
ssresp State-space response eigcomp Computing eigendecompositions p. 1

ssresp.eigcomp Computing eigendecompositions

1 Computing eigendecompositions is rather

straightforward with a numerical or symbolic

computing tool such as those available in

Matlab or Python. The following sections show

how to use Matlab and Python to compute

numerical and symbolic eigendecompositions.

Matlab eigendecompositions

Matlab numerical eigendecompositions

Consider the following matrix A.

A = [...
-3, 5, 9; ...
0, 2, -10; ...
5, 0, -4 ...

];

What are its eigenvalues and eigenvectors?

Let’s use the MATLAB function eig. From the

documentation:

[V,D] = EIG(A) produces a
diagonal matrix D of
eigenvalues and a full matrix
V whose columns are the
corresponding eigenvectors so
that A*V = V*D.

Let’s try it.

[Ve,De] = eig(A);
disp(vpa(Ve,3))

[-0.769, 0.122 - 0.537i, 0.122 + 0.537i]
[0.381, 0.767, 0.767]
[0.514, - 0.0953 - 0.316i, - 0.0953 + 0.316i]

The eigenvalues are on the diagonal of De.

disp(diag(De))

ssresp State-space response eigcomp Computing eigendecompositions p. 1

-11.487 + 0i
3.2433 + 4.122i
3.2433 - 4.122i

The eigenevectors are normalized to have unit

length.

disp(norm(Ve(:,3))) % for instance

1

Matlab symbolic eigendecompositions

Sometimes symbolic parameters in a matrix

require symbolic eigendecomposition. In

Matlab, this requires the symbolic toolbox.
First, declare symbolic variables.

syms a b c

Now form a symbolic matrix.

A = [...
a,b; ...
0,c; ...

]

A =
[a, b]
[0, c]

The function eig is overloaded and if A is
symbolic, the symbolic routine is called, which

has a syntax similar to the numerical version

above.

[Ve_sym,De_sym] = eig(A)

Ve_sym =
[1, -b/(a - c)]
[0, 1]
De_sym =
[a, 0]
[0, c]

Again, the eigenvalues are on the diagonal of

the eigenvalue matrix.

ssresp State-space response eigcomp Computing eigendecompositions p. 1

disp(diag(De_sym))

a
c

Python eigendecompositions

Python numerical eigendecompositions

In Python, we first need to load the appropriate

packages.

import numpy as np # for numerics
from numpy import linalg as la # for eig
from IPython.display import display, Markdown, Latex # prty
np.set_printoptions(precision=3) # for pretty

Consider the same numerical Amatrix from the

section above. Create it as a numpy.array object.

A = np.array(
[
[-3, 5, 9],
[0, 2, -10],
[5, 0, -4],

]
)

The numpy.linalgmodule (loaded as la) gives
us access to the eig function.

e_vals,e_vecs = la.eig(A)
print(f'e-vals: {e_vals}')
print(f'modal matrix:\n {e_vecs}')

e-vals: [-11.487+0.j 3.243+4.122j 3.243-4.122j]
modal matrix:
[[-0.769+0.j 0.122-0.537j 0.122+0.537j]
[0.381+0.j 0.767+0.j 0.767-0.j]
[0.514+0.j -0.095-0.316j -0.095+0.316j]]

Note that the eigenvalues are returned as a

one-dimensional array, not along the diagonal

of a matrix as with Matlab.

print(f"the third eigenvalue is {e_vals[2]:.3e}")

the third eigenvalue is 3.243e+00-4.122e+00j

ssresp State-space response eigcomp Computing eigendecompositions p. 2

Python symbolic eigendecompositions

We use the sympy package for symbolics.

import sympy as sp

Declare symbolic variables.

sp.var('a b c')

(a, b, c)

Define a symbolic matrix A.

A = sp.Matrix([
[a,b],
[0,c]

])
display(A)

[
a b

0 c

]
The sympy.Matrix class has methods eigenvals
and eigenvects. Let’s consider them in turn.

A.eigenvals()

{a: 1, c: 1}

What is returned is a dictionary with our

eigenvalues as its keys and the multiplicity

(how many) of each eigenvalue as its

corresponding value.

The eigenvectsmethod returns even more

complexly structured results.

A.eigenvects()

[(a, 1, [Matrix([
[1],
[0]])]), (c, 1, [Matrix([
[-b/(a - c)],
[1]])])]

This is a list of tuples with structure as

follows.

ssresp State-space response diag Computing eigendecompositions p. 3

(<eigenvalue>,<multiplicity>,<eigenvector>)

Each eigenvector is given as a list of symbolic

matrices.

Extracting the second eigenvector can be

achieved as follows.

A.eigenvects()[1][2][0]

[
− b
a−c

1

]

