt

)
.

(Euler, Eq. 2)

4 Applying Fourier analysis à la

Definition four.2 with harmonic frequency

ωn = 2πn/T ,

c±n =
1

T

ˆ T/2
−T/2

f(t)e−jωnt dt

=
1

T

ˆ T/2
−T/2

|A|
1

2

(
ejωt + e−jωt

)
e−jωnt dt

=
|A|

2T

ˆ T/2
−T/2

(
ejωt + e−jωt

)
e−jωnt dt

=
|A|

2T

ˆ T/2
−T/2

(
ej(ω−ωn)t + e−j(ω+ωn)t

)
dt

=
|A|

2T

(
1

j(ω−ωn)
ej(ω−ωn)t −

1

j(ω+ωn)
e−j(ω+ωn)t

)∣∣∣∣T/2
−T/2

=
|A|

2T

(
1

j(ω−ωn)
ej(ω−ωn)T/2 −

1

j(ω+ωn)
e−j(ω+ωn)T/2+

−
1

j(ω−ωn)
e−j(ω−ωn)T/2 +

1

j(ω+ωn)
ej(ω+ωn)T/2

)
=

|A|

j2T(ω−ωn)

(
ej(ω−ωn)T/2 − e−j(ω−ωn)T/2

)
+

+
|A|

j2T(ω+ωn)

(
ej(ω+ωn)T/2 − e−j(ω+ωn)T/2

)
=

|A|

T(ω−ωn)
sin((ω−ωn)T/2) +

|A|

T(ω+ωn)
sin((ω+ωn)T/2).

5 This can be simplified further if we

substitute T = π/ω and ωn = 2πn/T = 2nω,

c±n =
|A|

π(1− 2n)
sin((1− 2n)π/2) + |A|

π(1+ 2n)
sin((1+ 2n)π/2).

6 Using a product-to-sum trigonometric

identity (Appendix math.trig), this further
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simplifies to

c±n =
−2|A|

π(4n2 − 1)
cos(πn),

which, for n odd or even,

c±n =


2|A|

π(4n2−1)
n odd

−2|A|

π(4n2−1)
n even.

7 Alternatively we could use Matlab’s

Symbolic Math Toolbox rather

straightforwardly.

syms A n w wn T t 'real' % symbolic, real

8 Now define the function of time f and the

known relations in a dictionary.

f = abs(A)*cos(w*t);
props.T = pi/w;
props.wn = 2*n*w;

9 Now apply the same Fourier analysis as

before.

c_n1 = 1/T*int(f*exp(-j*wn*t),t,-T/2,T/2);
c_n = simplify(subs(c_n1,props))

c_n =

-(2*cos(pi*n)*abs(A))/(pi*(4*n^2 - 1))

10 Nice! This is the

. We can even check our odd/even

assumptions.

assume((n-1)/2,'integer') % odd
simplify(c_n)
assume(n,'clear') % clear assumptions
assume(n/2,'integer') % even
simplify(c_n)
assume(n,'clear') % clear before moving on
assume(n,'real')



four Fourier series and transforms fsexa Complex Fourier series example p. 4

ans =

(2*abs(A))/(pi*(4*n^2 - 1))

ans =

-(2*abs(A))/(pi*(4*n^2 - 1))

11 These are also what we got before.

Parb b: harmonic amplitude and phase with spectra

12 According to Eq. 11, the harmonic

amplitude is

Cn = 2
√
cnc−n

=
4|A|

π|4n2 − 1|
| cos(πn)|

13 Let’s check with Matlab.

assume(n,'real');
C_n = simplify(2*sqrt(c_n*subs(c_n,n,-n)))
assume(n,'clear');
assume(n,'integer');
C_n = simplify(2*sqrt(c_n*subs(c_n,n,-n)))

C_n =

(4*abs(A)*abs(cos(pi*n)))/(pi*abs(4*n^2 - 1))

C_n =

(4*abs(A))/(pi*abs(4*n^2 - 1))

14 We see that if we assume n is an integer,Cn

simplifies even further than we took it by-hand.

15 Plotting the harmonic amplitude is

straightforward. First make Cn something

that can be numerically evaluated and choose

parameters.

p.A = 1;
C_n_fun = matlabFunction( ...
subs(C_n, p) ...

);
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Figure fsexa.2: the harmonic amplitude Cn.

16 Now we plot.

n_a = -10:10;
figure
stem(n_a,C_n_fun(n_a))
xlabel('\pm n')
ylabel('harmonic amplitude C_n/|A|')

17 Let’s find the phase à la Eq. 12 with Matlab

directly.

phase_n = simplify(atan2(imag(c_n),real(c_n)))

phase_n =

(pi*sign(((-1)^n*abs(A))/(4*n^2 -
1))*(sign(((-1)^n*abs(A))/(4*n^2 - 1)) + 1))/2↪→

18 The sign function just returns the sign

of its argument. It’s difficult to see, but this

expression only takes on the following two

values:

0, π

19 We can plot the phase similarly to how

we plotted the amplitude. First we get a

numerically evaluable function.

phase_n_fun = matlabFunction( ...
subs(phase_n, p) ...

);
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Figure fsexa.3: the harmonic phase.

20 Now we plot.

figure
stem(n_a,phase_n_fun(n_a))
xlabel('\pm n')
ylabel('harmonic phase')
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Part c: conversion to trig form

21 According to Definition four.3, the

trigonometric components can be computed

from the complex components as follows.

a_n = simplify(c_n + subs(c_n,n,-n))
b_n = simplify(j*(c_n - subs(c_n,n,-n)))

a_n =

-(4*(-1)^n*abs(A))/(pi*(4*n^2 - 1))

b_n =

0

22 The fact that bn = 0 should not surprise us:

f(t) is even after all!
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1. Python code in this section was generated from a Jupyter notebook
named fourier_series_to_transform.ipynbwith a python3 kernel.

four.transform Fourier transform

We begin with the usual loading of modules.

import numpy as np # for numerics
import sympy as sp # for symbolics
import matplotlib.pyplot as plt # for plots!
from IPython.display import display, Markdown, Latex

Let’s consider a periodic function fwith period

T (T). Each period, the function has a triangular

pulse of width δ (pulse_width) and height δ/2.

period = 15 # period
pulse_width = 2 # pulse width

First, we plot the function f in the time domain.

Let’s begin by defining f.

def pulse_train(t,T,pulse_width):
f = lambda x:pulse_width/2-abs(x) # pulse
tm = np.mod(t,T)
if tm <= pulse_width/2:

return f(tm)
elif tm >= T-pulse_width/2:

return f(-(tm-T))
else:

return 0

Now, we develop a numerical array in time to

plot f.

N = 201 # number of points to plot
tpp = np.linspace(-period/2,5*period/2,N) # time values
fpp = np.array(np.zeros(tpp.shape))
for i,t_now in enumerate(tpp):

fpp[i] = pulse_train(t_now,period,pulse_width)

p = plt.figure(1)
plt.plot(tpp,fpp,'b-',linewidth=2) # plot
plt.xlabel('time (s)')
plt.xlim([-period/2,3*period/2])
plt.xticks(

[0,period],
[0,'$T='+str(period)+'$ s']

)
plt.yticks([0,pulse_width/2],['0','$\delta/2$'])
plt.show() # display here
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For δ = 2 and T ∈ [5, 15, 25], the left-hand column

of Fig. transform.1 shows two triangle pulses for

each period T .

Consider the following argument. Just as a

Fourier series is a frequency domain

representation of a periodic signal, a Fourier

transform is a frequency domain representation

of an aperiodic signal (we will rigorously define

it in a moment). The Fourier series components

will have an analog, then, in the Fourier

transform. Recall that they can be computed by

integrating over a period of the signal. If we

increase that period infinitely, the function is

effectively aperiodic. The result (within a

scaling factor) will be the Fourier transform

analog of the Fourier series components.

Let us approach this understanding by actually

computing the Fourier series components for

increasing period T using ??. We’ll use sympy to
compute the Fourier series cosine and sine

components an and bn for component n (n) and
period T (T).

sp.var('x,a_0,a_n,b_n',real=True)
sp.var('delta,T',positive=True)
sp.var('n',nonnegative=True)
# a0 = 2/T*sp.integrate(
# (delta/2-sp.Abs(x)),
# (x,-delta/2,delta/2) # otherwise zero
# ).simplify()
an = sp.integrate(

2/T*(delta/2-sp.Abs(x))*sp.cos(2*sp.pi*n/T*x),
(x,-delta/2,delta/2) # otherwise zero

).simplify()
bn = 2/T*sp.integrate(

(delta/2-sp.Abs(x))*sp.sin(2*sp.pi*n/T*x),
(x,-delta/2,delta/2) # otherwise zero

).simplify()
display(sp.Eq(a_n,an),sp.Eq(b_n,bn))

an =


T
(
1−cos

(
πδn
T

))
π2n2

for n 6= 0
δ2

2T otherwise

bn = 0

Furthermore, let us compute the harmonic

amplitude
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(f_harmonic_amplitude):

Cn =
√
a2n + b2n (1)

which we have also scaled by a factor T/δ in

order to plot it with a convenient scale.

sp.var('C_n',positive=True)
cn = sp.sqrt(an**2+bn**2)
display(sp.Eq(C_n,cn))

Cn =


T
∣∣cos

(
πδn
T

)
−1
∣∣

π2n2
for n 6= 0

δ2

2T otherwise

Now we lambdify the symbolic expression for a

numpy function.

cn_f = sp.lambdify((n,T,delta),cn)

Now we can plot.

omega_max = 12 # rad/s max frequency in line spectrum
n_max = round(omega_max*period/(2*np.pi)) # max harmonic
n_a = np.linspace(0,n_max,n_max+1)
omega = 2*np.pi*n_a/period
p = plt.figure(2)
markerline, stemlines, baseline = plt.stem(

omega, period/pulse_width*cn_f(n_a,period,pulse_width),
linefmt='b-', markerfmt='bo', basefmt='r-',
use_line_collection=True,

)
plt.xlabel('frequency $\omega$ (rad/s)')
plt.xlim([0,omega_max])
plt.ylim([0,pulse_width/2])
plt.yticks([0,pulse_width/2],['0','$\delta/2$'])
plt.show() # show here

The line spectra are shown in the right-hand

column of Fig. transform.1. Note that with our

chosen scaling, as T increases, the line spectra

reveal a distinct waveform.

Let F be the continuous function of angular

frequency ω

F(ω) =
δ

2
· sin2(ωδ/4)

(ωδ/4)2
. (2)

First, we plot it.
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amplitude CnT/δ

δ
2

T = 5 s

δ/2

2 4 6 8 10 12

δ/2

δ
2

T = 15 s

δ/2

2 4 6 8 10 12

δ/2

δ
2

T = 25 s

δ/2

time (s)

2 4 6 8 10 12

δ/2

frequency ω (rad/s)

Figure transform.1: triangle pulse trains (left column) with longer periods, descending, and their corresponding line spectra (right column), scaled for convenient
comparison.

F = lambda w: pulse_width/2* \
np.sin(w*pulse_width/(2*2))**2/ \
(w*pulse_width/(2*2))**2

N = 201 # number of points to plot
wpp = np.linspace(0.0001,omega_max,N)
Fpp = []
for i in range(0,N):

Fpp.append(F(wpp[i])) # build array of function values
axes = plt.figure(3)
plt.plot(wpp,Fpp,'b-',linewidth=2) # plot
plt.xlim([0,omega_max])
plt.yticks([0,pulse_width/2],['0','$\delta/2$'])
plt.xlabel('frequency $\omega$ (rad/s)')
plt.ylabel('$F(\omega)$')
plt.show()

0 2 4 6 8 10 12

frequencyω (rad/s)

0

δ/2

Figure transform.2: F(ω), our mysterious Fourier series amplitude
analog.

Let’s consider the plot in Fig. transform.2 of F.

It’s obviously the function emerging in
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Fig. transform.1 from increasing the period of

our pulse train.

Now we are ready to define the Fourier

transform and its inverse.

Definition four.4: Fourier transforms:

trigonometric form

Fourier transform (analysis):

A(ω) =

ˆ ∞
−∞ y(t) cos(ωt)dt (3)

B(ω) =

ˆ ∞
−∞ y(t) sin(ωt)dt. (4)

Inverse Fourier transform (synthesis):

y(t) =
1

2π

ˆ ∞
−∞A(ω) cos(ωt)dω+

1

2π

ˆ ∞
−∞ B(ω) sin(ωt)dω.

(5)

Definition four.5: Fourier transforms: complex

form
Fourier transform F (analysis):

F(y(t)) = Y(ω) =

ˆ ∞
−∞ y(t)e−jωtdt. (6)

Inverse Fourier transform F−1 (synthesis):

F−1(Y(ω)) = y(t) =
1

2π

ˆ ∞
−∞ Y(ω)ejωtdω. (7)

So now we have defined the Fourier transform.

There are many applications, including solving

differential equations and frequency domain

representations—called spectra—of time

domain functions.

There is a striking similarity between the

Fourier transform and the Laplace transform,

with which you are already acquainted. In fact,

the Fourier transform is a special case of a

Laplace transform with Laplace transform

variable s = jω instead of having some real

component. Both transforms convert

differential equations to algebraic equations,

which can be solved and inversely transformed
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to find time-domain solutions. The Laplace

transform is especially important to use when

an input function to a differential equation is not

absolutely integrable and the Fourier transform

is undefined (for example, our definition will

yield a transform for neither the unit step nor

the unit ramp functions). However, the Laplace

transform is also preferred for initial value

problems due to its convenient way of handling

them. The two transforms are equally useful for

solving steady state problems. Although the

Laplace transform has many advantages, for

spectral considerations, the Fourier transform is

the only game in town.

A table of Fourier transforms and their

properties can be found in Appendix sum.ft.

Example four.transform-1 re: a Fourier transform

Consider the aperiodic signal y(t) = us(t)e
−at

with us the unit step function and a > 0. The

signal is plotted below. Derive the complex

frequency spectrum and plot its magnitude and

phase.

−2 −1 0 1 2 3 4 5
0

0.5

1

t

y
(t
)

Figure transform.3: an aperiodic signal.

The signal is aperiodic, so the Fourier transform

can be computed from Eq. 6:

Y(ω) =

ˆ ∞
−∞ y(t)ejωtdt

=

ˆ ∞
−∞ us(t)e−atejωtdt (def. of y)

=

ˆ ∞
0

e−atejωtdt (us effect)

=

ˆ ∞
0

e(−a+jω)tdt (multiply)

=
1

−a+ jω
e(−a+jω)t

∣∣∣∣∞
0

dt

(antiderivative)

=
1

−a+ jω

(
lim
t→∞ e(−a+jω)t − e0

)
(evaluate)
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=
1

−a+ jω

(
lim
t→∞ e−atejωt − 1

)
(arrange)

=
1

−a+ jω
((0)(complex with mag 6 1) − 1)

(limit)

=
−1

−a+ jω
(consequence)

=
1

a− jω

=
a+ jω

a+ jω
· 1

a− jω
(rationalize)

=
a+ jω

a2 +ω2
.

0

0.5

1

|Y
(ω

)|

−10 −5 0 5 10

−1

0

1

ω

∠
Y
(ω

)

Figure transform.4: the magnitude and phase of the Fourier transform.

The magnitude and phase of this complex

function are straightforward to compute:

|Y(ω)| =
√

Re(Y(ω))2 + Im(Y(ω))2

=
1

a2 +ω2

√
a2 +ω2

=
1√

a2 +ω2

∠Y(ω) = arctan(ω/a).

Now we can plot these functions of ω. Setting

a = 1 (arbitrarily), we obtain the plots of

Fig. transform.4.
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1. Python code in this section was generated from a Jupyter notebook
named discrete_fourier_transform.ipynbwith a python3 kernel.

four.dft Discrete and fast Fourier transforms

Modern measurement systems primarily

construct spectra by sampling an analog

electronic signal y(t) to yield the sample

sequence (yn) and perform a discrete Fourier

transform.

Definition four.6: discrete Fourier transform
The discrete Fourier transform (DFT) of a

sample sequence (yn) of length N is (Ym),

wherem ∈ [0, 1, · · · , N− 1] and

Ym =

N−1∑
n=0

yne
−j2πmn/N.

The inverse discrete Fourier transform

(IDFT) reconstructs the original sequence for

n ∈ [0, 1, · · · , N− 1] and

yn =
1

N

N−1∑
n=0

Yme
j2πmn/N.

The DFT (Ym) has a frequency interval equal to

the sampling frequency ωs/N and the IDFT

(yn) has time interval equal to the sampling

time T . The first N/2+ 1 DFT (Ym) values

correspond to frequencies

(0,ωs/N, 2ωs/N, · · ·ωs/2)

and the remaining N/2− 1 correspond to

frequencies

(−ωs/2,−(N− 1)ωs/N, · · · ,−ωs/N).

In practice, the definitions of the DFT and IDFT

are not the most efficent methods of

computation. A clever algorithm called the fast

Fourier transform (FFT) computes the DFT

much more efficiently. Although it is a good

exercise to roll our own FFT, in this lecture we

will use scipy’s built-in FFT algorithm, loaded

with the following command.
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from scipy import fft

Now, given a time series array y representing
(yi), the DFT (using the FFT algorithm) can be

computed with the following command.

fft(y)

In the following example, we will apply this

method of computing the DFT.

Example four.dft-1 re: FFT of a sawtooth signal

We would like to compute the DFT of a sample

sequence (yn) generated by sampling a spaced-

out sawtooth. Let’s first generate the sample

sequence and plot it.

