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Figure vib.1: a vibration isolation table schematic with input velocity Vs.
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Figure vib.2: linear graph of the isolation table.

4. For a discussion of this ignoring of gravity, see Lec. lti.ghost.

lti.vib Vibration isolation table analysis

1 In this example, we exercise many of the

methods for modeling and analysis explored

thus far.

2 Given the vibration isolation table model in

Figure vib.1—withm = 320 kg, k = 16000 N/m,

and B = 1200 N–m/s—derive:

1. a linear graph model,

2. a state-space model,

3. the equilibrium state x for the unit step

input,

4. a transfer function model,

5. an input-output differential equation

model with input Vs and output vm,

6. a solution for vm(t) for a unit step input

Vs(t) = 1m/s for t > 0,

7. the system’s stability.

Linear graph and state-space models

3 The linear graph and normal tree are shown

in Figure vib.2. Note that there is an equilibrium

for this system, so we are justified in ignoring

gravity and referencing any displacements to

the static equilibrium position.4 The state

variables are the velocity of the mass vm and the

force through the spring fk and the system order

is n = 2. The input, state, and output vectors are

u =
[
Vs

]
x =

[
vm

fk

]
y =

[
vm

]
.

The elemental equations are as follows.

m v̇m =
1

m
fm

k ḟk = kvk

B fB = BvB

The continuity and compatibility equations are

as follows.
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branch continuity equation

m fm = fk + fB

link compatibility equation

k vk = Vs − vm

B vB = Vs − vm
The state equation can be found by substituting

the continuity and compatibility equations into

the elemental equations, and eliminating fB, to

yield

ẋ =

[
−B/m 1/m

−k 0

]
x+

[
B/m

k

]
u (1a)

y =
[
1 0

]
x+

[
0
]
u. (1b)

Equilibrium

4 Let’s check to see if A is invertible by trying

to compute its inverse:

A−1 =

[
−B/m 1/m

−k 0

]−1
(2)

=
1

k/m

[
0 −1/m

k −B/m

]
(3)

So it has an inverse, after all! Let’s use this to

compute the equilibrium state:

x = −A−1Bu (4)

=
−m

k

[
0 −1/m

k −B/m

][
B/m

k

] [
1
]

(5)

=
−m

k

[
−k/m

0

]
(6)

=

[
1

0

]
(7)

So the system is in equilibrium with vm = 1m/s

and fk = 0 N. Since vm is also our output, we

expect 1m/s to be our steady-state output

value.

Transfer function model
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5. See (� Rowell and Wormley, System Dynamics: An Introduction,
Sec. A.4.3) for details on the matrix inverse.

5 The transfer function H(s) = Vm(s)/Vs(s)

will be used as a bridge to the input-output

differential equation. The transfer function can

be found from the usual formula, from

Lecture ss.ss2tf2io,

H(s) = C(sI−A)−1B+D. (8)

Let’s first compute (sI−A)−1:5

(sI−A)−1 =

([
s 0

0 s

]
−

[
−B/m 1/m

−k 0

])−1

(9a)

=

[
s+ B/m −1/m

k s

]−1
(9b)

=
1

(s+ B/m)(s) − (−1/m)(k)

[
s 1/m

−k s+ B/m

]
(9c)

=
1

s2 + (B/m)s+ k/m

[
s 1/m

−k s+ B/m

]
(9d)

Now we’re ready to compute the entirety of H:

H(s) =
1

s2 + (B/m)s+ k/m

[
1 0

] [ s 1/m

−k s+ B/m

][
B/m

k

]
+
[
0
]

(10a)

=
1

s2 + (B/m)s+ k/m

[
s 1/m

] [B/m
k

]
(10b)

=
(B/m)s+ k/m

s2 + (B/m)s+ k/m
. (10c)

Input-output differential equation

6 The input-output differential equation can

be found from the reverse of the procedure in

Lecture ss.ss2tf2io. Beginning from the transfer
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function,

Vm

Vs
=

(B/m)s+ k/m

s2 + (B/m)s+ k/m
⇒

(11a)(
s2 + (B/m)s+ k/m

)
Vm = ((B/m)s+ k/m)Vs ⇒

(11b)

v̈m + (B/m)v̇m + (k/m)vm = (B/m)V̇s + (k/m)Vs.

(11c)

Step response

7 The step response is found using

superposition and the derivative property of

LTI systems. The forcing function

f(t) = (B/m)V̇s + (k/m)Vs is composed of two

terms, one of which has a derivative of the input

Vs. Rather than attempting to solve the entire

problem at once, we choose to find the response

for a forcing function f(t) = 1 (for t > 0)—that is,

the unit step response—and use superposition

and the derivative property of LTI systems to

calculate the composite response.

