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natural frequency ωn

damping ratio ζ

explode

trans.secondo Second-order systems in transient

response

1 Second-order systems have input-output

differential equations of the form

d2y

dt2
+ 2ζωn

dy

dt
+ω2ny = f(t) (1)

where ωn is called the natural frequency, ζ is

called the (dimensionless) damping ratio, and f

is a forcing function that depends on the input u

as

f(t) = b2
d2u

dt2
+ b1

du

dt
+ b0u. (2)

Systems with two energy storage

elements—such as those with an inertial

element and a spring-like element—can be

modeled as second-order.

2 For distinct roots (λ1 6= λ2), the
homogeneous solution is, for some real

constants κ1 and κ2,

yh(t) = κ1e
λ1t + κ2e

λ2t (3)

where

λ1, λ2 = −ζωn ±ωn
√
ζ2 − 1. (4)

Free response

3 The free response yfr is found by applying

initial conditions to the homogeneous solution.

With initial conditions y(0) and ẏ(0) = 0, the free

response is

yfr(t) = y(0)
1

λ2 − λ1

(
λ2e

λ1t − λ1e
λ2t
)
. (5)

There are five possibilities for the location of the

roots λ1 and λ2, all determined by the value of ζ.

ζ ∈ (−∞, 0): unstable This case is very

undesirable because it means our system

is unstable and, given any nonzero input

or output, will explode to infinity.
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damped natural frequency ωd

ζ = 0: undamped An undamped system will

oscillate forever if perturbed from zero

output.

ζ ∈ (0, 1): underdamped Roughly speaking,

underdamped systems oscillate, but not

forever. Let’s consider the form of the

solution for initial conditions and no

forcing. The roots of the characteristic

equation are

λ1, λ2 = −ζωn±jωn
√
1− ζ2 = −ζωn±jωd

(6)

where the damped natural frequency ωd

is defined as

ωd ≡ ωn
√
1− ζ2. (7)

From Equation (5) for the free response,

using Euler’s formulas to write in terms of

trigonometric functions, and the initial

conditions y(0) and ẏ(0) = 0, we have

yfr(t) = y(0)
e−ζωnt√
1− ζ2

cos(ωdt+ψ) (8)

where the phase ψ is

ψ = − arctan ζ√
1− ζ2

. (9)

This is an oscillation that decays to the

value it oscillates about, y(t)|t→∞ = 0. So

any perturbation of an underdamped

system will result in a decaying oscillation

about equilibrium.

ζ = 1: critically damped In this case, the roots

of the characteristic equation are equal:

λ1 = λ2 = −ωn (10)

So we must modify Equation 3 with a

factor of t for the homogeneous solution.

The free response for initial conditions

y(0) and ẏ(0) = 0, we have

yfr(t) = y(0) (1+ωnt) e
−ωnt. (11)
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forced response yfo

This decays without oscillation, but just

barely.

ζ ∈ (1,∞): overdamped Here the roots of the

characteristic equation are distinct and

real. From Equation (5) with free response

to initial conditions y(0) and ẏ(0) = 0, we

have the sum of two decaying real

exponentials. This response will neither

overshoot nor oscillate—like the critically

damped case—but with even less gusto.

4 Figure secondo.1 displays the free response

results. Note that a small damping ratio results

in overshooting and oscillation about the

equilibrium value. In contrast, large damping

ratio results in neither overshoot nor oscillation.

However, both small and large damping ratios

yield responses that take longer durations to

approach equilibrium than damping ratios near

unity. In terms of system performances, there

are tradeoffs on either side of ζ = 1. Slightly less

than one yields faster responses that overshoot a

small amount. Slightly greater than one yields

slower responses less prone to oscillation.

Step response

5 Second-order systems are subjected to a

variety of forcing functions f. In this lecture, we

examine a common one: step forcing. In what

follows, we develop forced response yfo
solutions.

6 Unit step forcing of the form f(t) = us(t),

where us is the unit step function, models

abrupt changes to the input. The solution is

found by applying zero initial conditions

(y(0) = 0 and ẏ(0) = 0) to the general solution. If

the roots of the characteristic equation λ1 and λ2

are distinct, the forced response is

yfo(t) =
1

ω2n

(
1−

1

λ2 − λ1

(
λ2e

λ1t − λ1e
λ2t
))
(12)



trans Qualities of transient response secondo Second-order systems in transient response p. 2

0 2 4 6 8 10 12 14 16 18 20

0

1

dimensionless time ωnt

n
o
rm

al
iz
ed

o
u
tp
u
t
y
fr
(t
)/
y
(0
)

ζ = .1

ζ = .3

ζ = .5

ζ = 1

ζ = 2

ζ = 4

ζ = 6

Figure secondo.1: free response yfr(t) of a second-order system with initial conditions y(0) and ẏ(0) = 0 for different values of ζ. Underdamped, critically
damped, and overdamped cases are displayed.

where

λ1, λ2 = −ζωn ±ωn
√
ζ2 − 1. (13)

Once again, there are five possibilities for the

location of the roots of the characteristic

equation λ1 and λ2, all determined by the value

of ζ. However, there are three stable cases:

underdamped, critically damped, and

overdamped.

