
emech Electromechanical systems dcmtrans Transient DC motor performance p. 1

emech.dcmtrans Transient DC motor performance

Let’s begin by defining the system parameters.

Kt_spec = 13.7; % oz-in/A ... torque constant from spec
Kv_spec = 10.2; % V/krpm ... voltage constant from spec
Tmax_spec = 2.82; % N-m ... max (stall) torque from spec
Omax_spec = 628; % rad/s ... max speed (no load) from spec
N_oz = 0.278013851; % N/oz
m_in = 0.0254; % m/in
Kt_si = Kt_spec*N_oz*m_in; % N-m/A
rads_krpm = 1e3*2*pi/60; % (rad/s)/krpm
Kv_si = Kv_spec/rads_krpm; % V/(rad/s)
d = 2.5*m_in; % m ... flywheel diameter
thick = 1*m_in; % m ... flywheel thickness
vol = pi*(d/2)^2*thick; % flywheel volume
rho = 8000; % kg/m^3 ... flywheel density (304 stainless)
m = rho*vol; % kg ... flywheel mass
Jf = 1/2*m*(d/2)^2; % kg-m^2 ... inertia of flywheel
Jr = 56.5e-6; % kg-m^2 ... inertia of rotor
J = Jf+Jr; % kg-m^2 ... total inertia
Bm = 16.9e-6; % N-m/s^2 ... motor damping coef
Bd = 20e-6; % N-m/s^2 ... bearing damping coef
B = Bm + Bd; % N-m/s^2 ... total damping coef
R = 1.6; % Ohm ... armature resistance
L = 4.1e-3; % H ... armature inductance
TF = Kv_si; % N-m/A ... trans ratio/motor constant

The state-space model was derived in

Lecture emech.real. First, we construct the A, B,

C, and Dmatrices (a, b, c, and d). Then we

define a MATLAB LTI system model using the

ss command.

a = [-B/J,TF/J;-TF/L,-R/L];
b = [0;1/L];
c = [1,0;-B,TF;-TF,-R;0,1;1,0;B,0;...

0,R;0,1;TF,0;0,1;1,0;0,-TF;0,0;0,1];
d = [0; 0; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 0];
sys = ss(a,b,c,d);

Simulating the step response

The step input is widely used to characterize the

transient response of a system. MATLAB’s step
function conveniently simulates the step

response of an LTI system model.

[ys_a,t_a] = step(sys);
disp([t_a(1:6),ys_a(1:6,1:4)]) % print a little

https://www.mathworks.com/discovery/state-space.html
https://www.mathworks.com/help/control/ref/ss.html
https://www.mathworks.com/help/control/ref/step.html


emech Electromechanical systems dcmtrans Transient DC motor performance p. 2

0 0 0 1.0000 0
0.0002 0.0018 0.0056 0.9082 0.0573
0.0005 0.0071 0.0106 0.8245 0.1093
0.0007 0.0155 0.0152 0.7482 0.1565
0.0010 0.0267 0.0194 0.6786 0.1993
0.0012 0.0405 0.0232 0.6151 0.2381

The vector t_a contains values of time and array

ys_a contains a vector of time-series values for

each output. If one would like the output for a

step input kus(t) (scaled unit step us(t)), by the

principle of superposition for linear systems,

one can scale the output by k. The outputs are

plotted in Figure dcmtrans.1.

It is also interesting to inspect the power flow

and energy associated with each element. Since

we have simulated both the across and the

through variable for each element, we can

compute the instantaneous power by simply

taking the product of them at each time step.

Moreover, we can cumulatively compute the

energy contribution of that power for each

element. For energy storage elements, this is the

change in energy stored or supplied; for energy

dissipative elements, this is the change in

energy dissipated; for source elements, this is

the energy supplied or absorbed. The results are

plotted in Figure dcmtrans.2.

P = NaN*ones(size(ys_a,1),size(ys_a,2)/2);
E = NaN*ones(size(P));
j = 0;
for i = 1:2:size(ys_a,2)

j = j+1;
P(:,j) = ys_a(:,i).*ys_a(:,i+1);
E(:,j) = cumtrapz(t_a,P(:,j));

end
disp('power:');
disp(P(1:6,1:4)) % print a little
disp('energy change:')
disp(E(1:6,1:4)) % print a little

power:
0 0 0 0

0.0000 0.0520 0.0000 0.0052
0.0001 0.0901 0.0000 0.0191
0.0002 0.1171 0.0000 0.0392



emech Electromechanical systems dcmtrans Transient DC motor performance p. 3

0

10

20

Ω
J

0

0.05

0.1

T
J

−1

0

1

v
L

0

0.5

1

i L
0

5

10

15

20

Ω
B

0

1

2

3

4
·10−4

T
B

0
0.2
0.4
0.6
0.8
1

v
R

0
0.2
0.4
0.6
0.8
1

i R

0
0.2
0.4
0.6
0.8
1

v
1

0
0.2
0.4
0.6
0.8
1

i 1

0

10

20

Ω
2

−0.1

−0.05

0

T
2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

1

2

time (s)