In addition to scipy, let’s import matplotlib
for figures and numpy for numerical

computation.

import matplotlib.pyplot as plt
import numpy as np

We define several “control” quantities for the

spaced-sawtooth signal.

f_signal = 48 # frequency of the signal
spaces = 1 # spaces between sawteeth
n_periods = 10 # number of signal periods
n_samples_sawtooth = 10 # samples/sawtooth

These quantities imply several “derived”

quantities that follow.

n_samples_period = n_samples_sawtooth*(1+spaces)
n_samples = n_periods*n_samples_period
T_signal = 1.0/f_signal # period of signal
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t_a = np.linspace(0,n_periods*T_signal,n_samples)
dt = n_periods*T_signal/(n_samples-1) # sample time
f_sample = 1./dt # sample frequency

We want an interval of ramp followed by an

interval of “space” (zeros). The following

method of generating the sampled signal y
helps us avoid leakage, which we’ll describe at

the end of the example.

arr_zeros = np.zeros(n_samples_sawtooth) # frac of period
arr_ramp = np.arange(n_samples_sawtooth) # frac of period
y = [] # initialize time sequence
for i in range(n_periods):
y = np.append(y,arr_ramp) # ramp
for j in range(spaces):

y = np.append(y,arr_zeros) # space

We plot the result in Fig. dft.1, generated by the

following code.

fig, ax = plt.subplots()
plt.plot(t_a,y,'b-',linewidth=2)
plt.xlabel('time (s)')
plt.ylabel('$y_n$')
plt.show()

0.00 0.05 0.10 0.15 0.20

time (s)

0

2

4

6

8

y n

Figure dft.1: the sawtooth signal in the time-domain.

Now we have a nice time sequence on which

we can perform our DFT. It’s easy enough to

compute the FFT.

Y = fft(y)/n_samples # FFT with proper normalization

Recall that the latter values correspond to

negative frequencies. In order to plot it,

we want to rearrange our Y array such that

the elements corresponding to negative

frequencies are first. It’s a bit annoying, but

c’est la vie.
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Y_positive_zero = Y[range(int(n_samples/2))]
Y_negative = np.flip(

np.delete(Y_positive_zero,0),0
)
Y_total = np.append(Y_negative,Y_positive_zero)

Now all we need is a corresponding frequency

array.

freq_total = np.arange(
-n_samples/2+1,n_samples/2

)*f_sample/n_samples

The plot, created with the following code, is

shown in Fig. dft.2.

fig, ax = plt.subplots()
plt.plot(freq_total, abs(Y_total),'r-',linewidth=2)
plt.xlabel('frequency $f$ (Hz)')
plt.ylabel('$Y_m$')
plt.show()
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frequency f (Hz)
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1.5
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m

Figure dft.2: the DFT spectrum of the sawtooth function.

Leakage

The DFT assumes the sequence (yn) is periodic

with period N. An implication of this is

that if any periodic components have period

Nshort < N, unless N is divisible by Nshort,

spurious components will appear in (Yn).

Avoiding leakage is difficult, in practice.

Instead, typically we use a window function

to mitigate its effects. Effectively, windowing

functions—such as the Bartlett, Hanning,

and Hamming windows—multiply (yn) by a

function that tapers to zero near the edges of

the sample sequence.

Numpy has several window functions such as

bartlett(), hanning(), and hamming().
Let’s plot the windows to get a feel for them –

see Fig. dft.3.

https://docs.scipy.org/doc/numpy-1.13.0/reference/routines.window.html
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bartlett_window = np.bartlett(n_samples)
hanning_window = np.hanning(n_samples)
hamming_window = np.hamming(n_samples)

fig, ax = plt.subplots()
plt.plot(t_a,bartlett_window,
'b-',label='Bartlett',linewidth=2)

plt.plot(t_a,hanning_window,
'r-',label='Hanning',linewidth=2)

plt.plot(t_a,hamming_window,
'g-',label='Hamming',linewidth=2)

plt.xlabel('time (s)')
plt.ylabel('window $w_n$')
plt.legend()
plt.show()
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Figure dft.3: three window functions to minimize leakage.
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Figure exe.1: one period T of the function y(t). Every line that appears
straight is so.

four.exe Exercises for Chapter four

Exercise four.stanislaw

Explain, in your own words (supplementary

drawings are ok), what the frequency domain is,

how we derive models in it, and why it is useful.

Exercise four.pug

Consider the function

f(t) = 8 cos(t) + 6 sin(2t) +
√
5 cos(4t) + 2 sin(4t) + cos(6t− π/2).

(a) Find the (harmonic) magnitude and

(harmonic) phase of its Fourier series

components. (b) Sketch its magnitude and

phase spectra. Hint: no Fourier integrals are

necessary to solve this problem.

Exercise four.ponyo

Consider the function with a > 0

f(t) = e−a|t|.

From the transform definition, derive the

Fourier transform F(ω) of f(t). Simplify the

result such that it is clear the expression is real

(no imaginary component).

Exercise four.seesaw

Consider the periodic function f : R → Rwith

period T defined for one period as

f(t) = at for t ∈ (−T/2, T/2] (1)

where a, T ∈ R. Perform a fourier series analysis

on f. Letting a = 5 and T = 1, plot f along with

the partial sum of the fourier series synthesis,

the first 50 nonzero components, over t ∈ [−T, T ].
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2. It may be alarming to see a Fourier transform of a periodic function!
Strictly speaking, it does not exist; however, if we extend the transform
to include the distribution (not actually a function) Dirac δ(ω), the
modified-transform does exist and is given in Table ft.1.

2. Python code in this section was generated from a Jupyter notebook
named random_signal_fft.ipynbwith a python3 kernel.

Exercise four.totoro

Consider a periodic function y(t) with some

period T ∈ R and some parameter A ∈ R for

which one period is shown in Fig. exe.1.

1. Perform a trigonometric Fourier series

analysis of y(t) and write the Fourier

series Y(ω).

2. Plot the harmonic amplitude spectrum of

Y(ω) for A = T = 1. Consider using

computing software.

3. Plot the phase spectrum of Y(ω) for

A = T = 1. Consider using computing

software.

Exercise four.mall

Consider the function f : R → R defined as

f(t) =

a− a|t|/T for t ∈ [−T, T ]

0 otherwise
(2)

where a, T ∈ R. Perform a fourier series analysis

on f, resulting in F(ω). Plot F for various a and T .

Exercise four.miyazaki

Consider the function f : R → R defined as

f(t) = ae−b|t−T | (3)

where a, b, T ∈ R. Perform a fourier transform

analysis on f, resulting in F(ω). Plot F for

various a, b, and T .

Exercise four.haku

Consider the function f : R → R defined as

f(t) = a cosω0t+ b sinω0t (4)

where a, b,ω0 ∈ R constants. Perform a fourier

transform analysis on f, resulting in F(ω).2
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Exercise four.secrets

This exercise encodes a “secret word” into a

sampled waveform for decoding via a discrete

fourier transform (DFT). The nominal goal of

the exercise is to decode the secret word. Along

the way, plotting and interpreting the DFT will

be important.

First, load relevant packages.

import numpy as np
import matplotlib.pyplot as plt
from IPython.display import display, Markdown, Latex

We define two functions: letter_to_number to
convert a letter into an integer index of the
alphabet (a becomes 1, b becomes 2, etc.) and

string_to_number_list to convert a string to a
list of ints, as shown in the example at the

end.

def letter_to_number(letter):
return ord(letter) - 96

def string_to_number_list(string):
out = [] # list
for i in range(0,len(string)):

out.append(letter_to_number(string[i]))
return out # list

print(f"aces = { string_to_number_list('aces') }")

aces = [1, 3, 5, 19]

Now, we encode a code string code into a signal
by beginning with “white noise,” which is

broadband (appears throughout the spectrum)

and adding to it sin functions with amplitudes

corresponding to the letter assignments of the

code and harmonic corresponding to the

position of the letter in the string. For instance,

the string 'bad'would be represented by noise

plus the signal

2 sin 2πt+ 1 sin 4πt+ 4 sin 6πt. (5)

Let’s set this up for secret word 'chupcabra'.



four Fourier series and transforms exe Exercises for Chapter four p. 3

0 1 2 3 4 5 6 7

time (s)

−60

−40

−20

0

20

40

60

y n

Figure exe.2: the chupacabra signal.

N = 2000
Tm = 30
T = float(Tm)/float(N)
fs = 1/T
x = np.linspace(0, Tm, N)
noise = 4*np.random.normal(0, 1, N)
code = 'chupcabra' # the secret word
code_number_array = np.array(string_to_number_list(code))
y = np.array(noise)
for i in range(0,len(code)):

y = y + code_number_array[i]*np.sin(2.*np.pi*(i+1.)*x)

For proper decoding, later, it is important to

know the fundamental frequency of the

generated data.

print(f"fundamental frequency = {fs} Hz")

fundamental frequency = 66.66666666666667 Hz

Now, we plot.

fig, ax = plt.subplots()
plt.plot(x,y)
plt.xlim([0,Tm/4])
plt.xlabel('time (s)')
plt.ylabel('$y_n$')
plt.show()

Finally, we can save our data to a numpy file
secrets.npy to distribute our message.
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np.save('secrets',y)

Now, I have done this (for a different secret

word!) and saved the data; download it here:

ricopic.one/mathematical_foundations/source/secrets.npy

In order to load the .npy file into Python, we

can use the following command.

secret_array = np.load('secrets.npy')

Your job is to (a) perform a DFT, (b) plot the

spectrum, and (c) decode the message! Here are

a few hints.

1. Use from scipy import fft to do the
DFT.

2. Use a hanningwindow to minimize the

end-effects. See numpy.hanning for
instance. The fft call might then look like

2*fft(np.hanning(N)*secret_array)/N

where N = len(secret_array).
3. Use only the positive spectrum; you can

lop off the negative side and double the

positive side.

Exercise four.society

Derive a fourier transform property for

expressions including function f : R → R for

f(t) cos(ω0t+ψ)

where ω0, ψ ∈ R.

Exercise four.flapper

Consider the function f : R → R defined as

f(t) = aus(t)e
−bt cos(ω0t+ψ) (6)

http://ricopic.one/mathematical_foundations/source/secrets.npy
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where a, b,ω0, ψ ∈ R and us(t) is the unit step

function. Perform a fourier transform analysis

on f, resulting in F(ω). Plot F for various a, b,

ω0, ψ and T .

Exercise four.eastegg

Consider the function f : R → R defined as

f(t) = g(t) cos(ω0t) (7)

where ω0 ∈ R and g : R → Rwill be defined in

each part below. Perform a fourier transform

analysis on f for each g below for ω1 ∈ R a

constant and consider how things change if

ω1 → ω0.

a. g(t) = cos(ω1t)
b. g(t) = sin(ω1t)

Exercise four.savage

An instrument called a “lock-in amplifier” can

measure a sinusoidal signal

A cos(ω0t+ψ) = a cos(ω0t) + b sin(ω0t) at a
known frequency ω0 with exceptional accuracy

even in the presence of significant noise N(t).

The workings of these devices can be described

in two operations: first, the following

operations on the signal with its noise,

f1(t) = a cos(ω0t) + b sin(ω0t) +N(t),

f2(t) = f1(t) cos(ω1t) and f3(t) = f1(t) sin(ω1t).
(8)

where ω0,ω1, a, b ∈ R. Note the relation of this

operation to the Fourier transform analysis of

Exercise four.. The key is to know with some

accuracty ω0 such that the instrument can set

ω1 ≈ ω0. The second operation on the signal is

an aggressive low-pass filter. The filtered f2 and

f3 are called the in-phase and quadrature
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components of the signal and are typically given

a complex representation

(in-phase) + j (quadrature).

Explain with fourier transform analyses on f2

and f3

a. what F2 = F(f2) looks like,

b. what F3 = F(f3) looks like,

c. why we want ω1 ≈ ω0,
d. why a low-pass filter is desirable, and

e. what the time-domain signal will look like.

Exercise four.strawman

Consider again the lock-in amplifier explored in

Exercise four.. Investigate the lock-in amplifier

numerically with the following steps.

a. Generate a noisy sinusoidal signal at some

frequency ω0. Include enough broadband

white noise that the signal is invisible in a

time-domain plot.

b. Generate f2 and f3, as described in

Exercise four..

c. Apply a time-domain discrete low-pass

filter to each f2 7→ φ2 and f3 7→ φ3, such as

scipy’s scipy.signal.sosfiltfilt, to
complete the lock-in amplifier operation.

Plot the results in time and as a complex

(polar) plot.

d. Perform a discrete fourier transform on

each f2 7→ F2 and f3 7→ F3. Plot the spectra.

e. Construct a frequency domain low-pass

filter F and apply it (multiply!) to each

F2 7→ F ′2 and F3 7→ F ′3. Plot the filtered

spectra.

f. Perform an inverse discrete fourier

transform to each F ′2 7→ f ′2 and F
′
3 7→ f ′3.

Plot the results in time and as a complex

(polar) plot.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sosfiltfilt.html#scipy.signal.sosfiltfilt
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g. Compare the two methods used, i.e.

time-domain filtering versus

frequency-domain filtering.



freq

Frequency response
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Fourier transform

forced response

freq.fir Frequency and impulse response

1 This lecture proceeds in three parts. First,

the Fourier transform is used to derive the

frequency response function. Second, this is

used to derive the frequency response. Third,

the frequency response for an impulse input is

explored.

Frequency response functions

2 Consider a dynamic system described by the

input-output differential equation—with

variable y representing the output, dependent

variable time t, variable u representing the

input, constant coefficients ai, bj, order n, and

m 6 n for n ∈ N0—as:

dny

dtn
+ an−1

dn−1y

dtn−1
+ · · ·+ a1

dy

dt
+ a0y =

bm
dmu

dtm
+ bm−1

dm−1u

dtm−1
+ · · ·+ b1

du

dt
+ b0u.

(1)

3 The Fourier transform F of Eq. 1 yields

something interesting (assuming zero initial

conditions):

F

(
dny

dtn
+ an−1

dn−1y

dtn−1
+ · · ·+ a1

dy

dt
+ a0y

)
=

F

(
bm

dmu

dtm
+ bm−1

dm−1u

dtm−1
+ · · ·+ b1

du

dt
+ b0u

)
⇒

F

(
dny

dtn

)
+ an−1F

(
dn−1y

dtn−1

)
+ · · ·+ a1F

(
dy

dt

)
+ a0F (y) =

bmF

(
dmu

dtm

)
+ bm−1F

(
dm−1u

dtm−1

)
+ · · ·+ b1F

(
du

dt

)
+ b0F (u) ⇒

(jω)nY + an−1(jω)n−1Y + · · ·+ a1(jω)Y + a0Y =

bm(jω)mU+ bm−1(jω)m−1U+ · · ·+ b1(jω)U+ b0U.

Solving for Y,

Y =
bm(jω)m + bm−1(jω)m−1 + · · ·+ b1(jω) + b0

(jω)n + an−1(jω)n−1 + · · ·+ a1(jω) + a0
U.

The inverse Fourier transform F−1 of Y is the

forced response. However, this is not our
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1. It is traditional to use the non-standard, single-sided Fourier
transform for the frequency response function for H(jω). The
motivation is that it then pairs well with the (single-sided) Laplace
transform’s transfer function.

2. A caveat is thatH(jω) =H(s)|s7→jω only holds if the corresponding
single-sided Fourier transform exists.

convolution theorem

convolution operator ∗

primary concern; rather, we are interested to

solve for the frequency response function H(jω)

as the ratio of the output transform Y to the

input transform U, i.e.1

H(jω) ≡ Y(ω)

U(ω)
(2a)

=
bm(jω)m + bm−1(jω)m−1 + · · ·+ b1(jω) + b0

(jω)n + an−1(jω)n−1 + · · ·+ a1(jω) + a0
.

(2b)

4 Note that a frequency response function can

be converted to a transfer function via the

substitution jω 7→ s and, conversely, a transfer

function can be converted to a frequency

response function2 via the substitution s 7→ jω,

as in

H(jω) = H(s)|s→jω.

It is often easiest to first derive a transfer

function—using any of the methods described,

previously—then convert this to a frequency

response function.

Frequency response

5 From above, we can solve for the output

response y from the frequency response

function by taking the inverse Fourier

transform:

y(t) = F−1Y(ω). (3)

From the definition of the frequency response

function (2a),

y(t) = F−1(H(jω)U(ω)). (4)

6 The convolution theorem states that, for two

functions of time h and u,

F(h ∗ u) = F(h)F(u) (5a)

= H(jω)U(ω), (5b)

https://en.wikipedia.org/wiki/Convolution_theorem
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frequency response

sifting property

impulse response

where the convolution operator ∗ is defined by

(h ∗ u)(t) ≡
ˆ ∞
−∞ h(τ)u(t− τ)dτ. (6)

Therefore,

y(t) = F−1(H(jω)U(ω))

= (h ∗ u)(t) (from (5b))

=

ˆ ∞
−∞ h(τ)u(t− τ)dτ. (from (6))

This is the frequency response in terms of all

time-domain functions.

Impulse response

7 The frequency response result includes an

interesting object: h(t). What is the physical

significance of h, other than its definition, as the

inverse Fourier transform of H(jω)?

8 Consider the singularity input u(t) = δ(t), an

impulse. The frequency response is

y(t) =

ˆ ∞
−∞ h(τ)δ(t− τ)dτ. (7)

The so-called sifting property of δ yields

y(t) = h(t). (8)

That is, h is the impulse response.

9 A very interesting aspect of this result is that

H(jω) = F(h). (9)

That is, the Fourier transform of the impulse

response is the frequency response function. A

way to estimate, via measurement, the

frequency response function (and transfer

function) of a system is to input an impulse,

measure and fit the response, then Fourier

transform it. Of course, putting in an actual

impulse and fitting the response, perfectly are

impossible; however, estimates using

approximations remain useful.

http://mathworld.wolfram.com/SiftingProperty.html
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10 It is worth noting that frequency

response/transfer function estimation is a

significant topic of study, and many techniques

exist. Another method is described in

Lec. freq.sin.

Example freq.fir-1 re: impulse response estimation of H(jω)

Estimate the frequency response functionH(jω)

of a system from impulse response h(t) “data”.

(We’ll generate this data ourselves, simulating

a measured impulse response.) We will not

attempt to find the functional form of H(jω),

just its “numerical” form, i.e. we’ll plot our

estimate of the spectrum.

