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intro.mecht Mechanical translational elements

1 We now introduce a few lumped-parameter

elements for mechanical systems in translational

(i.e. straight-line) motion. Newton’s laws of

motion can be applied. Let a force f and velocity

v be input to a port in a mechanical translational

element. Since, for mechanical systems, the

power into the element is

P(t) = f(t)v(t) (1)

we call f and v the power-flow variables for

mechanical translational systems. Some

mechanical translational elements have two

distinct locations between which its velocity is

defined (e.g. the velocity across a spring’s two

ends) and other elements have just one (e.g. a

point-mass), the velocity of which must have an

inertial frame of reference. This is analogous to

how a point in a circuit can be said to have a

voltage—by which we mean “relative to

ground.” In fact, we call this mechanical

translational inertial reference ground.

2 Work done on the system over the time

interval [0, T ] is defined as

W ≡
ˆ T
0

P(τ)dτ. (2)

Therefore, the work done on a mechanical

system is

W =

ˆ T
0

f(τ)v(τ)dτ. (3)

3 The linear displacement x is

x(t) =

ˆ t
0

v(τ)dτ+ x(0). (4)

Similarly, the linear momentum is

p(t) =

ˆ t
0

f(τ)dτ+ p(0). (5)
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Figure mecht.1: schematic symbol for a spring with spring constant k and
velocity drop v = v1 − v2.

elemental equation

4 We now consider two elements that can

store energy, called energy storage elements; an

element that can dissipate energy to a system’s

environment, called an energy dissipative

element; and two elements that can supply

power from outside a system, called source

elements.

Translational springs

5 A translational spring is defined as an

element for which the displacement x across it is

a monotonic function of the force f through it. A

linear translational spring is a spring for which

Hooke’s law applies; that is, for which

f(t) = kx(t), (6)

where f is the force through the spring and x is

the displacement across the spring, minus its

unstretched length, and k is called the spring

constant and is typically a function of the

material properties and geometry of the

element. This is called the element’s constitutive

equation because it constitutes what it means to

be a spring.

6 Although there are many examples of

nonlinear springs, we can often use a linear

model for analysis in some operating regime.

The elemental equation for a linear spring can

be found by time-differentiating Equation 6 to

obtain

df

dt
= kv.

We call this the elemental equation because it

relates the element’s power-flow variables f and

v.

7 A spring stores energy as elastic potential

energy, making it an energy storage element.

The amount of energy it stores depends on the



intro Introduction mecht Mechanical translational elements p. 1

m

v2 v1

f

Figure mecht.2: schematic symbol for a point-mass with mass m and
velocity drop v = v1 − v2, where v2 is the constant reference velocity.
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Figure mecht.3: schematic symbol for a damper with damping coefficient B
and velocity drop v = v1 − v2.
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force it applies. For a linear spring,

E(t) =
1

2k
f(t)2. (7)

Point-masses

8 A non-relativistic translational point-mass

element with massm, velocity v (relative to an

inertial reference frame), and momentum p has

the constitutive equation

p = mv. (8)

Once again, time-differentiating the constitutive

equation gives us the elemental equation:

dv

dt
=
1

m
f,

which is just Newton’s second law.

9 Point-masses can store energy (making them

energy storage elements) in gravitational

potential energy or, as will be much more useful

in our analyses, in kinetic energy

E(t) =
1

2
mv2. (9)

Dampers

10 Dampers are defined as elements for which

the force f through the element is a monotonic

function of the velocity v across it. Linear

dampers have constitutive equation (and, it

turns out, elemental equation)

f = Bv (10)

where B is called the damping coefficient.

Linear damping is often called viscous damping

because systems that push viscous fluid

through small orifices or those that have

lubricated sliding are well-approximated by this

equation. For this reason, a damper is typically

schematically depicted as a dashpot.
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11 Linear damping is a reasonable

approximation of lubricated sliding, but it is

rather poor for dry friction or Coulomb friction,

forces for which are not very

velocity-dependent. Aerodynamic drag is quite

velocity-dependent, but is rather nonlinear,

often represented as

f = c|v|v

where c is called the drag constant.

12 Dampers dissipate energy from the system

(typically to heat), making them energy

dissipative elements.

Force and velocity sources

13 An ideal force source is an element that

provides arbitrary energy to a system via an

independent (of the system) force. The

corresponding velocity across the element

depends on the system.

14 An ideal velocity source is an element that

provides arbitrary energy to a system via an

independent (of the system) velocity. The

corresponding force through the element

depends on the system.


