# Iti.equistab Equilibrium and stability properties

1 For a system with LTI state-space model  $\dot{\mathbf{x}} = A\mathbf{x} + B\mathbf{u}, \mathbf{y} = C\mathbf{x} + D\mathbf{u}$ , the model is in an equilibrium state  $\overline{\mathbf{x}}$  if  $\dot{\mathbf{x}} = 0$ . This implies  $A\overline{\mathbf{x}} + B\mathbf{u} = 0$ . For constant input  $\overline{\mathbf{u}}$ , this implies

If A is invertible,<sup>1</sup> as is often the case, there is a unique solution for a single equilibrium state:

# Definition lti.1: Stability

If x is perturbed from an equilibrium state  $\overline{x}$ , the response x(t) can:

1. asymptotically return to  $\overline{x}$ 

- 2. diverge from  $\overline{x}$
- 3. remain perturbed or oscillate about  $\overline{x}$  with a constant amplitude
- 2 A phase portrait is a parametric plot of state variable trajectories, with time implicit. Phase portraits are exceptionally useful for understanding nonlinear systems, but they also give us a nice way to understand stability, as in Figure equistab.1.

3 These definitions of stability can be interpreted in terms of the free response of a system, as described, below.

Stability defined by the free response

4 Using the concept of the free response (no inputs, just initial conditions), we define the following types of stability for LTI systems<sup>2</sup>.

1. An LTI system is asymptotically stable if the free response approaches an

#### equilibrium

1. If A is not invertible, the system has at least one eigenvalue equal to zero, which yields an equilibrium subspace equal to an offset (by  $B\overline{u}$ ) of the null space of the state space  $\mathbb{R}^n$ .

#### equilibrium

phase portrait trajectories

2. N.S. Nise. Control Systems Engineering, 7th Edition. Wiley, 2015. ISBN: 9781118800829.

asymptotic stability





equilibrium state as time approaches infinity.

- 2. An LTI system is unstable if the free response grows without bound as time approaches infinity.
- 3. An LTI system is marginally stable if the free response neither decays nor grows but remains constant or oscillates as time approaches infinity.

5 These statements imply that the free response alone governs stability. Recall that the free response  $y_{fr}$  of a system with characteristic equation roots  $\lambda_i$  with multiplicity  $m_i$ , for constants  $C_i$ , is

Each term will either decay to zero, remain constant, or increase without bound—depending on the sign of the real part of the corresponding root of the characteristic equation  $\operatorname{Re}(\lambda_i)$ .

6 In other words, for an LTI system, the following statements hold.

1. An LTI system is asymptotically stable if, for all  $\lambda_i$ ,  $\operatorname{Re}(\lambda_i) < 0$ .

## instability

marginal stability

- 2. An LTI system is unstable if, for any  $\lambda_i$ ,  $\operatorname{Re}(\lambda_i) > 0$ .
- 3. An LTI system is marginally stable if,
  - a) for all  $\lambda_i$ ,  $\operatorname{Re}(\lambda_i) \leqslant 0$  and
  - b) at least one  $\operatorname{Re}(\lambda_i) = 0$  and
  - c) no  $\lambda_i$  for which  ${\rm Re}\,(\lambda_i)=0$  has multiplicity  $m_i>1.$

Stability defined by the forced response

7 An alternate formulation of the stability definitions above is called the bounded-input bounded-output (BIBO) definition of stability, and states the following<sup>3</sup>.

- 1. A system is BIBO stable if every bounded input yields a bounded output.
- 2. A system is BIBO unstable if any bounded input yields an unbounded output.

8 In terms of BIBO stability, marginal stability, then, means that a system has a bounded response to some inputs and an unbounded response to others. For instance, a second-order undamped system response to a sinusoidal input at the natural frequency is unbounded, whereas every other input yields a bounded output.

9 Although we focus on the definitions of stability in terms of the free response, it is good to understand BIBO stability, as well.

## **BIBO** stability

3. Nise, Control Systems Engineering, 7th Edition.

## **BIBO** stable

## **BIBO** unstable

## **BIBO** marginal stability