Note that if we wanted to find a functional

estimate of H(jω), it would behoove us to use

Matlab’s System Identification Toolbox.

Generate impulse response data

We need a system to simulate to get this

(supposedly “measured”) data. Let’s define a

transfer function

H(s) =
s+ 20

s2 + 4s+ 20
. (10)

sys = tf([1,20],[1,4,20])

sys =

s + 20
--------------
s^2 + 4 s + 20

Continuous-time transfer function.

What are the poles?

poles = pole(sys)

poles =

-2.0000 + 4.0000i
-2.0000 - 4.0000i

https://www.mathworks.com/products/sysid.html
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This corresponds to a damped oscillator with

natural frequency as follows.

abs(poles(1))

ans =

4.4721

Now let’s find the impulse response.

fs = 1000; % Hz .. sampling frequency
N = 2^12;
t_a = 0:1/fs:(N-1)/fs;
h_a = impulse(sys,t_a);

To make this seem a little more realistic as a

“measurement,” we should add some noise.

noise = 0.01*randn(N,1);
h_noisy = h_a + noise;

Plot the impulse response.

figure
plot(...
t_a,h_noisy, ...
'linewidth',1.5 ...

)
xlabel('time (s)')
ylabel('impulse response')
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Discrete Fourier transform

The discrete Fourier transform will give us

an estimate of the frequency spectrum of the

system; that is, a numerical version of H(jω).

H = fft(h_noisy);

Compute the one-sided magnitude spectrum.

H_mag = abs(H/fs); % note the scaling
H_mag = H_mag(1:N/2+1); % first half, only

Compute the one-sided phase spectrum.

H_pha = angle(H); % note the scaling
H_pha = H_pha(1:N/2+1); % first half, only

Now the corresponding frequencies.

f = fs*(0:(N/2))/N;

Plot the frequency response function

We like to use a logarithmic scale, at least in

frequency, for the spectrum plots.

figure
semilogx(...
2*pi*f,H_mag, ...
'linewidth',1.5 ...

)
xlabel('frequency (rad/s)')
ylabel('|H(j\omega)|')

100 101 102 103 104
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figure
semilogx(...
2*pi*f,180/pi*H_pha, ...
'linewidth',1.5 ...

)
xlabel('frequency (rad/s)')
ylabel('\angle H(j\omega) (deg)')
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When the magnitude |H(jω)| is small, the

signal-to-noise ratio is so low that the phase

estimates are dismal. This can be mitigated

by increasing sample-size and using more

advanced techniques for estimating H(jω),

such as those available in Matlab’s System

Identification Toolbox.
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freq.sin Sinusoidal input, frequency response

1 In this lecture, we explore the

relationship—which turns out to be pretty

chummy—between a system’s frequency

response function H(jω) and its sinusoidal

forced response.

2 Let’s build from the frequency response

function H(jω) definition:

y(t) = F−1Y(ω) (1a)

= F−1(H(jω)U(ω)). (1b)

We take the input to be sinusoidal, with

amplitude A ∈ R, angular frequency ω0, and
phase ψ:

u(t) = A cos(ω0t+ψ). (2)

The Fourier transform of the input, U(ω), can be

constructed via transform identities from

Table ft.1. This takes a little finagling. Let

p(t) = Aq(t), (3a)

q(t) = r(t− t0), and (3b)

r(t) = cosω0t, where (3c)

t0 = −ψ/ω0. (3d)

The corresponding Fourier transforms, from

Table ft.1, are

P(ω) = AQ(ω), (4a)

Q(ω) = e−jωt0R(ω), and (4b)

R(ω) = πδ(ω−ω0) + πδ(ω+ω0). (4c)

Putting these together,

U(ω) = Aπ
(
ejψω/ω0δ(ω−ω0) + e

jψω/ω0δ(ω+ω0)
)

= Aπ
(
ejψδ(ω−ω0) + e

−jψδ(ω+ω0)
)
.

(because δs)
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3 And now we are ready to substitute into

Eq. 1b; also applying the “linearity” property of

the Fourier transform:

y(t) = Aπ
(
ejψF−1(H(jω)δ(ω−ω0)) + e

−jψF−1(H(jω)δ(ω+ω0))
)
.

(5)

The definition of the inverse Fourier transform

gives

y(t) =
A

2

(
ejψ

ˆ ∞
−∞ ejωtH(jω)δ(ω−ω0)dω+

+ e−jψ
ˆ ∞
−∞ ejωtH(jω)δ(ω+ω0)dω

)
.

(6)

Recognizing that δ is an even distribution

(δ(t) = δ(−t)) and applying the sifting property

of δ allows us to evaluate each integral:

y(t) =
A

2

(
ejψejω0tH(jω0) + e

−jψe−jω0tH(−jω0)
)
.

(7)

Writing H in polar form,

y(t) =
A

2

(
ej(ω0t+ψ) |H(jω0)| e

j∠H(jω0) +

+ e−j(ω0t+ψ)|H(−jω0)|e
j∠H(−jω0)

)
.

(8)

The Fourier transform is conjugate

symmetric—that is, F(−ω) = F∗(ω)—which

allows us to further simply:

y(t) =
A|H(jω0)|

2

(
ej(ω0t+ψ)ej∠H(jω0) + e−j(ω0t+ψ)e−j∠H(jω0)

)
(9a)

= A|H(jω0)|
ej(ω0t+ψ+∠H(jω0)) + e−j(ω0t+ψ+∠H(jω0))

2
.

(9b)

Finally, Euler’s formula yields something that

deserves a box.

https://ocw.mit.edu/resources/res-6-007-signals-and-systems-spring-2011/lecture-notes/MITRES_6_007S11_lec09.pdf
https://ocw.mit.edu/resources/res-6-007-signals-and-systems-spring-2011/lecture-notes/MITRES_6_007S11_lec09.pdf
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Equation 10 sinusoidal response in

terms of H(jω)

4 This is a remarkable result. For an input

sinusoid, a linear system has a forced response

that

• is also a sinusoid,

• is at the same frequency as the input,

• differs only in amplitude and phase,

• differs in amplitude by a factor of |H(jω)|,

and

• differs in phase by a shift of ∠H(jω).

Now we see one of the key facets of the

frequency response function: it governs how a

sinusoid transforms through a system. And just

think how powerful it will be once we combine

it with the powerful principle of superposition

and the mighty Fourier series representation of

a function—as a “superposition” of sinusoids!
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Bode plots

decibels

freq.bode Bode plots

1 This lecture also appears in Control: an

introduction.

2 Given Eq. 10, we are often most-interested in

the magnitude |H(jω)| and phase ∠H(jω) of the

frequency response function. Each of these is a

function of angular frequency ω, so plotting

|H(jω)| vs. ω and ∠H(jω) vs. ω is quite useful.

Bode plots are such plots with axes scaled in a

specific manner.

3 A Bode plot is a useful graphical

representation of the frequency response of a

system. Let |U(ω)| and |Y(ω)| be the complex

amplitudes of the input and the output,

respectively. Recall that the magnitude of the

frequency response function |H(jω)| can be

expressed as

Equation 1 frequency response

function as an amplitude ratio

4 This is a ratio of amplitudes, and so it is akin

to amplitude ratios commonly expressed in

decibels (dB). However, the magnitude ratio of

Eq. 1 is not dimensionless, and therefore cannot

be expressed as decibel in the strict sense.

Nevertheless, it is standard usage in system

dynamics and control theory use the familiar

formula to compute the logarithmic magnitude

Equation 2 logarithmic magnitude

of H(jω) in “dB”

5 The phase is usually plotted in degrees, and

the ω-axis is logarithmic in both plots. The two

plots are typically tiled vertically with the

http://ricopic.one/control/
http://ricopic.one/control/
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magnitude plot above the phase. We now work

a simple example.

Example freq.bode-1 re: A simple Bode plot

Let a system have transfer function H(s) = s,

a single zero at the origin. Find the frequency

response function and draw the Bode plot for

the system.
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phase distortion

filter

freq.per Periodic input, frequency response

1 Let a system H have a periodic input u

represented by a Fourier series. For reals a0, ω1

(fundamental frequency), An, and φn, let

u(t) =
a0
2

+

∞∑
n=1

An sin(nω1t+ φn). (1)

The nth harmonic is

un(t) = An sin(nω1t+ φn),

which, from Equation 10 yields forced response

yn(t) = An|H(jnω1)| sin(nω1t+ φn + ∠H(jnω1)).

2 Applying the principle of superposition, the

forced response of the system to periodic input

u is

y(t) =
a0
2
H(j0) +

∞∑
n=1

An|H(jnω1)| sin(nω1t+ φn + ∠H(jnω1)).

(2)

3 Similarly, for inputs expressed as a complex

Fourier series with components

un(t) = cne
jnω1t, (3)

each of which has output

yn(t) = cnH(jnω1)e
jnω1t, (4)

the principle of superposition yields

y(t) =

∞∑
n=−∞ cnH(jnω1)e

jnω1t. (5)

4 Eqs. 2 and 5 tell us that, for a periodic input,

we obtain a periodic output with each harmonic

ωn amplitude scaled by |H(jωn)| and phase

offset by ∠H(jωn). As a result, the response will

usually undergo significant distortion, called

phase distortion. The system H can be
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considered to filter the input by amplifying and

suppressing different harmonics. This is why

systems not intended to be used as such are still

sometimes called “filters.” This way of thinking

about systems is very useful to the study of

vibrations, acoustics, measurement, and

electronics.

5 All this can be visualized via a Bode plot,

which is a significant aspect of its analytic

power. An example of such a visualization is

illustrated in Figure per.1.

Example freq.per-1 re: filtering a square wave

In Example four.series-1, we found that

a square wave of amplitude one has

trigonometric Fourier series components

an = 0 and bn =
2

nπ
(1− cos(nπ)) =

0 n even

4
nπ n odd.

Therefore, from the definitions of Cn and φn,

with bn > 0,

Cn = bn and

φn = arctan bn
an

=

¿ (indeterminate) for n even

π/2 for n odd.

Let this square wave be the input u to a

second-order system with frequency response

function H(jω), natural frequency ωN = ω5

(fifth harmonic frequency), and damping ratio

ζ = 0.1.

Figure per.2 and Figure per.3 show the

magnitude and phase spectra for input u,

frequency response function H(jω), and output

y.

0

0.5

1

in
p
u
t
C
n
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Figure per.2: the magnitude line spectrum Cn of the input, which
is operated on by the measurement system with frequency response function
H(jω) to form the output magnitude line spectrum |H(jωn)|Cn.
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Figure per.3: the phase line spectrum φn of the input, which
is operated on by the measurement system with frequency response function
H(jω) to form the output phase line spectrum ∠H(jωn) + φn.
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Figure per.1: response y of a systemH to periodic input u.
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/25 p.

3. The following statements are equivalent. A second-order system

• has a complex conjugate pair of poles,
• has a complex conjugate pair of the characteristic equation,
• has a complex conjugate pair of eigenvalues, and
• is underdamped.

freq.exe Exercises for Chapter freq

Exercise freq.gauche

Consider a system with i/o ODE

ÿ+ a ẏ+ by = bu (1)

for constants a, b ∈ R.

1. Derive the frequency response function

H(jω) and the transfer function H(s). Hint:

either can be found from the other.

2. Let u(t) = 7 cos(5t+ 3). What is the steady

state forced response y(t) in terms of a, b?

Hint: this shouldn’t require much

computation.

3. Now let u(t) = 3 δ(t), an impulse. What is

the impulse response y(t) in terms of the

inverse Fourier transform F−1 and H(jω)?

Do not substitute in for H(jω) or inverse

transform.

4. Use computer software to plot the Bode

plot of H(jω) for a = b = 1.

5. For b = 1, for what range of awill there be

a complex conjugate pair of poles?3 Hint:

consider comparing the transfer function

derived in part (a) to the standard form of

the second-order transfer function in ??a.

Exercise freq.tickle

Let a transfer function H be

10(s+ 100)

s2 + 2 s+ 100
. (2)

Use H to respond to the following questions and

imperatives.

a. Write H as a product of standard-form

transfer functions.

b. Find the frequency response function

H(jω) without simplifying.
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c. Use the axes below to sketch the Bode plot

of H.
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Exercise freq.me

Let a transfer function H be

H(s) =
1000(s+ 10)

(s+ 100)(s+ 1000)
.

Use H to respond to the following questions and

imperatives.

a. Write H as a product of standard-form

transfer functions.

b. Find the frequency response function

H(jω) without simplifying.

c. Use the axes below to sketch the Bode plot

of H.
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Exercise freq.elmo

Consider a system with transfer function

H(s) =
100(s+ 9)

(s+ 5)(s+ 6)(s2 + 8s+ 32)
.

a. Identify the poles and zeros of H.

b. Derive the frequency response function

H(jω). Do not simplify the expression.

c. Create a Bode plot of H.

d. Let the system have sinusoidal input

u(t) = 2 cos(3t). What is the steady-state

system output y(t)?

e. Let the system have the same sinusoidal

input as previously. Simulate its forced

response for nine seconds and plot it.
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1. See (� Rowell and Wormley, System Dynamics: An Introduction,
ch. 15) for an introduction that inspires our own.

non-integrable

lap.in Introduction

1 The Laplace transform1 is a generalized

Fourier transform that exists for a much broader

class of functions. In fact, every function for

which there is a Fourier transform, there is also

a Laplace transform—but the reverse does not

hold. Its excellence for linear system analysis

cannot be overstated, and leads some to

undervalue the Fourier transform. However,

the Fourier transform is much more

conceptually grounded in the frequency domain

given that it can be understood as an extension

of the Fourier series.

2 The Laplace transform’s conceptual

grounding has the same root, but in a

less-recognizable form since the explicit

frequency variable ωwill be consumed by the

Laplace transform s, introduced in a moment.

But first, we motivate the Laplace transform by

identifying a function of great importance to

system analysis that does not have a Fourier

transform: the unit step function us(t).

3 The Fourier transorm of us(t) does not exist

because its defining improper integral does not

converge in the absolute sense—a situation we

describe as non-integrable. The Laplace

transform does exist for us(t) because it patches

the Fourier transform integrand with a

weighting function w : R → R defined as

w(t) = e−σt (1)

for σ ∈ R. Clearly such a factor may drive the

integrand for some positive σ.

Let’s take the Fourier transform of a function of

time fmultiplied by this weightin factor (as a

foreshadowing of how the Laplace transform
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two-sided Laplace trnasform

will use it):

F(f(t)w(t)) =

ˆ ∞
−∞ f(t)w(t)e−jωt dt (FT def.)

=

ˆ ∞
−∞ f(t)e−σte−jωt dt (2a)

=

ˆ ∞
−∞ f(t)e−(σ+jω)t dt. (2b)

We see the factor σ+ jω has emerged. This

factor also arises in the Laplace transform, so we

make an explicit definition.

Definition lap.1: Laplace s

The Laplace s ∈ C (a.k.a. complex frequency) is

defined as

s = σ+ jω

for σ,ω ∈ R.

4 The ubiquity of s has generated a common

term called the , which is used

as an alias for the set of complex numbers C,

which, when considering its real and imaginary

parts to constitute two Cartesian axes (i.e. R2)
charts a plane.

5 Returning to our Fourier transform,

F(f(t)w(t)) =

ˆ ∞
−∞ f(t)e−st dt. (3)

This is sometimes called the two-sided Laplace

trnasform, which is rarely used. However, it is

instructive to recognize that potentially, for

some region of s-values in the complex plane,

the transform exists. We call this the

(ROC) of the transform.

6 Now consider what happens if f(t) = us(t),

the unit step that doesn’t have a Fourier

transform, but the two-sided transform of Eq. 2a

yields

F(us(t)w(t)) =

ˆ ∞
−∞ us(t)e−σte−jωt dt

F(us(t)e
−σt),
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a straightup Fourier transform of us(t)e−σt.

Consulting Table ft.1, we see that the transform

is

F(us(t)e
−σt) =

1

σ+ jω
. (4)

So, although F(us(t)) ,

F(us(t)e
−σt) does. This bodes well for the

Laplace transform.
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2. We will refer exclusively to the one-sided transform as the Laplace
transform and will qualify “two-sided” in the other case.

3. Here T = L2(0,∞) is the set of square-integrable functions on the
positive reals andS =H2(C+) is aHardy spacewith square normon the
(complex) right half-plane (� Jonathan R. Partington. Linear operators
and linear systems: An analytical approach to control theory. London
Mathematical Society Student Texts. CUP, 2004. ISBN: 9780521546195,
p. 7). This highly mathematical notation highlights the fact that the
Laplace transform maps a real function of t to a complex function of
s.

4. For more detail, see Rowell and Wormley, (Rowell and Wormley,
System Dynamics: An Introduction) Dyke, (P.P.G. Dyke. An
Introduction to Laplace Transforms and Fourier Series. 2 edition.
Springer Undergraduate Mathematics Series. Springer, 2014. ISBN:
9781447163954) and Mathews and Howell. (John H. Mathews
and Russell W. Howell. Complex Analysis for Mathematics and
Engineering. 6 edition. Jones and Bartlett Publishers, 2012. ISBN:
9781449604455)

5. Another common notation is L(f(t)).

6. The same relation can be shown to hold between the two-sided Fourier
and Laplace transforms.

lap.def Laplace transform and its inverse

The Laplace transform

1 The two-sided definition of the Laplace

transform was encountered in Lec. lap.in. This

is rarely used in engineering analysis, which

prefers the following one-sided transform.2

Definition lap.2: Laplace transform

Let f : R+ → R be a function of time t for

which f(t) = 0 for t < 0. The Laplace transform3

L : T → S of f is defined as4

(Lf)(s) =

ˆ ∞
0

f(t)e−st dt.

2 As with the Fourier transform image, it is

customary to the Laplace

transform image; e.g.5

F(s) = (Lf)(s).