ζ ∈ (0, 1) underdamped In this case, the roots

are distinct and complex:

λ1, λ2 = −ζωn ± jωd. (14)

From Equation 12, the forced step

response is

yfo(t) =
1

ω2n

(
1−

e−ζωnt√
1− ζ2

cos(ωdt+ψ)
)

(15)
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where the phase ψ is

ψ = − arctan ζ√
1− ζ2

. (16)

This response overshoots, oscillates about,

and decays to 1/ω2n.

ζ = 1 critically damped The roots are equal

and real:

λ1, λ2 = −ωn (17)

so the forced step of Equation 12 must be

modified; it reduces to

yfo(t) =
1

ω2n

(
1− e−ωnt(1+ωnt)

)
. (18)

This response neither oscillates nor

overshoots its steady-state of
1

ω2n
, but just

barely.

ζ ∈ (1,∞) overdamped In this case, the roots

are distinct and real, given by Equation 13.

The forced step given by Equation 12 is

the sum of two decaying real exponentials.

These responses neither overshoot nor

oscillate about their steady-state of 1/ω2n.

With increasing ζ, approach to

steady-state slows.

7 Figure secondo.2 displays the forced step

response results. These responses are inverted

versions of the free responses of

Lecture trans.secondo. Note that a small

damping ratio results in overshooting and

oscillation about the steady-state value. In

contrast, large damping ratio results in neither

overshoot nor oscillation. However, both small

and large damping ratios yield responses that

take longer durations to approach equilibrium

than damping ratios near unity. For this reason,

the damping ratio of a system should be close to

ζ = 1. There are tradeoffs on either side of one.

Slightly less yields faster responses that

overshoot a small amount. Slightly greater than

one yields slower responses less prone to

oscillation.
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Figure secondo.2: forced step response yfo(t) of a second-order system for different values of ζ. Underdamped, critically damped, and overdamped cases are
displayed.

Impulse and ramp responses

8 The response to all three singularity inputs

are included in Table secondo.1. These can be

combined with the free response of Equation 2

using superposition.

An example with superposition

9 The results of the above are powerful not so

much in themselves, but when they are wielded

with the principle of superposition, as the

following example shows.

Example trans.secondo-1 re: MRFM cantilever beam with initial

condition and forcingIn magnetic resonance force microscopy

(MRFM), the primary detector is a small

cantilever beam with a magnetic tip. Model the

beam as a spring-mass-damper system with

massm = 6 pg,a spring constant k = 15mN/m,
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Table secondo.1: responses of system
d2y

dt2
+ 2ζωn

dy

dt
+ω2ny = f to different singularity forcing. Note that τ1 = −1/λ1, τ2 = 1/λ2, and

ψ = − arctan(ζ/
√
1− ζ2).

damping f(t) characteristic response

0 6 ζ < 1 δ(t)
e−ζωnt

ωn
√
1− ζ2

sin(ωdt)

us(t)
1

ω2n

(
1−

e−ζωnt√
1− ζ2

cos(ωdt+ψ)
)

ur(t)
1

ω2n

(
t+

e−ζωnt

ωn

(
2ζ cosωdt+

2ζ2 − 1√
1− ζ2

sinωdt
)

−
2ζ

ωn

)

ζ = 1 δ(t) te−ωnt

us(t)
1

ω2n

(
1− e−ωnt −ωnte

−ωnt
)

ur(t)
1

ω2n

(
t+

2

ωn
e−ωnt + te−ωnt −

2

ωn

)
ζ > 1 δ(t)

1

2ωn
√
ζ2 − 1

(
e−t/τ1 − e−t/τ2

)
us(t)

1

ω2n

(
1−

ωn

2
√
ζ2 − 1

(
τ1e

−t/τ1 − τ2e
−t/τ2

))

ur(t)
1

ω2n

(
t−

2ζ

ωn
+

ωn

2
√
ζ2 − 1

(
τ21e

−t/τ1 − τ22e
−t/τ2

))

and damping coefficient B = 37.7 · 10−15

N·s/m. Magnetic input forces on the beam

u(t) are applied directly to the magnetic tip.

That is, a Newtonian force-analysis yields the

input-output ODE

mÿ+ Bẏ+ ky = u,

where ymodels the motion of the tip.

1. What is the natural frequency ωn?

2. What is the damping ratio ζ?

3. Find the free response for initial

conditions y(0) = 10 nm and ẏ(0) = 0.

4. Find the impulse (forced) response for

input u(t) = 3δ(t).

5. Find the total response for the initial

condition and forcing, from above, are

both applied.
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a. One pg = 10−12g = 10−15kg.