V
s

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.5

1

I s

Figure dcmtrans.1: unit step responses for across- (left axes) and
through-variables (right axes). Units are as follows: voltage is in V, current is in A,
angular velocity is in rad/s, and torque is in N-m. and.



emech Electromechanical systems dcmtrans Transient DC motor performance p. 4

0

0.05

0.1

0.15

0.2

P
J

0

0.5

1

1.5

2
·10−2

E
J

−0.2

0

0.2

P
L

−1

0

1
·10−3

E
L

0

2

4
·10−3

P
B

0

0.5

1
·10−3

E
B

0

0.5

1

P
R

0

2

4
·10−2

E
R

0

0.05

0.1

0.15

0.2

P
1

0

1

2

3

4
·10−2

E
1

−0.2

−0.15

−0.1

−0.05

0

P
2

−4

−3

−2

−1

0
·10−2

E
2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.2
0.4
0.6
0.8
1

time (s)

P
s

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0
1
2
3
4
5

·10−2

E
s

Figure dcmtrans.2: power flow (left axes) and energy
storage/dissipation/transformation (right axes) for a unit step response. The unit
of power is W and the unit of energy is J.



emech Electromechanical systems dcmtrans Transient DC motor performance p. 1

0.0005 0.1352 0.0000 0.0635
0.0009 0.1465 0.0000 0.0907

energy change:
1.0e-03 *

0 0 0 0
0.0000 0.0064 0.0000 0.0006
0.0000 0.0239 0.0000 0.0036
0.0001 0.0494 0.0000 0.0108
0.0001 0.0805 0.0000 0.0235
0.0003 0.1152 0.0000 0.0425

Estimating parameters from the step response

Often, our model has a couple parameters we

don’t know well from the specifications, but

must attempt to measure. For the system under

consideration, perhaps the two parameters most

interesting to measure are the dominant time

constant and the transformer ratio TF (most

important). In this section, we explore how one

might estimate them from a measured step

response. Other parameters in the system could

be similarly estimated.

By way of the transfer function, the state-space

model can be transformed into input-output

differential equations.

syms B_ J_ TF_ L_ R_ Vs_ s % using underscore for syms

a_ = [-B_/J_,TF_/J_;-TF_/L_,-R_/L_];
b_ = [0;1/L_];

(s*eye(2)-a_)^-1*b_

ans =
TF_/(TF_^2 + B_*R_ + B_*L_*s + J_*R_*s +

J_*L_*s^2)↪→

(B_ + J_*s)/(TF_^2 + B_*R_ + B_*L_*s + J_*R_*s +
J_*L_*s^2)↪→

The differential equation for ΩJ is

d2ΩJ
dt2

+

(
R

L
+
B

J

)
dΩJ
dt

+
TF2 + BR

JL
ΩJ =

TF

JL
Vs.

(1)

The corresponding characteristic equation is

λ2 +

(
R

L
+
B

J

)
λ+

TF2 + BR

JL
= 0 (2)



emech Electromechanical systems dcmtrans Transient DC motor performance p. 2

which has solution

λ1,2 = −
1

2

(
R

L
+
B

J

)
± 1

2

√(
R

L
+
B

J

)2
− 4

TF2 + BR

JL
.

(3)

For a step input Vs(t) = Vs,

ΩJ(0) = dΩJ(0)/dt = 0, and distinct roots λ1 and

λ2, the solution is

ΩJ(t) = Vs
TF

TF2 + BR

(
1−

1

λ2 − λ1

(
λ2e

λ1t − λ1e
λ2t
))

(4)

Let’s compute λ1 and λ2.

lambda12 = -1/2*(R/L+B/J) + ...
[1,-1]*1/2*sqrt((R/L+B/J)^2 - 4*(TF^2+B*R)/(J*L))

lambda12 =
-16.3467 -373.9941

Both values are real, so we expect not an

oscillation, but a decay to a final value.

However, that decay occurs with two different

time constants: τ1 = −1/λ1 and τ2 = −1/λ2.

tau12 = -1./lambda12
disp(['ratio: ',num2str(tau12(1)/tau12(2))])

tau12 =
0.0612 0.0027

ratio: 22.8788

So second decays much faster than the first.