3 As with the two-sided Laplace transform, if

the transform exists, it will do so for some

region of convergence (ROC), a subset of the

s-plane. It is best practice to report a Laplace

transform image paired with its ROC.

4 On the imaginary axis (σ = 0), s = jω and the

Laplace transform is

(Lf)(s) =

ˆ ∞
0

f(t)e−jωt dt, (1)

which is the one-sided Fourier transform!

Therefore, when the Laplace transform exists

for a region of convergence that

, the one-sided Fourier

transform also exists and6

(Ff)(ω) = (Lf)(s)|s7→jω (2)

or, haphazardly using F to denote both

transforms,

F(ω) = F(s)|s7→jω. (3)
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Figure def.1: Laplace transform maps L and L−1 on the function spaces T
and S.

Figure def.2: detail view of Laplace transform maps L and L−1 along with
their image functions f and F.

Box lap.1 Laplace terminology

The terminology in the literature for

the Laplace transform and its inverse,

introduced next, is inconsistent. The

“Laplace transform” is at once taken to

be a function that maps a function of t to

a function of s and a particular result of

that mapping (technically the image of the

map), which is a complex function of s.

Even we will say things like “the value of

the Laplace transform F(s) at s = 2 + j4,”

by which we really mean the image of the

complex function F(s)|s→2+j4 that was the

image of the Laplace transformmap of the

real function of time f(t). You can see why

we shorten it.

The inverse Laplace transform

5 As with the Fourier transform, the Laplace

transform has an .

Definition lap.3: Inverse Laplace transform

Let s ∈ C be the Laplace s and F(s) a Laplace

transform image of real function f(t). The

inverse Laplace transform L−1 : S → T is

defined as

(L−1F)(t) =
1

j2π

ˆ σ+j∞
σ−j∞ F(s)est ds.

As is illustrated in Fig. def.1, it can be shown

that the inverse Laplace transform image of a

Laplace transform image of f(t) equals f(t) and

vice-versa; i.e.

(L−1Lf)(t) = f(t) and

(LL−1F)(s) = F(s).

That is, the inverse Laplace transform is a true

inverse. Therefore, we call the Laplace

transform and its inverse a .
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6 A detail view of Fig. def.1 is given in

Fig. def.2.

Example lap.def-1

Returning to the troublesome unit step

f(t) = us(t), calculate its Laplace transform

image F(s).

Directly applying the definition,

F(s) =

ˆ ∞
0

f(t)e−st dt

=

=
−1

s
e−st

∣∣∣∣∞
t=0

=
(

lim
t→∞−e−(σ+jω)t/s

)
−

−1

s
e0

(s = σ+ jω)

= 1/s. (σ > 0)

Note that the limit only converges for σ > 0,

so the region of convergence is the right half

s-plane, exclusive of the imaginary axis. This

exclusion tells us what we already know,

that the Fourier transform us does not exist.

However, the Laplace transform does exist and

is simply 1/s!

7 Both the Laplace transform and especially its

inverse are typically calculated with the help of

software and tables such as Table lap.1, which

includes specific images and important

properties. We will first consider these

properties in Lec. lap.pr, then turn to the use of

software and tables in Lec. lap.inv where we

focus on the more challenging inverse

calculation.
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lap.pr Properties of the Laplace transform

1 The Laplace transform has several important

properties, several of which follow from the

simple fact of its definition.

We state the properties without proof, but

several are easy to show and make good

exercises.

Existence

2 As we have already seen, the Laplace

transform exists for more functions than does

the Fourier transform. Let f : R+ → R have a

finite number of finite-magnitude

discontinuites. If there can be foundM,α ∈ R
such that

|f(t)| 6Meαt ∀t ∈ R+ (1)

then the transform exists (converges) for σ > α.

3 Note that this is a

condition, not necessary. That is, there may be

(and are) functions for which a transform exists

that do not meet the condition above.

Linearity

4 The Laplace transform is a

map. Let a, b ∈ R; f, g ∈ T where T is a set of

functions of nonnegative time t; and F,G the

Laplace transform images of f, g. The following

identity holds:

L(af(t) + bg(t)) = aF(s) + bG(s). (2)

Time-shifting

5 Shifting the time-domain function f(t) in

time corresponds to a simple product in the

s-domain Laplace transform image. Let the

Laplace transform image of f(t) be F(s) and

τ ∈ R. The following identity holds:

L(f(t+ τ)) = esτF(s). (3)
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7. For this reason, it is common for s to be called the differentiator, but
this is imprecise and pretty bush league.

8. For this reason, it is common for 1/s to be called the integrator.

final value theorem

Time-differentiation

6 the time-domain

function f(t)with respect to time yields a simple

relation in the s-domain. Let F(s) be the Laplace

transform image of f(t) and f(0) the value of f at

t = 0. The following identity holds:7

L
df
dt = sF(s) − f(0). (4)

Time-integration

7 Similarly, the

time-domain function f(t) with respect to time

yields a simple relation in the s-domain. Let F(s)

be the Laplace transform image of f(t). The

following identity holds:8

L

ˆ t
0

f(τ)dτ = 1

s
F(s). (5)

Convolution

8 The convolution operator ∗ is defined for

real functions of time f, g by

(f ∗ g)(t) ≡
ˆ ∞
−∞ f(τ)g(t− τ)dτ. (6)

This too has a simple Laplace transform. Let F,G

be the Laplace transforms of f, g. The following

identity holds:

L(f ∗ g)(t) = F(s)G(s). (7)

Final value theorem

9 The final value theorem is a property of the

Laplace transform. This theorem allows the

computation of time-domain

steady-state values from the frequency domain,

which can be quite convenient when the inverse

Laplace transform is elusive. Let f(t) have

tranform F(s) and its time-derivative have an

existing transform. If the limit in time exists,

lim
t→∞ f(t) = lim

s→0
sF(s). (8)
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Note that if the steady-state of f(t) is not a

constant (e.g. it is sinusoidal), the limit does not

exist.
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partial fraction expansion

9. � Rowell and Wormley, System Dynamics: An Introduction, App. C.

lap.inv Inverse Laplace transforming

1 The inverse Laplace transform is a

in the s-plane, and it can be quite

challenging to calculate. Therefore, software

and tables such as Table ft.1 are typically

applied, instead. In system dynamics, it is

common to apply the inverse Laplace transform

to a ratio (or products thereof) of polynomials in

s like

ams
m + am−1s

m−1 + · · ·+ a0
bnsn + bn−1sn−1 + · · ·+ b0

(1)

for ai, bi ∈ R. However, inverse transforms of

general ratios such as these do not appear in the

tables. Instead, low-order polynomial ratios do

appear and have simple inverse Laplace

transforms. Suppose we could decompose Eq. 1

into smaller additive terms. Due to the linearity

property of the inverse Laplace transform, each

transform could be calculated separately and

consequently summed.

2 The name given to the process of

decomposing Eq. 1 into smaller

terms is called partial fraction

expansion9. It is not particularly difficult, but it

is rather tedious. Fortunately, several software

tools have been developed for this expansion.

Inverse transform with a partial fraction expansion in Matlab

3 Matlab’s Symbolic Math toolbox function

partfrac is quite convenient.

help partfrac

4 Let’s apply this to an example.

Example lap.inv-1

What is the inverse Fourier transform image of

F(s) =
s2 + 2s+ 2

s2 + 6s+ 36
· 6

s+ 6
? (2)
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First, define a symbolic s.

syms s 'complex'

Nowwe can define F, a symbolic expression for

F(s).

F = (s^2 + 2*s + 2)/(s^2 + 6*s + 36)*6/(s+6);

Now all that remains is the apply partfrac.

F_pf = partfrac(F)

F_pf =
13/(3*(s + 6)) + ((5*s)/3 - 24)/(s^2 + 6*s + 36)

Now consider the Laplace transform table. The

first term can easily be inverted:

L−1

(
13

3
· 1

s+ 6

)
=
13

3
L−1 1

s+ 6
(linearity)

13

3
e−6t. (table)

The second term, call it F2, is not quite as

obvious, but the preimage

s− a

(s− a)2 +ω2
(3)

is close. Let’s first make the numerator match:

5

3
s− 24 =

5

3

(
s−

72

5

)
, (4)

so a1 = 72/5. Now we need the term (s − a1)
2

in the denominator. Asserting the equality

s2 + 6s+ 36 = (s− a2)
2 +ω2

= s2 − 2a2s+ a
2
2 +ω

2.

Equating the s0 coefficents yields ω2 = 36 − a22
and equating the s coefficient yields a2 = −3 6=
a1 = 72/5, so no cigar! What if we “force” the

rule by using a new a ′
1 = a2, which can be

achieved by adding a term (and subtracting it
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elsewhere)? We need a ′
1 = −3, so if we add (and

subtract) a term

5
3(a1 − a

′
1)

(s− a2)2 +ω2
,

like

F2 =
5
3(s− a1)

(s− a2)2 +ω2
+

5
3(a1 − a

′
1)

(s− a2)2 +ω2
−

5
3(a1 − a

′
1)

(s− a2)2 +ω2

we can combine the first two terms to yield

F2 =
5
3(s− a

′
1)

(s− a2)2 +ω2
−

5
3(a1 − a

′
1)

(s− a2)2 +ω2

where we recall that a ′
1 = a2 by construction.

Now the expression is

F2 =
5
3(s− a2)

(s− a2)2 +ω2
−

5
3(a1 − a2)

(s− a2)2 +ω2

The first term is, by construction, in the Laplace

transform table. The second term is close to

ω

(s− a)2 +ω2

for which we must make the numerator equal

ω. Our ω2 = 36 − a22 = 27, so ω = ±
√
27. The

current numerator is

5

3
(a1 − a2) =

5

3

(
72

5
+ 3

)
= 29.

So we factor out 29/
√
27 to yield

29√
27
ω

(s− a2)2 +ω2

Returning to F2, we have arrived at

F2 =
5
3(s− a2)

(s− a2)2 +ω2
−

29√
27
ω

(s− a2)2 +ω2

Now the inverse transform is

L−1F2 =
5

3
L−1 (s− a2)

(s− a2)2 +ω2
−

29√
27

L−1 ω

(s− a2)2 +ω2

(linearity)

=
5

3
ea2t cosωt− 29√

27
ea2t sinωt.

Simple! Putting it all together, then,

F(s) =
13

3
e−6t +

5

3
e−3t cos(3

√
3t) −

29

3
√
3
e−3t sin(3

√
3t).
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5 You may have noticed that even with

Matlab’s help with the partial fraction

expansion, the inverse Laplace transform was a

bit messy. This will motivate you to learn the

technique in the next section.

Just clubbing it with Matlab

6 Sometimes we can just use Matlab (or a

similar piece of software) to compute the

transform.

7 Matlab’s Symbolic Math toolbox function for

the inverse Laplace transform is ilaplace (and
for the Laplace transform, laplace).

help ilaplace

8 Let’s apply this to the same example.

Example lap.inv-2

What is the inverse Fourier transform image of

F(s) =
s2 + 2s+ 2

s2 + 6s+ 36
· 6

s+ 6
? (5)

Use Matlab’s ilaplace.

First, define a symbolic s.

syms s 'complex'

Nowwe can define F, a symbolic expression for

F(s).

F = (s^2 + 2*s + 2)/(s^2 + 6*s + 36)*6/(s+6);

Now all that remains is the apply ilaplace.

F_pf = ilaplace(F)

F_pf =
(13*exp(-6*t))/3 + (5*exp(-3*t)*(cos(3*3^(1/2)*t) -

(29*3^(1/2)*sin(3*3^(1/2)*t))/15))/3↪→

This is easily seen to be equivalent to our

previous result

F(s) =
13

3
e−6t +

5

3
e−3t cos(3

√
3t) −

29

3
√
3
e−3t sin(3

√
3t).
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lap.sol Solving io ODEs with Laplace

1 Laplace transforms provide a convenient

method for solving input-output (io) ordinary

differential equations (ODEs).

2 Consider a dynamic system described by the

—with t time, y the output, u

the input, constant coefficients ai, bj, order n,

andm 6 n for n ∈ N0—as:

dny
dtn + an−1

dn−1y
dtn−1 + · · ·+ a1

dy
dt + a0y =

bm
dmu
dtm + bm−1

dm−1u

dtm−1
+ · · ·+ b1

du
dt + b0u. (1)

Re-written in summation form,

n∑
i=0

aiy
(i)(t) =

m∑
j=0

bju
(j)(t), (2)

where we use Lagrange’s notation for

derivatives, and where, ,

an = 1.

3 The Laplace transform L of Eq. 2 yields

L

n∑
i=0

aiy
(i)(t) = L

m∑
j=0

bju
(j)(t) ⇒ (3a)

n∑
i=0

aiL
(
y(i)(t)

)
=

m∑
j=0

bjL
(
u(j)(t)

)
. (linearity)

In the next move, we recursively apply the

property to yield the

following

n∑
i=0

ai

siY(s) +
i∑
k=1

si−ky(k−1)(0)︸ ︷︷ ︸
Ii(s)

 =

m∑
j=0

bjs
jU(s),

(4)

where terms in Ii(s) arise from the

. Splitting the left outer sum and

https://en.wikipedia.org/wiki/Notation_for_differentiation#Lagrange's_notation
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forced

free

solving for Y(s),

n∑
i=0

ais
iY(s) +

n∑
i=0

aiIi(s) =

m∑
j=0

bjs
jU(s) ⇒

(5a)
n∑
i=0

ais
iY(s) =

m∑
j=0

bjs
jU(s) −

n∑
i=0

aiIi(s) ⇒

(5b)

Y(s)

n∑
i=0

ais
i = U(s)

m∑
j=0

bjs
j −

n∑
i=0

aiIi(s) ⇒

(5c)

Y(s) =

∑m
j=0 bjs

j∑n
i=0 ais

i
U(s)︸ ︷︷ ︸

Yfo(s)

+
−
∑n
i=0 aiIi(s)∑n
i=0 ais

i︸ ︷︷ ︸
Yfr(s)

.

(5d)

4 So we have derived the

Y(s) in terms of the forced

and free responses (still in the s-domain, of

course)! For a solution in the time-domain, we

must inverse Laplace transform:

y(t) = (L−1Yfo)(t)︸ ︷︷ ︸
yfo(t)

+(L−1Yfr)(t)︸ ︷︷ ︸
yfr(t)

. (6)

This is an important result!

Example lap.sol-1

Consider a systemwith step inputu(t) = 7us(t),

output y(t), and io ODE

ÿ+ 2ẏ+ y = 2u. (7)

Solve for the forced responseyfo(t)with Laplace

transforms.

5 From Eq. 6,

yfo(t) = (L−1Yfo)(t)

= L−1

(∑m
j=0 bjs

j∑n
i=0 ais

i
U(s)

)
(Eq. 5d)

= L−1

(
2

s2 + 2s+ 1
U(s)

)
. (Eq. 7)

We can u(t) for
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U(s):

U(s) = (Lu)(s)

= 7(Lus)(s)

=
7

s
,

where the last equality follows froma transform

easily found in Table lap.1.

6 Returning to the time response

,

yfo(t) = L−1

(
2

s2 + 2s+ 1
U(s)

)
= L−1

(
2

s2 + 2s+ 1
· 7
s

)
.

7 We can use Matlab’s Symbolic Math

toolbox function partfrac to perform the

partial fraction expansion.

syms s 'complex'
Y = 2/(s^2 + 2*s + 1)*7/s;
Y_pf = partfrac(Y)

Y_pf =

14/s - 14/(s + 1)^2 - 14/(s + 1)

Or, a little nicer to look at,

Y(s) = 14

(
1

s
−

1

(s+ 1)2
−

1

s+ 1

)
.

Substituting this into our solution,

yfo(t) = 14L
−1

(
1

s
−

1

(s+ 1)2
−

1

s+ 1

)
(linearity)

= 14

(
L−1 1

s
− L−1 1

(s+ 1)2
− L−1 1

s+ 1

)
= 14

(
us(t) − te

−t − e−t
)

(Table lap.1)

= 14
(
us(t) − (t+ 1)e−t

)
.

So the forced response starts at 0 and decays

to a steady 14.
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lap.exe Exercises for Chapter lap



transfer function definition

tf

Transfer functions

1 In Lec. ss.ss2tf2io, we briefly introduced the

transfer function, a very important dynamic

system representation to which we now turn

our attention. We repeat the definition here.

2 Let a system have an input u and an output

y. Let the Laplace transform of each be denoted

U and Y, both functions of complex Laplace

transform variable s. A transfer function H is

defined as the ratio of the Laplace transform of

the output over the input:

H(s) =
Y(s)

U(s)
. (1)

3 The transfer function is exceedingly useful in

many types of analysis. One of its most

powerful aspects is that it gives us access to

thinking about systems as operating on an input

u and yielding an output y.

4 As we learned in Lec. ss.ss2tf2io, one can

easily convert a state-space model to a (matrix)

transfer function model with the formula

H(s) = C(sI−A)−1B+D. (2)

We also learned that a transfer function and an

io ODE are related via the Laplace transform.

The similarities are rather easy to spot, so io

ODEs and tranfer functions can be converted to

each other via inspection.
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poles

zeros

1. It is common to use this as the definition of a pole, which allows
us to talk of “pole-zero cancellation.” Occasionally we will use this
terminology.

2. It is common to use this as the definition of a zero, which allows
us to talk of “pole-zero cancellation.” Occasionally we will use this
terminology.

tf.zp Poles and zeros

1 Two important types of objects defined from

a transfer function H can be used to characterize

a system’s behavior: poles and zeros.

Definition tf.1: poles

Let a system have transfer function H. Its poles

are values of s for which

|H(s)| → ∞.
2 A transfer function written as a ratio has

poles wherever the denominator is zero; that is,

s for which1

denH(s) = 0.

Definition tf.2: zeros
Let a system have transfer function H. Its zeros

are values of s for which

|H(s)| → 0.

3 A transfer function written as a ratio has

zeros wherever the numerator is zero; that is, s

for which2

numH(s) = 0.

