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1 State variables, typically denoted x;, are
members of a minimal set of variables that
completely expresses the state (or status) of a
system. All variables in the system can be
expressed algebraically in terms of state
variables and input variables, typically denoted
uy.

2 A state-determined system model is a
system for which

1. a mathematical description in terms of n
state variables x;,

2. initial conditions x;(tg), and

3. inputs uy(t) for t > to

are sufficient conditions to determine x; (t) for
all t > to. We call n the system order.

3 The state, input, and output variables are all
functions of time. Typically, we construct
vector-valued functions of time for each. The
so-called state vector x is actually a
vector-valued function of time x : R — R™. The
ith value of x is a state variable denoted x;.

4  Similarly, the so-called input vector u is
actually a vector-valued function of time

u:R — R", where r is the number of inputs. The
ith value of u is an input variable denoted u;.

5 Finally, the so-called output vector y is
actually a vector-valued function of time

y:R — R™, where m is the number of outputs.
The ith value of y is an output variable denoted
Yi.

6 Most systems encountered in engineering
practice can be modeled as state-determined.
For these systems, the number of state variables
n is equal to the number of independent energy
storage elements.

7 Since to know the state vector x is to know
everything about the state, the energy stored in
each element can be determined from x.
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Therefore, the time-derivative dx/dt describes
the power flow. power flow
8 The choice of state variables represented by
x is not unique. In fact, any basis transformation
yields another valid state vector. This is
because, despite a vector’s components
changing when its basis is changed, a
“symmetric” change also occurs to its basis
vectors. This means a vector is a
coordinate-independent object, and the same
goes for vector-valued functions. This is not to
say that there aren’t invalid choices for a state
vector. There are. But if a valid state vector is
given in one basis, any basis transformation
yields a valid state vector.

9 One aspect of the state vector is invariant,
however: it must always be a vector-valued
function in R™. Our method of analysis will
yield a special basis for our state vectors. Some
methods yield rather unnatural state variables
(e.g. the third time-derivative of the voltage
across a capacitor), but ours will yield natural
state variables (e.g. the voltage across a
capacitor or the force through a spring).
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Figure svar.1: block diagram of o system with input w, state x, and output y.