That’s good news for our estimation project

because we can easily ignore the step response’s

first 5τ2 ≈ 0.0134 s and assume the rest is

decaying at τ1, which we call the dominant time

constant and which we would like to estimate.

Let’s generate some fake response data to get

the idea. We’ll layer on some Gaussian noise

with randn to be more realistic. The data is

plotted in Figure dcmtrans.3.



emech Electromechanical systems dcmtrans Transient DC motor performance p. 3

0 0.1 0.2 0.3 0.4

0

5

10

time (s)

Ω
J
(r
ad

/
s)

Figure dcmtrans.3: unit step response “data.”

t_data = linspace(0,-6/lambda12(1),200);

O_fun = @(t) TF/(TF^2+B*R)*...
(1-1/(lambda12(2)-lambda12(1))*...
(lambda12(2)*exp(lambda12(1)*t)-...
lambda12(1)*exp(lambda12(2)*t)));

rng(2);
O_data = O_fun(t_data) + .5*randn(size(t_data));

Let’s trim the data to eliminate the time interval

corresponding to the first five of the “fast” time

constant τ2.

[t_5,i_5] = min(abs(t_data-(-5/lambda12(2)))); % delete
t_data_trunc = t_data((i_5+1):end);
O_data_trunc = O_data((i_5+1):end);

We need want to take the natural logarithm of

the data so we can perform a linear regression to

estimate the “experimental” slow time constant

τ̃1. We must first estimate the steady-state value

ΩJ∞ (which we’ll also need). We don’t want to

just take the last value in the array due to its

noisiness. The data goes for six slow time

constants, so averaging the data for the last time

constant is a good estimate.

[t_ss,i_ss] = ...
min(abs(t_data_trunc-(-5/lambda12(1)))); % start here

O_data_ss = O_data_trunc((i_ss+1):end);
mu_O_ss = mean(O_data_ss)
S_mu_O_ss = std(O_data_ss)/sqrt(length(O_data_ss))



emech Electromechanical systems dcmtrans Transient DC motor performance p. 4

mu_O_ss =
10.1801

S_mu_O_ss =
0.0763

Let’s use this result to transform the data into its

linear form.

O_lin = log(-(O_data_trunc-mu_O_ss));
O_lin_complex = find(imag(O_lin)>0);
disp(['number of complex values: ',...

num2str(length(O_lin_complex))])

number of complex values: 33

Now we have encountered a problem. The

noisiness of the data makes some of our points

wander into negative-land. Logarithms of

negative numbers are complex. Naive

approaches like just taking real parts, excluding

complex values, or coercing complex values to

−∞ all have the issue of biasing the data.

There are a lot of approaches we could take. The

best approaches include nonlinear regression

and discrete filtering to smooth the data (e.g.

filtfilt).
We opt for an easier approach: we find the

index at which the time series first transgresses

the boundary and exclude the data beyond the

previous index.

i_bad = O_lin_complex(1);
t_lin_trunc = t_data_trunc(1:i_bad-1);
O_lin_trunc = O_lin(1:i_bad-1);

This is plotted in Figure dcmtrans.4 along with

the linear regression least-squares fit, computed

below.

pf = polyfit(t_lin_trunc,O_lin_trunc,1);
O_lin_fit = polyval(pf,t_lin_trunc);
tau_1_est = -1/pf(1)

tau_1_est =
0.0603



emech Electromechanical systems drive Transient DC motor performance p. 5

0 0.05 0.1 0.15

−2

0

2

time (s)

ln
(Ω
J
∞−

Ω
J
(t
))

transformed data

linear fit

Figure dcmtrans.4: transformed angular velocity “data” with a linear
fit.

So our estimate for τ1 is τ̃1 = 60.3ms. Recall that

our analytic expression for τ1 is known in terms

of other parameters. Similarly, the steady-state

value of ΩJ, which has already been estimated

to be ΩJ∞ = 10.18 (i.e. mu_O_ss). This occurs
when the time-derivatives of ΩJ are zero. From

the solution for ΩJ (or its differential equation),

for constant Vs(t) = Vs, this occurs when

ΩJ∞ =
TF

TF2 + BR
Vs. (5)

An analytic expression for TF can be found by

solving Equation 5, which yields

TF = Vs ±
1

2Ω̃J∞
√
V2s − 4BRΩ̃2J∞ (6)

We choose the solution closer to the a priori

(spec) value of 0.0974.

TF_est = (1 + (- 4*B*R*mu_O_ss^2 + 1^2)^(1/2))/(2*mu_O_ss)

TF_est =
0.0976

This estimate T̃F = 0.0976 is very close to the

value given in the specification sheet because

we constructed it to be so. Real measurements

would probably yield an estimate further from

the specification, which is why we would

estimate it.