4 Given a transfer function Hwith n poles pi

and ν zeros zj, we can write, for K ∈ R,

H(s) = K

ν∏
j=1

s− zj

n∏
i=1

s− pi

.

5 Poles and zeros can define a single-input,

single-output (SISO) system’s dynamic model,

within a constant.

6 Recall that, even for multiple-input,

multiple-output (MIMO) state-space models,
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pole-zero plot

the denominator of every transfer function is

the corresponding system’s characteristic

equation—the roots of which dominate the

system’s response and are equal to its

eigenvalues. It is now time to observe a crucial

identity.

Corollary tf.3: poles = eigenvalues = char. eq.

roots
A system’s poles equal its eigenvalues equal its

characteristic equation roots.

7 Therefore, everything we know about a

system’s eigenvalues and characteristic equation

roots is true for a system’s poles. This includes

that they characterize a system’s response

(especially its free response) and stability.

Pole-zero plots and stability

8 The complex-valued poles and zeros

dominate system behavior via their values and

value-relationships. Often, we construct a

pole-zero plot—a plot in the complex plane of a

system’s poles and zeros—such as that of

Fig. zp.1.

Re (s)

Im (s)

Figure zp.1: a pole-zero plot for a system with nine poles and four zeros. In this example, six of the poles are complex-conjugate pairs and three are real. Three are
in the right half-plane, making the system unstable. One zero is in the right half-plane, making the system “minimum phase.”
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Figure zp.2: free response contributions from poles at different locations. Complex poles contribute oscillating free responses, whereas real poles do not. Left half-plane
poles contribute stable responses that decay. Right half-plane poles contribute unstable responses that grow. Imaginary-axis poles contribute marginal stability.

9 From our identification of poles with

eigenvalues and roots of the characteristic

equation, we can recognize that each pole

contributes an exponential response that

oscillates if it is complex. There are three

stability contribution possibilities for each pole

pi:

• Re(pi) < 0: a stable, decaying
contribution;

• Re(pi) = 0: a marginally stable, neither

decaying nor growing contribution; and

• Re(pi) > 0: an unstable, growing

contribution.
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real-axis symmetry

This is explored graphically in Fig. zp.2.

10 Of course, we must not forget that a

system’s stability is spoiled with a single

unstable pole.

11 It can be shown that complex poles and

zeros always arise as conjugate pairs. A

consequence of this is that the pole-zero plot is

always symmetric about the real axis.

Second-order systems

12 Second-order response is characterized by a

damping ratio ζ and natural frequency ωn.

These parameters have clear complex-plane

“geometric” interpretations, as shown in

Fig. zp.3. Pole locations are interpreted

geometrically in accordance with their relation

to rays of constant damping from the origin and

circles of constant natural frequency, centered

about the origin.
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ζ

ωn

−ζωn

ωd

arccos ζ
ζ = 1

ζ = 0

ζ > 1 Re(s)

Im(s)

Figure zp.3: second-order free response contributions from poles at different locations, characterized by the damping ratio ζ and natural frequency ωn. Constant
damping occurs along rays from the origin. Constant natural frequency occurs along arcs of constant radius, centered at the origin.
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tf.tfmat Exploring transfer functions in Matlab

Matlab includes several nice functions for

working with transfer functions. We explore

some here.

The tf command and its friends

The tf command allows us to create LTI

transfer function objects (which we’ll abbreviate

as “tf objects”) that are recognized by lsim,
step, and initial.
Consider the transfer function

H(s) =
s+ 1

s3 + 3s2 + 7s+ 1
. (1)

We can make a Matlab model as follows.

sys = tf([1,1],[1,3,7,1])

sys =

s + 1
---------------------
s^3 + 3 s^2 + 7 s + 1

Continuous-time transfer function.

Alternatively, we could define s as a transfer
function model itself.

s = tf([1,0],[1]); % tf is 1*s+0/1 = s
(s+1)/(s^3+3*s^2+7*s+1)

ans =

s + 1
---------------------
s^3 + 3 s^2 + 7 s + 1

Continuous-time transfer function.

Algebraic operations with tfs

Say we have two transfer functions G(s) and

H(s) (already defined as sys). We might want to

concatenate them. The idea is that we might
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take the output of G(s) and use that as the input

to H(s). In this case, the transfer function from

the input of G(s) to the output of H(s) is just the

multiplication

G(s)H(s). (2)

G = 1/(s+2); % or tf([1],[1,2])
G*sys

ans =

s + 1
-------------------------------
s^4 + 5 s^3 + 13 s^2 + 15 s + 2

Continuous-time transfer function.

Note that we have seen that Matlab handles

addition and multiplication of scalars and tfs as
well as the products of tfs. (It will also handle

division.)

State-space models to tf models.

Consider the state-space model with standard

matrices as shown below.

A = [-2,0;0,-3];
B = [1;1];
C = [1,0;1,1;0,1];
D = [0;0;1];

We can create a ssmodel as usual.

sys_ss = ss(A,B,C,D);

First, let’s form a transfer function symbolically

We know the transfer function matrix is given

by

C(sI−A)−1B+D. (3)

syms S
sys_tf_s = C*inv(S*eye(size(A)) - A)*B + D
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sys_tf_s =

1/(S + 2)
1/(S + 2) + 1/(S + 3)

1/(S + 3) + 1

This gave us three symbolic transfer functions

in a 3× 1matrix, the first being that for the input

to the first output, the second for the input to

the second output, etc.

Or we can convert the ssmodel to a tfmodel

We can actually simply pass the ssmodel to the

tf function.

sys_tf = tf(sys_ss)

sys_tf =

From input to output...
1

1: -----
s + 2

2 s + 5
2: -------------

s^2 + 5 s + 6

s + 4
3: -----

s + 3

Continuous-time transfer function.

Note that the function ss2tf has a serious bug
and should not be trusted.

Poles, zeros, and stability

Let’s take a look at the poles and zeros of sys.

p_sys = pole(sys)
z_sys = zero(sys)

p_sys =

-1.4239 + 2.1305i
-1.4239 - 2.1305i
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-0.1523 + 0.0000i

z_sys =

-1

Stability can be evaluated from p_sys. The
system is stable because the real parts of all

poles are negative.

Let’s take a look at the pole-zero map.

figure;
pzmap(sys)

The resulting figure is shown in Fig. tfmat.1.

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2

−2

2
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ag
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y
A
x
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ec
o
n
d
s-
1
)

Figure tfmat.1: the pole-zero map.

Simulating with tfs

All the simulation functions we’ve used for ss
models (lsim,step,impulse,initial) will also

work for tfmodels. Let’s try a impulse
response on our original sys transfer function
model.

t = linspace(0,15,200);
y = impulse(sys,t);

Plot.

figure
plot(t,y);
xlabel('time (s)')
ylabel('impulse response')
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Figure tfmat.2: the impulse response.

The resulting figure is shown in Fig. tfmat.2.
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tf.zpk ZPK transfer functions in Matlab

Consider the transfer function:

H(s) =
2s+ 1

s2 + 7s+ 12
(1)

= 2
s+ 1/2

(s+ 3)(s+ 4)
. (2)

In the second equality, we have factored the

polynomials and expressed them in terms of

poles pi and zeros zi with terms (s− pi) and

(s− zi). Note the gain factor 2 that emerges in

this form.

Both forms are useful. In the former, two

polynomials in s define the transfer function; in

the latter, a list of zeros, poles, and a gain

constant define the transfer function.

In Matlab, there are two corresponding manners

of defining a transfer function. We demonstrate

the first, already familiar, method using the tf
command, which takes polynomial coefficients,

as follows.

H_tf = tf([2,1],[1,7,12])

H_tf =

2 s + 1
--------------
s^2 + 7 s + 12

Continuous-time transfer function.

Alternatively, we can define the transfer

function model with the zpk command using

the zeros, poles, and gain constant.

H_zpk = zpk([-1/2],[-3,-4],2)

H_zpk =

2 (s+0.5)
-----------
(s+3) (s+4)

Continuous-time zero/pole/gain model.
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This zpkmodel will work with all the usual

functions tfmodels do. However, if you’d like

to convert zpk to tf, simply use tf as follows.

tf(H_zpk)

ans =

2 s + 1
--------------
s^2 + 7 s + 12

Continuous-time transfer function.

Alternatively, we can convert a tfmodel to a

zpkmodel.

zpk(H_tf)

ans =

2 (s+0.5)
-----------
(s+4) (s+3)

Continuous-time zero/pole/gain model.
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tf.exe Exercises for Chapter tf

Exercise tf.scallywag

Use a computer to solve this problem. Consider

the transfer function

H(s) =
10(s+ 3)

(s+ 2)(s2 + 8s+ 41)
.

a. What are poles and zeros of H?

b. Comment on the stability of the system

described by H (justify your comment).

c. Construct a pole-zero plot.

d. Use a function like Matlab’s lsim or step
to find the unit step response of the

system and plot it for t ∈ [0, 3] seconds.

Exercise tf.swashbuckling

Consider a system with linear state-space model

matrices

A =

[
−1 4

0 −3

]
B =

[
1

−1

]
(1a)

C =
[
1 0

]
D =

[
0
]
. (1b)

1. Derive the transfer function H(s) for the

system. Express it as a single ratio in s.

2. What are the poles and zeros?

3. Compare the poles to the eigenvalues of A.

4. Draw or sketch a pole-zero plot.

5. With reference to the pole-zero plot,

comment on the stability and transient

free response characteristics of the system.

6. Use the inverse Laplace transform L−1 to

find the system’s forced response y(t) to

step input u(t) = 9us(t).
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input impedance

input admittance

transfer functions

system properties

imp.ip Input impedance and admittance

1 We now introduce a generalization of the

familiar impedance and admittance of electrical

circuit analysis, in which system behavior can be

expressed algebraically instead of differentially.

We begin with generalized input impedance.

2 Consider a system with a source, as shown

in Fig. ip.1. The source can be either an across-

or a through-variable source. The ideal source

specifies either Vin or Fin, and the other variable

depends on the system.

3 Let a source variables have Laplace

transforms Vin(s) and Fin(s). We define the

system’s input impedance Z and input

admittance Y to be the Laplace-domain ratios

Z(s) =
Vin(s)

Fin(s)
and Y(s) =

Fin(s)

Vin(s)
. (1)

Clearly,

Y(s) =
1

Z(s)
.

Both Z and Y can be considered transfer

functions: for a through-variable source Fin, the

impedance Z is the transfer function to

across-variable Vin; for an across-variable source

Vin, the admittance Y is the transfer function to

through-variable Fin. Often, however, we use

the more common impedance Z to characterize

systems with either type of source.

4 Note that Z and Y are system properties, not

properties of the source. An impedance or

source system with Y(s) and Z(s)Vin

Fin

Figure ip.1:
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generalized capacitor

generalized inductor

generalized resistor

admittance can characterize a system of

interconnected elements, or a system of a single

element, as the next section explores.

Impedance of ideal passive elements

5 The impedance and admittance of a single,

ideal, one-port element is defined from the

Laplace transform of its elemental equation.

Generalized capacitors A generalized

capacitor has elemental equation

dVC(t)

dt
=
1

C
FC(t), (2)

the Laplace transform of which is

sVC(s) =
1

C
FC(s), (3)

which can be solved for impedance

ZC = VC/FC and admittance YC = FC/VC:

ZC(s) =
1

Cs
and YC(s) = Cs.

Generalized inductors A generalized

inductor has elemental equation

dFL(t)

dt
=
1

L
VL(t), (4)

the Laplace transform of which is

sFL(s) =
1

L
VL(s), (5)

which can be solved for impedance

ZL = VL/FL and admittance YL = FL/VL:

ZL(s) = Ls and YC(s) =
1

Ls
.

Generalized resistors A generalized resistor

has elemental equation

VR(t) = FR(t)R, (6)
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series

parallel

the Laplace transform of which is

VR(s) = FR(s)R, (7)

which can be solved for impedance

ZR = VR/FR and admittance YR = FR/VR:

ZR(s) = R and YR(s) =
1

R
.

6 For a summary of the impedance of one-port

elements, see Table els.1.

Impedance of interconnected elements

7 As with electrical circuits, impedances of

linear graphs of interconnected elements can be

combined in two primary ways: in parallel or in

series.

8 Elements sharing the same through-variable

are said to be in series connection. N elements

connected in series Z1 Z2
· · · have

equivalent impedance Z and admittance Y:

Z(s) =

N∑
i=1

Zi(s) and Y(s) = 1

/
N∑
i=1

1/Yi(s)

(8)

9 Conversely, elements sharing the same

across-variable are said to be in parallel

connection. N elements connected in parallel

· · ·
have equivalent impedance Z and

admittance Y:

Z(s) = 1

/
N∑
i=1

1/Zi(s) and Y(s) =

N∑
i=1

Yi(s).

(9)
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Example imp.ip-1 re: input impedance of a simple circuit

For the circuit

shown, find the

input impedance.

+
−Vs

R1
C

L R2
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transformers

gyrators

transformer

1 2

Z3

Figure 2port.1:

effective input impedance

1 2

Z3

Figure 2port.2:

gyrator

imp.2port Impedance with two-port elements

1 The two types of energy transducing

elements, transformers and gyrators, “reflect”

or “transmit” impedance through themselves,

such that they are “felt” on the other side.

2 For a transformer, the elemental equations

are

V2(t) = V1(t)/TF and F2(t) = −TFF1(t), (1)

the Laplace transforms of which are

V2(s) = V1(s)/TF and F2(s) = −TFF1(s). (2)

3 If, on the 2-side, the input impedance is Z3,

as in Fig. 2port.1, the equations of Eq. 2 are

subject to the continuity and compatibility

equations

V2 = V3 and F2 = −F3. (3)

Substituting these into Eq. 2 and solving for V1

and F1,

V1 = TFV3 and F1 = F3/TF. (4)

The elemental equation for element 3 is

V3 = F3Z3, which can be substituted into the

through-variable equation to yield

F1 =
1

Z3TF
V3.

4 Working our way back from V3 to V1, we

apply the compatibility equation V2 = V3 and

the elemental equation V2 = V1/TF, as follows:

F1 =
1

Z3TF
V2

=
1

Z3TF2
V1.

Solving for the effective input impedance Z1,
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effective input impedance

Z1 ≡
V1(s)

F1(s)
(5)

= TF2Z3. (6)

5 For a gyrator with gyrator modulus GY, in

the configuration shown in Fig. 2port.2, a

similar derivation yields the effective input

impedance Z1,

Z1 = GY
2/Z3. (7)

Example imp.2port-1 re: input impedance of fluid system with

transducerDraw a linear graph of the fluid system. What

is the input impedance for an input force to the

piston?
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forced response

1. In electronics, this is sometimes called “generalized Ohm’s law.”

imp.tf Transfer functions via impedance

1 Now the true power of impedance-based

modeling is revealed: we can skip a

time-domain model (e.g. state-space or io

differential equation) and derive a

transfer-function model, directly! Before we do,

however, let’s be sure to recall that a

transfer-function model concerns itself with the

forced response of a system, ignoring the free

response. If we care to consider the free

response, we can convert the transfer function

model to an io differential equation and solve it.

2 There are two primary ways

impedance-based modeling is used to derive

transfer functions. The first and most general is

described, here. The second is a shortcut most

useful for relatively simple systems; it is

described in Lec. imp.divide.

3 In what follows, it is important to recognize

that, in the Laplace-domain, every elemental

equation is just1

V = FZ, (1)

where the across-variable, through-variable,

and impedance are all element-specific.

4 This algorithm is very similar to that for

state-space models from linear graph models,

presented in Lec. ss.nt2ss. In the following, we

consider a connected graph with B branches, of

which S are sources (split between

through-variable sources ST and across SA).

There are 2B− S unknown across- and

through-variables, so that’s how many

equations we need. We have B− S elemental

equations and for the rest we will write

continuity and compatibility equations. N is the

number of nodes.

1. Derive 2B− S independent

Laplace-domain, algebraic equations from
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normal tree

elemental equation

2. There will be B− S elemental equations.

continuity equation

3. There will beN− 1− SA independent continuity equations.

compatibility equation

4. There will be B−N+ 1− ST independent compatibility equations.

Laplace-domain elemental, continuity,

and compatibility equations.

a) Draw a normal tree.

b) Write a Laplace-domain elemental

equation for each passive element.2

c) Write a continuity equation for each

passive branch by drawing a contour

intersecting that and no other

branch.3

d) Write a compatibility equation for

each passive link by temporarily

“including” it in the tree and finding

the compatibility equation for the

resulting loop.4

2. Solve the algebraic system of 2B equations

and 2B unknowns for outputs in terms of

inputs, only. Sometimes, solving for all

unknowns via the usual methods is easier

than trying to cherry-pick the desired

outputs.

3. The solution for each output Yi depends

on zero or more inputs Uj. To solve for the

transfer function Yi/Uj, set Uk = 0 for all

k 6= j, then divide both sides of the

equation by Uj.

Example imp.tf-1 re: fire hose

For the schematic of a fire hose connected to

a fire truck’s reservoir C via pump input Ps,

use impedance methods to find the transfer

function from Ps to the velocity of the spray.

Assume the nozzle’s cross-sectional area is A.

Ps

C

L, R
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imp.examat Impedance modeling example in Matlab

Example imp.examat-1 re: Impedance modeling with Matlab

1 Consider the linear graph of an electronic

system, below. Use impedance methods to

derive the transfer functions from inputsVS and

IS to outputs vC2 and iR1 .

2 The normal tree is shown, below, alongwith

contours to be used for continuity equations.

3 We switch over to Matlab for the remainder

of the solution.

