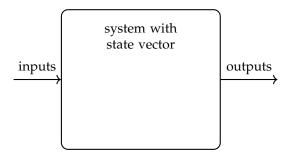
ss.svar State variable system representation


1 State variables, typically denoted x _i , are members of a minimal set of variables that	state variables
completely expresses the state (or status) of a system. All variables in the system can be	state
expressed algebraically in terms of state variables and input variables, typically denoted	input variables
 u_i. 2 A state-determined system model is a system for which 	state-determined system model
 a mathematical description in terms of n state variables x_i, initial conditions x_i(t₀), and inputs u_i(t) for t ≥ t₀ 	
are sufficient conditions to determine $x_i(t)$ for	
all $t \ge t_0$. We call n the system order.	system order output variables
3 The state, input, and output variables are all functions of time. Typically, we construct	oupur variables
vector-valued functions of time for each. The	
so-called state vector x is actually a	state vector
vector-valued function of time $\mathbf{x} : \mathbb{R} \to \mathbb{R}^n$. The	
ith value of \mathbf{x} is a state variable denoted x_i .	
4 Similarly, the so-called input vector u is	input vector
actually a vector-valued function of time	
$u:\mathbb{R}\rightarrow\mathbb{R}^r$, where r is the number of inputs. The	
ith value of $\boldsymbol{\mathfrak{u}}$ is an input variable denoted $\mathfrak{u}_i.$	
5 Finally, the so-called output vector y is	output vector
actually a vector-valued function of time	
$\mathbf{y}: \mathbb{R} \to \mathbb{R}^m$, where m is the number of outputs.	
The ith value of y is an output variable denoted	
9i.6 Most systems encountered in engineering	
practice can be modeled as state-determined.	
For these systems, the number of state variables	
n is equal to the number of independent energy	independent energy storage elements
storage elements.	
7 Since to know the state vector \mathbf{x} is to know	
everything about the state, the energy stored in	

each element can be determined from *x*.

Therefore, the time-derivative dx/dt describes the power flow.

8 The choice of state variables represented by x is not unique. In fact, any basis transformation yields another valid state vector. This is because, despite a vector's components changing when its basis is changed, a "symmetric" change also occurs to its basis vectors. This means a vector is a coordinate-independent object, and the same goes for vector-valued functions. This is not to say that there aren't invalid choices for a state vector. There are. But if a valid state vector is given in one basis, any basis transformation yields a valid state vector.

9 One aspect of the state vector is invariant, however: it must always be a vector-valued function in \mathbb{R}^n . Our method of analysis will yield a special basis for our state vectors. Some methods yield rather unnatural state variables (e.g. the third time-derivative of the voltage across a capacitor), but ours will yield natural state variables (e.g. the voltage across a capacitor or the force through a spring).

Figure svar.1: block diagram of a system with input u, state x, and output y.

power flow