Unit step response

8 The characteristic equation of Equation 11c

is

λ2 + (B/m)λ+ k/m = 0⇒ (12a)

= −
B

2m
±

√
B2 − 4mk

2m
⇒

(12b)

λ1,2 = −1.875± j6.818. (12c)

The roots are complex, so the system will have a

damped sinusoidal step response. Let

σ = −1.875 and ω = 6.818 such that

λ1,2 = σ± jω. The homogeneous solution is

vmh
(t) = C1e

λ1t + C2e
λ2t. (13)
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In this form, C1 and C2 are complex. It is

somewhat easier to deal with

vmh
(t) = C1e

σtejωt + C2e
σte−jωt (14a)

= eσt (C1 cosωt+ jC1 sinωt+ C2 cosωt− jC2 sinωt)
(14b)

= eσt ((C1 + C2) cosωt+ j(C1 − C2) sinωt) .
(14c)

Let C3 = C1 + C2 and C4 = j(C1 − C2) such that

vmh
(t) = eσt (C3 cosωt+ C4 sinωt) . (15)

This is a decaying (because σ < 0) sinusoid. A

nice aspect of this new form is that C3 and C4

are real.

9 Now, the particular solution can be found by

assuming a solution of the form vmp(t) = K for

t > 0. Substituting this into Equation 11c (with

forcing f(t) = 1, we attempt to find a solution for

K (that is, determine it):

(k/m)K = 1⇒ K = m/k. (16)

Therefore, vmp(t) = m/k is a solution, and

therefore the general solution is

vmstep(t) = vmh
(t) + vmp(t) (17a)

= eσt (C3 cosωt+ C4 sinωt) +m/k.
(17b)

This leaves the specific solution, to be found

applying the initial conditions (assumed to be

zero). Before we do so, however, we need the

time-derivative of the vmstep :

v̇mstep(t) = e
σt ((C3σ+ C4ω) cos(ωt) + (C4σ− C3ω) sin(ωt)) .

(18)

Now, applying the initial conditions,

vmstep(0) = 0⇒ (19a)

C3 = −m/k (19b)

v̇mstep(0) = 0⇒ 0 = C3σ+ C4ω⇒ (19c)

C4 =
σ

ω
· m
k
. (19d)
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10 It’s good form to re-write this as a single

sinusoid:

vmstep(t) = vmh
(t) + vmp(t) (20a)

= A1e
σt cos(ωt+ψ1) +m/k (20b)

where we have used Lecture math.trig to find

A1 =
√
C23 + C

2
4 (21a)

ψ1 = − arctan(C4/C3). (21b)

Superposition and the derivative property

11 Recall that the actual forcing function is a

linear combination of the input and its

time-derivative. Therefore, it is expedient to

re-write the time-derivative of the unit step

response:

v̇mstep(t) = A1e
σt (σ cos(ωt+ψ1) −ω sin(ωt+ψ1))

(22a)

= A1A2e
σt cos(ωt+ψ1 +ψ2) (22b)

where

A2 =
√
σ2 +ω2 (22c)

ψ2 = − arctan(−ω/σ). (22d)

Finally, applying superposition and the

derivative rule of LTI systems,

vm(t) = (B/m)v̇mstep(t) + (k/m)vmstep (23a)

=
B

m
A1A2e

σt cos(ωt+ψ1 +ψ2) +
k

m
A1e

σt cos(ωt+ψ1) + 1.

(23b)

This is the solution!

12 It’s worth plotting the response. Begin by

defining the system parameters.

m = 320; % kg ... mass
k = 16000; % N/m ... spring constant
B = 1200; % N-m/s ... damping coefficient

Now define the secondary parameters.
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Figure vib.3: vibration table step response vm(t).

lambda = -B/(2*m)+[-1,1]*sqrt(B^2-4*m*k)/(2*m);
sigma = real(lambda(1));
omega = imag(lambda(2));
K = m/k;
C3 = -m/k;
C4 = sigma/omega*m/k;
A1 = sqrt(C3^2+C4^2);
psi1 = -atan2(C4,C3);
A2 = sqrt(sigma^2+omega^2);
psi2 = -atan2(-omega,sigma);

Finally, the solution for vm(t) can be defined as

an anonymous function.

vm = @(t) ...
A1*A2*B/m*exp(sigma*t).*cos(omega*t+psi1+psi2)+...
A1*k/m*exp(sigma*t).*cos(omega*t+psi1)+...
1;

Now, plot over the first few seconds. The results

are shown in Figure vib.3.

t_a = linspace(0,3,200);
h = figure;
p = plot(t_a,vm(t_a),'linewidth',1.5);
xlabel('time (s)')
ylabel('velocity $v_m(t)$ (m/s)',...

'interpreter','latex');
grid on
hgsave(h,'figures/temp');

13 Note that the steady-state output value

agrees with that predicted by the equilibrium

analysis, above.
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Stability

14 We have learned what we need in order to

analyze the system’s stability. The roots of the

characteristic equation were

λ1,2 = −1.875± j6.818, which clearly all have

negative real parts, and therefore the system is

asymptotically stable.