Let’s define the required symbolic variables.

syms s VS IS ...
vC1 iC1 vC2 iC2 vL1 iL1 vL2 iL2 ...
vR1 iR1 vR2 iR2 vR3 iR3 ...
zC1 zC2 zL1 zL2 zR1 zR2 zR3 ...
C1 C2 L1 L2 R1 R2 R3

We also specify the unknown variables (two

for each passive element), output variables, and

input variables.

unknowns = [...
vC1 iC1 vC2 iC2 vL1 iL1 vL2 iL2 ...
vR1 iR1 vR2 iR2 vR3 iR3 ...
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];
out_i = [3,10]; % output indices
in = [VS;IS]; % input variables

Now let’s define our elemental, continuity, and

compatibility equations.

elemental = [...
vC1 == iC1*zC1,...
vC2 == iC2*zC2,...
vL1 == iL1*zL1,...
vL2 == iL2*zL2,...
vR1 == iR1*zR1,...
vR2 == iR2*zR2,...
vR3 == iR3*zR3 ...

];
continuity = [...
iC1 == iL1 - IS - iR2,...
iR1 == iL1,...
iC2 == IS + iR2,...
iR3 == IS + iR2 ...

];
compatibility = [
vL1 == -vR1 + VS - vC1,...
vL2 == vC2,...
vR2 == vC1 - vC2 - vR3...

];

These form a linear system of 2 × 7 = 14

unknowns and 14 equations. Such systems can

be defined in matrix form as M*unknowns == b,
where M are the coefficients of the unknowns,

unknowns is the vector of unknowns, and b is

the vector of terms that include the inputs.

Matlab has the function equationsToMatrix
for specifying the matrix form from a list of

equations.

[M,b] = equationsToMatrix(...
[elemental,continuity,compatibility],... % eq's
unknowns... % unknown variables

);
disp('first 10 columns of M:') % to fit on screen
disp(M(:,1:10))
disp('b transposed:') % for pretty
disp(b.')

first 10 columns of M:
[ 1, -zC1, 0, 0, 0, 0, 0, 0, 0, 0]
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[ 0, 0, 1, -zC2, 0, 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 1, -zL1, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0, 0, 1, -zL2, 0, 0]
[ 0, 0, 0, 0, 0, 0, 0, 0, 1, -zR1]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[ 0, 1, 0, 0, 0, -1, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0, -1, 0, 0, 0, 1]
[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[ 1, 0, 0, 0, 1, 0, 0, 0, 1, 0]
[ 0, 0, -1, 0, 0, 0, 1, 0, 0, 0]
[ -1, 0, 1, 0, 0, 0, 0, 0, 0, 0]

b transposed:
[ 0, 0, 0, 0, 0, 0, 0, -IS, 0, IS, IS, VS, 0, 0]

Furthermore, Matlab has the function linsolve
for solving for the unknowns.

sol_z = linsolve(M,b);

This solution sol_z includes impedances.

We would like to substitute for the actual

impedance values, defined as follows in struct
form.

impedances.zC1 = 1/(C1*s);
impedances.zC2 = 1/(C2*s);
impedances.zL1 = L1*s;
impedances.zL2 = L2*s;
impedances.zR1 = R1;
impedances.zR2 = R2;
impedances.zR3 = R3;

Now we can substitute impedances with subs,
which gives us a solution in terms of s.

sol = simplify(...
subs(...

sol_z,...
fieldnames(impedances),...
struct2cell(impedances)...

)...
);
[n,d]=numden(sol);
sol_nd = collect([n,d],s);
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Finally, we can compute the transfer function

matrix H(s) by using the solutions for our

outputs and substituting 1 for the input

of interest and 0 for the others (this code

generalizes to more than two inputs).

for input_i = 1:length(in) % each input
for output_i = 1:length(out_i) % each output

output_index = out_i(output_i); % idx of ops var
input_var = in(input_i); % input variable
other_inputs = setdiff(in,[input_var]); % sneaky
num = sol_nd(output_index,1); % w/all ip's
den = sol_nd(output_index,2); % w/all ip's
num_tf = subs(... % eliminate other inputs
num,...
[input_var,other_inputs],...
[1,zeros(size(other_inputs))]...

);
den_tf = subs(... % eliminate other inputs
den,...
[input_var,other_inputs],...
[1,zeros(size(other_inputs))]...

);
H(input_i,output_i) = ... % collect s and divide
collect(num_tf,s)/collect(den_tf,s);

end
end
pretty(H(2,1)) % display H_21

2
(C1 L1 R2 s + C1 R1 R2 s + R2)/((C1 C2 L1 R2 + C1

C2 L1 R3)↪→

3
s + (C1 L1 + C2 L1 + C1 C2 R1 R2 + C1 C2 R1 R3)

2
s + (C1 R1 + C2 R1 + C2 R2 + C2 R3) s + 1)
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5. This lecture is intentionally strongly paralleled in our Electronics
lecture on Norton’s and Thévenin’s theorems.

equivalent impedance Ze

equivalent across-variable source Ve

imp.eqiv Norton and Thévenin theorems

1 The following remarkable theorem has been

proven.5

Theorem imp.1: generalized Thévenin’s

theorem
Given a linear network of across-variable

sources, through-variable sources, and

impedances, the behavior at the network’s

output nodes can be reproduced exactly by a

single across-variable source Ve in series with

an impedance Ze.

2 The equivalent linear network has two

quantities to determine: Ve and Ze.

Determining Ze

3 The equivalent impedance Ze of a network is

the impedance between the output nodes with

all inputs set to zero. Setting an across-variable

source to zero means the across-variable on both

its terminals are equal, which is equivalent to

treating them as the same node. Setting a

through-variable source to zero means the

through-variable through it is zero, which is

equivalent to treating its nodes as disconnected.

Determining Ve

4 The equivalent across-variable source Ve is

the across-variable at the output nodes of the

network when they are left open (disconnected

from a load). Determining this value typically

requires some analysis with the elemental,

continuity, and compatibility equations

(preferably via impedance methods).

Norton’s theorem

5 Similarly, the following remarkable theorem

has been proven.
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equivalent through-variable source Fe

Theorem imp.2: generalized Norton’s theorem

Given a linear network of across-variable

sources, through-variable sources, and

impedances, the behavior at the network’s

output nodes can be reproduced exactly by a

single through-variable source Fe in parallel

with an impedance Ze.

6 The equivalent network has two quantities

to determine: Fe and Ze. The equivalent

impedance Ze is identical to that of Thévenin’s

theorem, which leaves the equivalent

through-variable source Fe to be determined.

Determining Fe

7 The equivalent through-variable source Fe is

the through-variable through the output

terminals of the network when they are shorted

(collapsed to a single node). Determining this

value typically requires some analysis with

elemental, continuity, and compatibility

equations (preferably via impedance methods).

Converting between Thévenin and Norton equivalents

8 There is an equivalence between the two

equivalent network models that allows one to

convert from one to another with ease. The

equivalent impedance Ze is identical in each

and provides the following equation for

converting between the two representations:

Equation 1 converting between

Thévenin and Norton equivalents
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Example imp.eqiv-1 re: Thévenin and Norton equivalents

For the circuit

shown, find a

Thévenin and a

Norton equivalent.
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Vin

Z1

Z2

Figure divide.1: the two-element across-variable divider.

across-variable divider

imp.divide The divider method

1 In Electronics, we developed the useful

voltage divider formula for quickly analyzing

how voltage divides among series electronic

impedances. This can be considered a special

case of a more general across-variable divider

equation for any elements described by an

impedance. After developing the

across-variable divider, we also introduce the

through-variable divider, which divides an

input through-variable among parallel

elements.

Across-variable dividers

2 First, we develop the solution for the

two-element across-variable divider shown in

Figure divide.1. We choose the across-variable

across Z2 as the output. The analysis follows the

impedance method of Lecture imp.tf, solving

for V2.

1. Derive four independent equations.

a) The normal tree is chosen to consist

of Vin and Z2.

b) The elemental equations are

Z1

Z2

V1 = F1Z1

V2 = F2Z2

c) The continuity equation is

d) The compatibility equation is

2. Solve for the output V2. From the

elemental equation for Z2,
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V2 = F∞Z2

=
V1

Z1
Z2

=
Z2
Z1

(Vin − V2) ⇒

V2 =
Z2

Z1 + Z2
Vin.

3 A similar analysis can be conducted for n

impedance elements.

Equation 1 general across-

variable divider

Through-variable dividers

4 By a similar process, we can analyze a

network that divides a through-variable into n

parallel impedance elements.

Equation 2 general through-

variable divider

Transfer functions using dividers

5 An excellent shortcut to deriving a transfer

function is to use the across- and

through-variable divider rules instead of

solving the system of algebraic equations, as in

Lec. imp.tf. An algorithm for this process is as

follows.
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6. In other words, if the across-variable of the output element is the
output, do not combine it in series; if the through-variable is the output,
do not combine it in parallel.

1. Identify the element associated with an

output variable Yi. Call it the output

element.

2. Identify the source associated with an

input variable Uj. Set all other sources to

zero.

3. Transform the network to be an across- or

through-variable divider that includes the

“bare” (uncombined) output element’s

output variable.6

a) If necessary, form equivalent

impedances of portions of the

network, being sure to leave the

output element’s output variable

alone.

b) If necessary, transform the source à la

Norton or Thévenin.

4. Apply the across- or through-variable

divider equation.

5. If necessary, use the elemental equation of

the output element to trade output across-

and through-variables.

6. If necessary, use the source transformation

equation of the input to trade input across-

and through-variables.

7. Divide both sides by the input variable.

6 It turns out that, despite its many “if

necessary” clauses, very often this “shortcut” is

easier than the method of Lecture imp.tf for

low-order systems if only a few transfer

functions are of interest.
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Example imp.divide-1 re: a circuit transfer function using a divider

Given the circuit shown

with voltage source Vs and

output vL,

a. what is the transfer

function
VL
Vs

?

b. Without

transforming the

source, find the

transfer function
IL
Vs

.

c. Transforming the

source, find
IL
Vs

.

+
−Vs

R
iR

C

iC

L

iL
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imp.exe Exercises for Chapter imp

Exercise imp.tile

Use the linear graph below of a thermal system

to (a) derive the transfer function TR2(s)/Ts(s),

where Ts is the input temperature and TR2 is the

temperature across the thermal resistor R2. Use

impedance methods. And (b) derive the input

impedance the input Ts drives.

Ts

R1

R2

C

Exercise imp.granite

Use the linear graph below of a fluid system to

(a) derive the transfer function PC(s)/PS(s),

where PS is the input pressure and PC is the

pressure across the fluid capacitance C. Use

impedance methods and a divider rule is highly

recommended. (Simplify the transfer function.)

And (b) derive the input impedance the input

PS drives. (Don’t simplify the expression.)

PS

R I

C

Exercise imp.granted

Use the linear graph below of an electronic

system to derive the transfer function

IR1(s)/VS(s), where VS is the input voltage and

IR1 is the current through the resistor R1.

(Simplify the transfer function.) Use an

impedance method. Hint: a divider method is

recommended; without it, use of a computer is

recommended.
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/25 p.

PS

R1 I1

R2 I2

C

Figure exe.1: a fluid system linear graph.

VS

R1

C1

R2

C2

Exercise imp.concrete

Use the linear graph of a fluid system in

Fig. exe.1 to derive the transfer function

QC(s)/PS(s), where PS is the input pressure and

QC is the flowrate through the fluid capacitance

C. Use impedance methods; a divider rule is

recommended but not required. Identify all

impedances but do not substitute them into the

transfer function.

Exercise imp.gypsum

Respond to the following questions and

imperatives with a sentence or two, equation,

and/or a sketch.

a. Comment on the stability and transient

response characteristics of a system with

eigenvalues

−2,−5,−8+ j3,−8− j3.

b. Consider an LTI system that, given input

u1, outputs y1, and given input u2,

outputs y2. If the input is u3 = 5u1 − 6u2,

what is the output y3?

c. Consider a second-order system with

natural frequency ωn = 2 rad/s and

damping ratio ζ = 0.5. What is the free

response for initial condition y(0) = 1?

d. Two thermal elements with impedances

Z1 and Z2 have a temperature source TS

applied across them in series. What is the

transfer function from TS to the heat Q2

through Z2?
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e. Draw a linear graph of a pump (pressure

source) flowing water through a long pipe

into the bottom of a tank, which has a

valve at its bottom from which the water

flows.



Part VI

Nonlinear system analysis



nonlinear state-space models

autonomous system

nonautonomous system

nlin

Nonlinear systems and linearization

1 Thus far, we’ve mostly considered linear

system models. Many of the analytic tools

we’ve developed—ODE solution techniques,

superposition, eigendecomposition, stability

analysis, impedance modeling, transfer

functions, frequency response functions—do

not apply to nonlinear systems. In fact, analytic

solutions are unknown for most nonlinear

system ODEs. And even basic questions are

relatively hard to answer; for instance: is the

system stable?

2 In this and the following chapters, we

consider a few analytic and numerical

techniques for dealing with nonlinear systems.

3 A state-space model has the general form

dx
dt = f(x,u, t) (1a)

y = (1b)

where f and g are vector-valued functions that

depend on the system. Nonlinear state-space

models are those for which f is a

functional of either x or u.

For instance, a state variable x1 might appear as

x21 or two state variables might combine as x1x2

or an input u1 might enter the equations as

logu1.

Autonomous and nonautonomous systems

4 An autonomous system is one for which

f(x), with neither time nor input appearing
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1. � S.H. Strogatz and M. Dichter. Nonlinear Dynamics and Chaos.
Second. Studies in Nonlinearity. Avalon Publishing, 2016. ISBN:
9780813350844.

equilibrium state

stationary point

explicitly. A nonautonomous system is one for

which either t or u do appear explicitly in f. It

turns out that we can always write

nonautonomous systems as autonomous by

substituting in u(t) and introducing an extra

for t1.

5 Therefore, without loss of generality, we will

focus on ways of analyzing autonomous

systems.

Equilibrium

6 An equilibrium state (also called a

) x is one for which

dx/dt = 0. In most cases, this occurs only when

the input u is a constant u and, for time-varying

systems, at a given time t. For autonomous

systems, equilibrium occurs when the following

holds:

(2)

This is a system of nonlinear algebraic

equations, which can be challenging to solve for

x. However, frequently, several solutions—that

is, equilibrium states—do exist.
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linearize

operating point

Jacobian

nlin.lin Linearization

1 A common method for dealing with a

nonlinear system is to linearize it: transform it

such that its state equation is linear. A

linearized model is typically only valid in some

neighborhood of state-space. This

neighborhood is selected by choosing an

operating point xo used in the linearization

process. We use two considerations when

choosing an operating point:

1. that implied by the name—it should be in

a region of state-space in which the state

will stay throughout the system’s

operation—and

2. the validity of the model near the

operating point.

Due to the fact that nonlinear systems tend to be

more-linear near equilibria, the second

consideration frequently suggests we choose

one as an operating point: xo = x.

Taylor series expansion

2 A Taylor series expansion of Eq. 1a about an

operating point xo,uo (for a nonautonomous

system) yields polynomial terms that are linear,

quadratic, etc. in x and u. If we keep only the

linear terms and define new state and input

variables

x∗ = x− xo and u∗ = u− uo (1a)

we get a linear state equation

dx∗
dt = Ax∗ + Bu∗ (1b)

where the matrix components are given by

Aij =
∂fi
∂xj

∣∣∣∣
xo,uo

and Bij =
∂fi
∂uj

∣∣∣∣
xo,uo

. (1c)

These first-derivative matrices are generally

called Jacobian matrices.
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3 This result also applies to autonomous

equations if we drop the Bu∗ term.
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Example nlin.lin-1 re: hardening spring

Consider a vehicle suspension system that

is overloaded such that its springs are

exhibiting hardening behavior such that a

lumped-parameter constitutive equation for

the springs (collectively) is

fk = kxk + ax
3
k (2)

where fk is the force, xk the displacement, and

k, a > 0 constant parameters of the spring.

a. Develop a (nonlinear) spring-mass-

damper linear graph model for the

vehicle suspension with input position

source Xs.

b. Derive a nonlinear state-space model

from the linear graph model using the

state vector

x =
[
xm vm

]>
. (3)

c. Linearize the system about the operating

point

xo =
[
1 0

]>
and uo =

[
0
]

(4)

by computing the A, B, and E matrices of

the linearized system.a

a. TheEmatrix is the Jacobian with respect to the time-derivative
of the input: u̇, which arises occasionally.
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system order

nlin.char Nonlinear system characteristics

1 Characterizing nonlinear systems can be

challenging without the tools developed for

system characterization.

However, there are ways of characterizing

nonlinear systems, and we’ll here explore a few.

Those in-common with linear systems

2 As with linear systems, the system order is

either the number of state-variables required to

describe the system or, equivalently, the

highest-order in a single

scalar differential equation describing the

system.

3 Similarly, nonlinear systems can have state

variables that depend on alone or

those that also depend on (or

some other independent variable). The former

lead to ordinary differential equations (ODEs)

and the latter to partial differential equations

(PDEs).

4 Equilibrium was already considered in

Chapter nlin.

Stability

5 In terms of system performance, perhaps no

other criterion is as important as

.

Definition nlin.1: Stability

If x is perturbed from an equilibrium state x, the

response x(t) can:

1. asymptotically return to x (asymptotically

),

2. diverge from x ( ), or

3. remain perturned or oscillate

about x with a constant amplitude

( stable).
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Lyapunov stability theory

2. � William L Brogan. Modern Control Theory. Third. Prentice Hall,
1991, Ch. 10.

3. � A. Choukchou-Braham andothers. Analysis and Control of
Underactuated Mechanical Systems. SpringerLink : B ucher. Springer
International Publishing, 2013. ISBN: 9783319026367, App. A.

Notice that this definition is actually local:

stability in the neighborhood of one equilibrium

may not be the same as in the neighborhood of

another.

6 Other than nonlinear systems’ lack of linear

systems’ eigenvalues, poles, and roots of the

characteristic equation from which to compute

it, the primary difference between the stability

of linear and nonlinear systems is that nonlinear

system stability is often difficult to establish

. Using a linear system’s

eigenvalues, it is straightforward to establish

stable, unstable, and marginally stable

subspaces of state-space (via transforming to an

eigenvector basis). For nonlinear systems, no

such method exists. However, we are not

without tools to explore nonlinear system

stability. One mathematical tool to consider is

, which is

beyond the scope of this course, but has good

treatments in2 and3.

Qualities of equilibria

7 Equilibria (i.e. stationary points) come in a

variety of qualities. It is instructive to consider

the first-order differential equation in state

variable with real constant :

x ′ = rx− x3. (1)

If we plot x ′ versus x for different values of r,

we obtain the plots of Fig. char.1.

8 By definition, equilibria occur when x ′ = 0,

so the x-axis crossings of Fig. char.1 are

equilibria. The blue arrows on the x-axis show

the of state change x ′,

quantified by the plots. For both (a) and (b),

only one equilibrium exists: x = 0. Note that the

blue arrows in both plots point toward the

equilibrium. In such cases—that is, when a

exists around an
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x ′

(a) r < 0
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(b) r = 0
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(c) r > 0

Figure char.1: plots of x ′ versus x for Eq. 1.

attractor

sink

stable

bifurcation

bifurcation diagram

repeller

source

unstable

saddle

equilibrium for which state changes point

toward the equilibrium—the equilibrium is

called an or .

Note that attractors are .

9 Now consider (c) of Fig. char.1. When r > 0,

three equilibria emerge. This change of the

number of equilibria with the changing of a

parameter is called a . A

plot of bifurcations versus the parameter is

called a bifurcation diagram. The x = 0

equilibrium now has arrows that point

from it. Such an equilibrium is

called a or and

is . The other two equilibria

here are (stable) attractors. Consider a very

small initial condition x(0) = ε. If ε > 0, the

repeller pushes away x and the positive

attractor pulls x to itself. Conversely, if ε < 0,

the repeller again pushes away x and the

negative attractor pulls x to itself.

10 Another type of equilibrium is called the

: one which acts as an attractor

along some lines and as a repeller along others.

We will see this type in the following example.

Example nlin.char-1 re: Saddle bifurcation

Consider the dynamical equation

x ′ = x2 + r (2)
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with r a real constant. Sketch x ′ vs x for

negative, zero, and positive r. Identify and

classify each of the equilibria.
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nlin.exe Exercises for Chapter nlin

Exercise nlin.sigmund

Consider a nonlinear capacitor with constitutive

equation relating charge qC and voltage vC:

qC = kv
3/2
C (1)

with k a positive constant.

a. Derive an elemental equation relating

dvC/dt and iC for the nonlinear capacitor.

b. From the elemental equation, what is the

voltage-dependent capacitance C(vC)?

c. Consider the RLC-circuit of Fig. exe.1,

which includes the nonlinear capacitor.

Derive a nonlinear state-space equation

with state vector

x =
[
vC iL

]>
. (2)

d. For a constant input VS(t) = 5V, derive

the equilibrium state.

e. Linearize the state-space equation about

the operating point

xo,uo =
[
5V 0A

]>
,
[
5V
]
. (3)

Define the state equation matrices A and

B, the linearized state and input vectors x∗

and u∗, and the linearized state equation.

+
−VS

R L

C(vC)

Figure exe.1: circuit for Exercise nlin..
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Exercise nlin.franz

A nonlinear diode model gives a diode’s

elemental equation to be

iD = Is(exp (vD/VTH) − 1).

We let the saturation current be Is = 10−12 A

and the thermal voltage be VTH = 0.025 V.

Considering this nonlinear diode model for the

circuit of Fig. exe.2.

+
−VS

D R L

C

Figure exe.2: circuit for Exercise nlin..

a. Derive a nonlinear state-space equation

with state vector

x =
[
vC iL

]>
. (4)

Hint: include the diode in your normal

tree.

b. For a constant input VS(t) = 0V, derive

the equilibrium state.

c. Linearize the state-space equation about

the operating point

xo,uo =
[
0V 0A

]>
,
[
0V
]
. (5)

Hint: d ln(x)/dx = 1/x. Define the state
equation matrices A and B, the linearized

state and input vectors x∗ and u∗, and the

linearized state equation.
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1. This is a van der Pol equation.

ODE stiffness

required accuracy

sim.matlab Nonlinear systems in Matlab

Many of the Matlab tools we’ve used will not

work for nonlinear systems; for instance,

system-definition with tf, ss, and zpk and
simulation with lsim, step, initial—none will

work with nonlinear systems.

Defining a nonlinear system

We can define a nonlinear system in Matlab by

defining its state-space model in a function file.

Consider the nonlinear state-space model1

ẋ = f(x)

=

[
x2

(1− x21)x2 − x1

]
. (1)

A function file describing it is as follows.

type van_der_pol.m

function dxdt = van_der_pol(t,x)
dxdt = [ ...
x(2); ...
(1-x(1)^2)*x(2) - x(1) ...

];

Note that x is representing the (two) state vector

x, which, along with time t (t), are passed as

arguments to van_der_pol. The variable dxdt
serves as the output (return) of the function.

Effectively, van_der_pol is simply f(x), the

right-hand side of the state equation.

Simulating a nonlinear system

The nonlinear state equation is a system of

ODEs. Matlab has several numerical ODE

solvers that perform well for nonlinear systems.

When choosing a solver, the foremost

considerations are ODE stiffness and required

accuracy. Stiffness occurs when solutions

evolve on drastically different time-scales. For a
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more-thorough guide for selecting an ODE

solver, see

mathworks.com/help/matlab/math/choose-an-ode-solver.html

For most ODEs, the ode45 Runge-Kutta solver is
the best choice, so try it first. Its syntax is

paradigmatic of all Matlab solvers.

[t,y] = ode45( ...
odefun, ... % ODE function handle, e.g. van_der_pol
time, ... % time array or span
x0 ... % initial state

)

Details here include

1. the ODE function given must have exactly

two arguments: t and x;
2. the time array or span doesn’t impact

solver steps; and

3. the initial conditions must be specified in a

vector size matching the state vector x.

Let’s apply this to our example from above. We

begin by specifying the simulation parameters.

x0 = [3;0];
t_a = linspace(0,25,300);

And now we simulate.

[~,x] = ode45(@van_der_pol,t_a,x0);

Note that since we specified a full time array

t_a, and not simply a range, the time (first)

output is superfluous. We can avoid assigning it

a variable by inserting ~ appropriately.

Plotting the response

In time, the response is shown in Fig. matlab.1.

Note the weirdness—this is certainly no

decaying exponential!

http://mathworks.com/help/matlab/math/choose-an-ode-solver.html
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Figure matlab.1: free response plotted through time.
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Figure matlab.2: free response plotted in phase space.

figure
plot( ...

t_a,x.', ...
'linewidth',1.5 ...

)
xlabel('time (s)')
ylabel('free response')
legend('x_1','x_2')

It seems the response is settling into a

non-sinusoidal periodic function. This is

especially obvious if we consider the phase

portrait of Fig. matlab.2.

figure
plot( ...

x(:,1),x(:,2), ...
'linewidth',2 ...

)
xlabel('x_1')
ylabel('x_2')
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nonlinear state-space model

sim.fluid Nonlinear fluid system example

1 This example gets one started on the design

problem Exercise sim..

2 Consider a fluid system with an input

volumeric flowrate Qs into a capacitance C that

is drained by only a single pipe of nonlinear

resistance R and L, as shown in the linear graph

of Figure fluid.1. The nonlinearity of R is a good

way to model an overflow. In this lecture, we

will derive a nonlinear state-space model for the

system—specifically, a state equation—and

solve it, numerically using Matlab.

Normal tree, order, and variables

3 Fig. fluid.1 already shows the normal tree.

There are two independent energy storage

elements, making it a second-order (n = 2)

system. We define the state vector to be

x =
[
PC QL

]>
. (1)

The input vector is defined as u =
[
Qs

]
.

Elemental, continuity, and compatibility equations

4 Before turning to our familiar elemental

equations, we’ll consider the nonlinear resistor.

Nonlinear elemental equation

5 Suppose we are trying to model an overflow

with the pipe R–L to ground. An overflow

Qs

C

R

L

Figure fluid.1: a linear graph and normal tree (green) for a nonlinear fluid system.
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would have no flow until the fluid capcitor fills

to a certain height, then it would transition to

flowing quite rapidly. This process seems to be

inherently nonlinear because we cannot write

an element that depends linearly on the height

of the fluid in the capacitor (even if height was

one of our state variables, which it is not).

6 The volume in the tank can be found by

integrating in flow (Qs) minus out flow (QR),

but this is not accessible within a simulation,

since it must be integrated, so it’s not an ideal

variable for our model. However, the pressure

PC—a state variable—is proportional to the

fluid height in the capacitor, which we’ll call h:

PC = ρgh, (2)

where ρ is the density of the fluid and g is the

gravitational acceleration. Since the height of

the capacitor is presumably known, we can use

PC to be our fluid height metric.

7 When the height h reaches a certain level,

probably near the capacitor’s max, which we’ll

denote hm, we want our overflow pipe R-L to

start flowing. Since PC is our height metric, we

want to define a resistance as a function of it,

R(PC).

8 Now we must determine the form of R(PC).

Clearly, when h ∼ PC is small, we want as little

as possible flow through R-L, so R(PC) should be

large. If Rwas infinitely large, divisions by zero

would likely arise in a simulation, so we choose

to set our low-pressure R to some finite value:

R(PC)|PC→0 = R0. (3)

Conversely, when h ∼ PC is large (near max), we

want maximum flow through R-L, so R(PC)

should be some finite value, say, that of the pipe:

R(PC)|PC→∞ = R∞. (4)

Clearly, this model requires R∞ � R0.
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2. Note that this model might be said to assume the overflow pipe
is attached to the bottom of the capacitor since the pressure driving
fluid through this pipe is supposed to be PC. However, no matter the
overflow valve’s inlet height, if its outlet is at the height of the bottom of
the capacitor, this model is still valid.

9 The transition from R0 to R∞ should be

smooth in order to minimize numerical solver

difficulties. Furthermore, a smooth transition is

consistent with, say, a float opening a valve at

the bottom of the capacitor,2 since the valve

would transition continuously from closed to

open. Many functions could be used to model

this transition, especially if piecewise functions

are considered. However, the tanh function has

the merit of enabling us to easily define a single

non-piecewise function for the entire domain.

Let PC be the transition pressure and ∆PC be the

transition width. A convenient nonlinear

resistor, then, is

R(PC) = R∞ +
R0 − R∞

2

(
1− tanh 5(PC − PC)

∆PC

)
.

(5)

Note that this function only approximately

satisfies R(PC)|PC→0 = R0, but the small

deviation from this constraint is worth it for the

convenience it provides. Another noteworthy

aspect of Equation 5 is the factor of 5, which

arises from the tanh function’s natural transition

width, which we alter via ∆PC.

Other elemental equations and the continuity

and compatibility equations

10 The other elemental equations have been

previously encountered and are listed in the

table, below. Furthermore, continuity and

compatibility equations can be found in the

usual way—by drawing contours and

temporarily creating loops by including links in

the normal tree. We proceed by drawing a table

of all elements and writing an elemental

equation for each element, a continuity equation

for each branch of the normal tree, and a

compatibility equation for each link.
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el. elemental eq.

C
dPC
dt

=
1

C
QC

L
dQL
dt

=
1

L
PL

R PR = QRR(PC)

el. cont/comp. eq.

C QC = Qs −QL

L PL = PC − PR

R QR = QL

State equation

11 The system of equations composed of the

elemental, continuity, and compatibility

equations can be reduced to the state equation.

This equation nonlinear, so it cannot be written

in the linear for with A and Bmatrices.

However, it can still be written as a system of

first-order ordinary differential equations, as

follows:

dx

dt
= f(x,u)

=

[
(Qs −QL)/C

(PC −QLR(PC))/L

]
. (6)

Although it appears simple, this nonlinear

differential equation likely has no known

analytic solution. Two other options are

available:

1. linearize the model about an operating

point and solve the linearized equation or

2. numerically solve the nonlinear equation.

Both methods are widely useful, but let’s

assume we require the model to be accurate over
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3. Source Matlab files can be found on
ricopic.one/dynamic_systems_ii/source as
ricopic.one/dynamic_systems_ii/source/nonlinear_tank_example.m
and ricopic.one/dynamic_systems_ii/source/nonlinear_fluid_state.m.

a wide range of capacitor fullness. Therefore,

we choose to investigate via numerical solution.

Simulation

Broadly, the numerical investigation will be

conducted via Matlab’s ode23t solver.3 Of
course, as with any numerical solution, specific

values of the parameters must be selected. We

begin with declaring the fluid to be water,

endowing it with a density, and specify the

gravitational acceleration g. Furthermore, an

“anonymous” function P_fun is defined,
accepting the height h of the fluid in the

capacitor and returning the corresponding

pressure. Other parameters specified include

the fluid capacitance C and the overflow pipe

inertance L.

global C L % global to be used in state equation
C = 1e3; % ... fluid capacitance
L = 1e-3; % ... fluid inertance
rho = 997; % kg/m^3 ... density of water
g = 9.81; % m/s^2 ... gravitational constant
P_fun = @(h) rho*g*h; % pressure as a function of height

Next, we define the maximum height h_max of
fluid in the capacitor, the transition height h_t,
and the distance dh over which the resistor will

transition from high to low impedance.

h_max = 1; % m ... maximum height of fluid
h_t = .88; % m ... transition height
dh = .05; % m ... height difference for transition

Corresponding pressures, which we prefer for

computation, can be computed with P_fun.

P_t = P_fun(h_t); % N/m^2 ... transition pressure
dP = P_fun(dh); % N/m^2 ... pressure dif for transition

Nonlinear resistance

Now, let’s define the variable resistance

function R_fun (R(PC)). We define the

http://ricopic.one/dynamic_systems/source
http://ricopic.one/dynamic_systems/source/nonlinear_tank_example.m
http://ricopic.one/dynamic_systems/source/nonlinear_fluid_state.m
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Figure fluid.2: nonlinear resistance versus tank water level.

anonymous function via the two “limiting”

resistances R_0 (R0) and R_inf (R∞).
R_inf = 1e-1; % N/m^2 / m^3/s ... resistance with full cap
R_0 = 1e2; % ... resistance with empty capacitor
R_fun = @(P) (R_0-R_inf)/2*(1-tanh(5/dP*(P-P_t)))+R_inf;

Let’s take a moment to plot this function. See

Figure fluid.2 for the results. This is a

reasonable approximation of a valve that allows

no flow until the capacitor fluid height reaches a

threshold, then allows a significant amount of

flow.

h_half = linspace(0,h_t-dh,50);
h_a = [... % heights to plot

h_half(1:end-1),...
linspace(h_half(end),h_max,50)...

];
P_a = P_fun(h_a); % N/m^2 ... pressures to plot

Numerical solution

The numerical ODE solver we’ll use (ode23t)
requires we define the first-order system of

differential equations from Equation 6. This is

done by writing a function file

nonlinear_fluid_state.m that the function
return the time derivative of the state vector x_a
(x) at a given time.
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function dx = nonlinear_fluid_state(t,x,u_fun,R_fun)
global C L
% x(1) is P_C
% x(2) is Q_L
% R_fun is the nonlinear resistance

% call input function at this time step
Q_s = u_fun(t);

% compute nonlinear resistance at this time step
R = R_fun(x(1));

dx = zeros(2,1); % a column vector
dx(1) = (Q_s - x(2))/C; % d P_C/dt
dx(2) = (x(1) - x(2)*R)/L; % d Q_L/dt
end

We also pass it the nonlinear resistance function

R_fun and the input function Q_s_fun. Let’s
model an offset sinusoidal input flowrate,

defined as an anonymous function as follows.

Q_s_fun = @(t) 1e4*(1+sin(2*pi/1e2*t));

We’re ready to simulate! The time array and

zero initial conditions are specified, then

simulation commences. There are several

Matlab ODE solver routines with the same or

similar syntax. Many ODEs can be solved with

the ode45 function. However, this problem is

what is called “stiff,” which runs much better on

the solver ode23t.

t_a = linspace(0,1.4e3,1e3);
x_0 = [0;0];
x_sol_struc = ode23t(...

@(t,x) nonlinear_fluid_state(t,x,Q_s_fun,R_fun),...
t_a,...
x_0...

);
x_sol = deval(x_sol_struc,t_a);

We plot the results in Figure fluid.3. So the

overflow is relatively inactive while the

capacitor fills, until PC achieves the pressure

associated with a near-full capacitor. Then the
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Figure fluid.3: state response to inputQs.

flowrate suddenly increases rapidly due to the

sudden drop in R(PC). Since the input is

oscillating, the overflow pipe loses flowrate,

then gains it again when the input flowrate

increases enough to increase the capacitor

pressure.
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sim.exe Exercises for Chapter sim

Exercise sim.freud

In Exercise nlin., you derived a nonlinear

state-space model for the RLC circuit of

Fig. fluid.1, which includes a nonlinear

capacitor, and linearized the state equation

about an operating point. Use these results to

perform the following analysis.

a. Write a program to simulate the nonlinear

state-space model for initial condition

x(0) =
[
1 0

]>
and step input

u(t) = 5us(t). Let R = 10 Ω, L = 1mH, and

k = 10−6. Try simulating for 1ms.

b. Add to the program the simulation of the

linearized system for the same initial

condition and input.

c. Compare (by graphing) the nonlinear and

linearized step responses. (Don’t forget

that x∗ 6= x!)

Exercise sim.kafka

Let the nonlinear state equation of a circuit like

Fig. exe.2, including a diode, be

dx
dt = f(x,u)

=

[
1
C iL

1
L(−VTH ln(iL/Is + 1) − RiL + VS − vC)

]
.

a. Write a program to simulate the nonlinear

state-space model for initial condition

x(0) =
[
0 0

]>
and input

u(t) = 1+ 0.1 cos(8000πt). Let Is = 10−12

A, VTH = 25mV, R = 10 Ω, L = 1mH, and

C = 10µF. Try simulating for 1ms. Hint:

the ode is stiff, so simulate with ode23s.
b. Add to the program the simulation of the

linearized system (with operating point
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xo =
[
0 Is

]>
, uo = 0) with A and B

matrices

A =

[
0 1/C

−1/L −(VTH/(2Is) + R)/L

]
and B =

[
0

1/L

]

for the same initial condition and input.

c. Compare (by graphing) the nonlinear and

linearized step responses. (Don’t forget

that x∗ 6= x!)

Exercise sim.hootenanny

Design a home rainwater catchment system and

sprinkler distribution system. Most places, a

surprising amount of water falls on a house’s

roof throughout a year. Capturing it for

irrigation can save water costs and reduce the

environmental impact of watering lawns,

plants, and gardens.

Design a home rainwater catchment and

irrigation system. The design constraints are as

follows.

1. It should be designed for Olympia,

Washington rainfall, as described in

Table exe.1.

2. For a house, large tanks are unsightly.

Instead, use a series of connected barrels.

After discussions with the customer, the

following design requirements for the system

are identified.

1. It should be capable of distributing one

inch of water per unit area June through

September, even during drought

conditions, during which there is half the

average rainfall in the months March

through September (see Table exe.1.

2. The roof area for collection is 400 square ft.

3. The lawn area for distribution is 600

square ft.
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4. A potential way to mitigate freezing is keeping the water in motion.
Care must be taken not to create inadvertent ice skating rinks.

5. A design that is not informed by a thoroughly presented systemmodel
will receive no credit.

6. The fit is an 8-term Fourier series fit performed via Matlab’s fit
function.

4. It should be low-maintenance.

5. The distribution system should be capable

of being “blown out” during winter

months or it must be designed to handle

sudden dips from 33 down to 22 deg F for

up to two days.4

6. When tanks are full, it should be able to

gracefully dump excess water. If possible,

designing it to refresh itself by dumping

old water for new water is desired.

7. It should be able to handle a heavy rain of

1 inch per hour via an overflow

mechanism, but be able to handle a

moderate rain of 0.2 inches per hour

without requiring overflow (unless the

tanks are full).

8. It should be designed to be fed from

typical house rain gutter downspouts.

9. Distribution should be automated.

10. Energy efficiency is desired. If possible,

using tanks’ potential energy for

distribution is desired. In this case,

unconventional distribution networks are

allowable (e.g. “drip” systems without

conventional sprinkler heads that require

high pressure). However, the distribution

hardware should not be custom-designed.

11. Commercially available parts are desired.

Minimize the number of custom parts

(zero is best).

The focus of the design problem is the sizing of

the pipes, barrels, and mechanisms based on a

dynamic system analysis.5

It is highly recommended that you use the

following Fourier Series fit to the Olympia

drought rainfall data, presented as

trigonometric series coefficient vectors a and b
for easy definition in Matlab.6

w = 0.5236; % fundamental frequency
a0 = 3.579; % dc offset
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Table exe.1: mean monthly rainfall data and corresponding “drought conditions” for Olympia, Washington, USA (NOAA. Mothly Average Precipitation 1951-2008
Olympia Regional Airport—NOAA Station. august 2017).

month mean precip. (in) drought precip. (in)

January 8.51 8.51

February 5.82 5.82

March 4.85 2.43

April 3.11 1.55

May 1.84 0.92

June 1.42 0.71

July 0.67 0.34

August 1.31 0.65

September 2.36 1.18

October 4.66 4.66

November 7.66 7.66

December 8.52 8.52

a(1) = 4.144;
b(1) = 0.6244;
a(2) = 1.332;
b(2) = 0.07578;
a(3) = -0.07667;
b(3) = 0.03167;
a(4) = -0.2469;
b(4) = 0.0004836;
a(5) = -0.09448;
b(5) = 0.01735;
a(6) = 0.07417;
b(6) = -2.131e-06;
a(7) = -0.06748;
b(7) = -0.0124;
a(8) = -0.1235;
b(8) = -0.0002381;

A system model response to this input can be

used to determine the system parameters, such

as the number of barrels required. Do not forget

to include the effect of distribution, which can

be modeled as a negative source. Although we

have the tools to perform the analysis

analytically, it is highly recommended that a

Matlab simulation is developed using ss to
define the system and lsim to simulate the

response. A frequency response analysis using

bodemay also prove useful. It may be possible

to simply iteratively tweak design parameters
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until the simulation meets the requirements.

A thorough report is required. It is highly

recommended that LaTeX is used. Thorough

analysis, results, and design is required. All

sizing and specific parts are required. Either an

analytic or a numerical (simulation)

demonstration of the design’s fulfillment of the

requirements is required.
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math.quad Quadratic forms

The solution to equations of the form

ax2 + bx+ c = 0 is

x =
−b±

√
b2 − 4ac

2a
. (1)

Completing the square

This is accomplished by re-writing the quadratic

formula in the form of the left-hand-side (LHS)

of this equality, which describes factorization

x2 + 2xh+ h2 = (x+ h)2. (2)
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math.trig Trigonometry

Triangle identities

With reference to the below figure, the law of

sines is

sin α

a
=
sin β

b
=
sin γ

c
(1)

and the law of cosines is

c2 = a2 + b2 − 2ab cos γ (2a)

b2 = a2 + c2 − 2ac cos β (2b)

a2 = c2 + b2 − 2cb cos α (2c)

b

c
a

α γ

β

Reciprocal identities

cscu =
1

sinu (3a)

secu =
1

cosu (3b)

cotu =
1

tanu (3c)

Pythagorean identities

1 = sin2 u+ cos2 u (4a)

sec2 u = 1+ tan2 u (4b)

csc2 u = 1+ cot2 u (4c)
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Co-function identities

sin
(π
2
− u

)
= cosu (5a)

cos
(π
2
− u

)
= sinu (5b)

tan
(π
2
− u

)
= cotu (5c)

csc
(π
2
− u

)
= secu (5d)

sec
(π
2
− u

)
= cscu (5e)

cot
(π
2
− u

)
= tanu (5f)

Even-odd identities

sin(−u) = − sinu (6a)

cos(−u) = cosu (6b)

tan(−u) = − tanu (6c)

Sum-difference formulas (AM or lock-in)

sin(u± v) = sinu cos v± cosu sin v (7a)

cos(u± v) = cosu cos v∓ sinu sin v (7b)

tan(u± v) = tanu± tan v
1∓ tanu tan v (7c)

Double angle formulas

sin(2u) = 2 sinu cosu (8a)

cos(2u) = cos2 u− sin2 u (8b)

= 2 cos2 u− 1 (8c)

= 1− 2 sin2 u (8d)

tan(2u) = 2 tanu
1− tan2 u

(8e)

Power-reducing or half-angle formulas

sin2 u =
1− cos(2u)

2
(9a)

cos2 u =
1+ cos(2u)

2
(9b)

tan2 u =
1− cos(2u)
1+ cos(2u) (9c)
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Sum-to-product formulas

sinu+ sin v = 2 sin u+ v

2
cos u− v

2
(10a)

sinu− sin v = 2 cos u+ v

2
sin u− v

2
(10b)

cosu+ cos v = 2 cos u+ v

2
cos u− v

2
(10c)

cosu− cos v = −2 sin u+ v

2
sin u− v

2
(10d)

Product-to-sum formulas

sinu sin v = 1

2
[cos(u− v) − cos(u+ v)] (11a)

cosu cos v = 1

2
[cos(u− v) + cos(u+ v)] (11b)

sinu cos v = 1

2
[sin(u+ v) + sin(u− v)] (11c)

cosu sin v = 1

2
[sin(u+ v) − sin(u− v)] (11d)

Two-to-one formulas

A sinu+ B cosu = C sin(u+ φ) (12a)

= C cos(u+ψ) where (12b)

C =
√
A2 + B2 (12c)

φ = arctan B
A

(12d)

ψ = − arctan A
B

(12e)
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adjoint

math.matrix Matrix inverses

This is a guide to inverting 1× 1, 2× 2, and n×n
matrices.

Let A be the 1× 1matrix

A =
[
a
]
.

The inverse is simply the reciprocal:

A−1 =
[
1/a
]
.

Let B be the 2× 2matrix

B =

[
b11 b12

b21 b22

]
.

It can be shown that the inverse follows a

simple pattern:

B−1 =
1

detB

[
b22 −b12

−b21 b11

]

=
1

b11b22 − b12b21

[
b22 −b12

−b21 b11

]
.

Let C be an n× nmatrix. It can be shown that

its inverse is

C−1 =
1

detC adjC,

where adj is the adjoint of C.
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math.lap Laplace transforms

The definition of the one-side Laplace and

inverse Laplace transforms follow.

Definition A.1: Laplace transforms (one-sided)

Laplace transform L:

L(y(t)) = Y(s) =

ˆ ∞
0

y(t)e−stdt. (1)

Inverse Laplace transform L−1:

L−1(Y(s)) = y(t) =
1

2πj

ˆ σ+j∞
σ−j∞ Y(s)estds. (2)

See Table lap.1 for a list of properties and

common transforms.
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1. Brogan, Modern Control Theory, p 250.

2. Rowell and Wormley, System Dynamics: An Introduction.

adv.eig Systems with repeated eigenvalues

This topic is fully treated by Brogan,1 but not

by Rowell and Wormley.2 Every n× nmatrix

has n eigenvalues, and for each distinct

eigenvalue λi, a linear independent eigenvector

mi exists. For every eigenvalue λi repeated µi

times (termed algebraic multiplicity of λi), any

number qi (termed geometric multiplicity or

degeneracy of λi) up to and including µi of

independent eigenvectors may exist:

1 6 qi 6 µi. qi is equal to the dimension of the

null space of A− Iλi,

qi = n− rank(A− λiI). (1)

This gives rise to the three cases that follow.

full degeneracy When qi = µi, the eigenvalue

problem has qi = µi independent

solutions formi. So, even though there

were not n distinct eigenvalues, n distinct

eigenvectors still exist and we can

diagonalize or decouple the system as

before.

simple degeneracy When qi = 1, the

eigenvalue problem has qi = 1

independent solutions formi. We would

still like to construct a basis set of n

independent vectors, but they can no

longer be eigenvectors, and we will no

longer be able to fully diagonalize or

decouple the system. There are multiple

ways of doing this (e.g. Gram-Schmidt),

but the typical and most nearly diagonal

way is to construct µi − qi generalized

eigenvectors (here also calledmi), which

will be included in the modal matrixM

along with the eigenvectors. The

generalized eigenvectors are found by

solving the usual eigenvalue/vector

problem for the first eigenvectorm1
i
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3. Brogan, Modern Control Theory, p 255.

corresponding to λi, then solving it again

with the following equations to find the

generalized eigenvectors

(A− λi)m
2
i = m1

i

(A− λi)m
3
i = m2

i

...

This forms the modal matrixM. The

block-diagonal Jordan form matrix J,

analogous to the diagonal Λ is

J =M−1AM, (2)

which gives the most-decoupled state

transition matrix

Φ(t) =MeJtM−1. (3)

general degeneracy If 1 < qi < µi, the

preceding method applies, but it may be

ambiguous as to which eigenvector the

generalized eigenvectors correspond (or

how many for each). This can be

approached by trial and error or a

systematic method presented by Brogan.3
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sum.sysrep Summary of system representations

Figure sysrep.1: relations among system representations.
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sum.els Summary of one-port elements

The one table to rule them all, Table els.1.

Table els.1: parameters, elemental equations, and impedances of one-port elements for generalized, mechanical, electrical, fluid, and thermal systems.

generalized
mechanical
translation

mechanical
rotation

electrical fluid thermal

variables
across V velocity v angular vel. Ω voltage v pressure P temp. T

through F force f torque T current i vol. fr. Q heat fr. q

A-type

capacitor capacitor mass mom. inertia capacitor capacitor capacitor

capacitance C m J C C C

elem. eq.
dVC

dt
=
1

C
FC

dvm

dt
=
1

m
fm

dΩJ

dt
=
1

J
TJ

dvC

dt
=
1

C
iC

dPC

dt
=
1

C
QC

dTC

dt
=
1

C
qC

impedance
1

Cs

1

ms

1

Js

1

Cs

1

Cs

1

Cs

T-type

inductor inductor spring rot. spring inductor inertance

inductance L 1/k 1/k L I

elem. eq.
dFL

dt
=
1

L
VL

dfk

dt
= kvk

dTk

dt
= kΩk

diL

dt
=
1

L
vL

dQI

dt
=
1

I
PI

impedance Ls s/k s/k Ls Is

D-type

resistor resistor damper rot. damper resistor resistor resistor

resistance R 1/B 1/B R R R

elem. eq. VR = FRR vB = fB/B ΩB = TB/B vR = iRR PR = QRR TR = qRR

impedance R 1/B 1/B R R R
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sum.lap Laplace transforms

Table lap.1 is a table with functions of time f(t)

on the left and corresponding Laplace

transforms L(s) on the right. Where applicable,

s = σ+ jω is the Laplace transform variable, T is

the time-domain period, ω02π/T is the

corresponding angular frequency, j =
√
−1,

a ∈ R+, and b, t0 ∈ R are constants.

Table lap.1: Laplace transform identities.

function of time t function of Laplace s

a1f1(t) + a2f2(t) a1F1(s) + a2F2(s)

f(t− t0) F(s)e−t0s

f ′(t) sF(s) − f(0)

dnf(t)

dtn
snF(s) + s(n−1)f(0) + s(n−2)f ′(0) + · · ·+ f(n−1)(0)

ˆ t
0

f(τ)dτ
1

s
F(s)

tf(t) −F ′(s)

f1(t) ∗ f2(t) =
ˆ ∞
−∞ f1(τ)f2(t− τ)dτ F1(s)F2(s)

δ(t) 1

us(t) 1/s

ur(t) 1/s2

tn−1/(n− 1)! 1/sn

e−at
1

s+ a

te−at
1

(s+ a)2
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1

(n− 1)!t
n−1e−at

1

(s+ a)n

1

a− b
(eat − ebt)

1

(s− a)(s− b)
(a 6= b)

1

a− b
(aeat − bebt)

s

(s− a)(s− b)
(a 6= b)

sinωt ω

s2 +ω2

cosωt s

s2 +ω2

eat sinωt ω

(s− a)2 +ω2

eat cosωt s− a

(s− a)2 +ω2
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sum.ft Fourier transforms

Table ft.1 is a table with functions of time f(t) on

the left and corresponding Fourier transforms

F(ω) on the right. Where applicable, T is the

time-domain period, ω02π/T is the

corresponding angular frequency, j =
√
−1,

a ∈ R+, and b, t0 ∈ R are constants.

Furthermore, fe and f0 are even and odd

functions of time, respectively, and it can be

shown that any function f can be written as the

sum f(t) = fe(t) + f0(t). (H.P. Hsu. Fourier

Analysis. Simon & Schuster, 1967. ISBN:

9780671270377)

Table ft.1: Fourier transform identities.

function of time t function of frequency ω

a1f1(t) + a2f2(t) a1F1(ω) + a2F2(ω)

f(at)
1

|a|
F(ω/a)

f(−t) F(−ω)

f(t− t0) F(ω)e−jωt0

f(t) cosω0t
1

2
F(ω−ω0) +

1

2
F(ω+ω0)

f(t) sinω0t
1

j2
F(ω−ω0) −

1

j2
F(ω+ω0)

fe(t) Re F(ω)

f0(t) j Im F(ω)

F(t) 2πf(−ω)

f ′(t) jωF(ω)

dnf(t)

dtn
(jω)nF(ω)
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ˆ t
−∞ f(τ)dτ

1

jω
F(ω) + πF(0)δ(ω)

−jtf(t) F ′(ω)

(−jt)nf(t)
dnF(ω)

dωn

f1(t) ∗ f2(t) =
ˆ ∞
−∞ f1(τ)f2(t− τ)dτ F1(ω)F2(ω)

f1(t)f2(t)
1

2π
F1(ω) ∗ F2(ω) =

1

2π

ˆ ∞
−∞ F1(α)F2(ω− α)dα

e−atus(t)
1

jω+ a

e−a|t|
2a

a2 +ω2

e−at
2 √

π/a e−ω
2/(4a)

1 for |t| < a/2, else 0
a sin(aω/2)
aω/2

te−atus(t)
1

(a+ jω)2

tn−1

(n− 1)!e
−at)nus(t)

1

(a+ jω)n

1

a2 + t2
π

a
e−a|ω|

δ(t) 1

δ(t− t0) e−jωt0

us(t) πδ(ω) +
1

jω

us(t− t0) πδ(ω) +
1

jω
e−jωt0

1 2πδ(ω)

t 2πjδ ′(ω)

tn 2πjn
dnδ(ω)

dωn

ejω0t 2πδ(ω−ω0)
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cosω0t πδ(ω−ω0) + πδ(ω+ω0)

sinω0t −jπδ(ω−ω0) + jπδ(ω+ω0)

us(t) cosω0t
jω

ω20 −ω
2
+
π

2
δ(ω−ω0) +

π

2
δ(ω+ω0)

us(t) sinω0t
ω0

ω20 −ω
2
+
π

2j
δ(ω−ω0) −

π

2j
δ(ω+ω0)

tus(t) jπδ ′(ω) − 1/ω2

1/t πj− 2πjus(ω)

1/tn
(−jω)n−1

(n− 1)! (πj− 2πjus(ω))

sgn t 2

jω∞∑
n=−∞ δ(t− nT) ω0

∞∑
n=−∞ δ(ω− nω0)
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Euler’s formula

com.euler Euler’s formulas

Euler’s formula is our bridge back-and forth

between trigonomentric forms (cos θ and sin θ)
and complex exponential form (ejθ):

ejθ = cos θ+ j sin θ. (1)

Here are a few useful identities implied by

Euler’s formula.

e−jθ = cos θ− j sin θ (2a)

cos θ = Re (ejθ) (2b)

=
1

2

(
ejθ + e−jθ

)
(2c)

sin θ = Im (ejθ) (2d)

=
1

j2

(
ejθ − e−jθ

)
. (2e)
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