
ssresp State-space response sim Simulating state-space response p. 1

7. The source of this lecture can be downloaded as a Matlab
m-file at http://ricopic.one/dynamic_systems/source/
simulating_state_space_response.m.

8. Although we call this the ”analytic” solution, we are not solving
for a detailed symbolic expression, although we *could*. In fact, Eq. 2
*is* the analytic solution and what follows is an attempt to represent it
graphically.

ssresp.sim Simulating state-space response

1 Ahem.7

For many nonlinear models, numerical solution

of the state equation is required. For linear

models, we can always solve them analytically

using the methods of this chapter. However,

due to its convenience, we will often want to use

numerical techniques even when analytic ones

are available.

Matlab has several built-in and Control Systems

Toolbox functions for analyzing state-space

system models, especially linear models. We’ll

explore a few, here.

Consider, for instance, a linear state model with

the following A, B, C, and Dmatrices:

A =

−3 4 5

0 −2 3

0 −6 1

 B =

10
1

 C =

[
1 0 0

0 −1 0

]
D =

[
0

0

]
.

(1a)

A = [-3,4,5;0,-2,3;0,-6,1];
B = [1;0;1];
C = [1,0,0;0,-1,0];
D = [0;0];

For a step input u(t) = 3us(t) and initial state

x(0) =
[
1 2 3

]>
, let’s compare analytic and

numerical solutions for the output response

y(t).

u = @(t) 3*ones(size(t)); % for t>=0
x_0 = [1; 2; 3];

Analytic solution

For an analytic solution, we’ll use a rearranged

version of ??.8

y(t) = CΦ(t)x(0) + CΦ(t)

ˆ t
0

Φ(−τ)Bu(τ)dτ+Du(t).

(2a)

http://ricopic.one/dynamic_systems/source/simulating_state_space_response.m
http://ricopic.one/dynamic_systems/source/simulating_state_space_response.m


ssresp State-space response sim Simulating state-space response p. 2

First, we need the state transition matrix Φ(t), so

we consider the eigenproblem.

[M,L] = eig(A)

M =

1.0000 + 0.0000i 0.7522 + 0.0000i 0.7522 +
0.0000i↪→

0.0000 + 0.0000i 0.3717 + 0.0810i 0.3717 -
0.0810i↪→

0.0000 + 0.0000i 0.0787 + 0.5322i 0.0787 -
0.5322i↪→

L =

-3.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 +
0.0000i↪→

0.0000 + 0.0000i -0.5000 + 3.9686i 0.0000 +
0.0000i↪→

0.0000 + 0.0000i 0.0000 + 0.0000i -0.5000 -
3.9686i↪→

Note that, when assigning its output to two

variables M and L, the eig function returns the

modal matrix to M and the eigenvalue matrix to

L. The modal matrix of eigenvectors M has each
column (eigenvector) normalized to unity. Also

notice that M and L are complex. The imaginary

parts of two eigenvalues and their

corresponding eigenvectors are significant.

Finally, since the real parts of the all eigenvalues

are negative, the system is stable.

The “diagonal”-basis state transition matrix

Φ ′(t) is simply

Φ ′(t) = eΛt. (3)

Let’s define this as an “anonymous” function.

Phi_p = @(t) diag(diag(exp(L*t))); % diags to get diagonal mat

The original-basis state transition matrix Φ(t) is,

from ??,

Φ(t) =MΦ ′(t)M−1. (4)



ssresp State-space response sim Simulating state-space response p. 1

0 1 2 3 4 5
−4

−2

0

2

4

time (s)

fr
ee

re
sp
o
n
se

y
fr
(t
)

y1
y2

Figure sim.1: free response yfr.

M_inv = M^-1; % compute just once, not on every call
Phi = @(t) M*Phi_p(t)*M_inv;

Free response

The free response is relatively straightforward

to compute.

t_a = 0:.05:5; % simulation time
y_fr = NaN*ones(size(C,1),length(t_a)); % initialize
for i = 1:length(t_a)

y_fr(:,i) = C*Phi(t_a(i))*x_0;
end
y_fr(:,1:3) % first three columns

ans =

1.0000 - 0.0000i 1.8922 - 0.0000i 2.5646 -
0.0000i↪→

-2.0000 + 0.0000i -2.2030 + 0.0000i -2.3105 +
0.0000i↪→

A time array t_awas defined such that Phi
could be evaluated. The first three columns of

yfr are printed for the first three moments in

time. Note how there’s a “hanging chad” of

imaginary components. Before we realize
them, let’s make sure they’re negligibly tiny.

max(max(abs(imag(y_fr))))
y_fr = real(y_fr);

ans =

5.2907e-16



ssresp State-space response sim Simulating state-space response p. 1

9. Mathematica or SageMath would be preferrable for this.

The results are plotted in Fig. sim.1. As we

might expect from the eigenvalues, the free

responses of both outputs oscillate and decay.

Forced response

Now, there is the matter of integration in Eq. 2.

Since Matlab does not excel in symbolic

manipulation, we have chosen to avoid

attempting to write the solution, symbolically.9

For this reason, we choose a simple numerical

(trapezoidal) approximation of the integral

using the trapz function.
First, the integrand can be evaluated over the

simulation interval.

integrand_a = NaN*ones(size(C,2),length(t_a)); % initialize
for i = 1:length(t_a)

tau = t_a(i);
integrand_a(:,i) = Phi(-tau)*B*u(tau);

end

Now, numerically integrate.

integral_a = zeros(size(integrand_a));
for i = 2:length(t_a)

i_up = i; % upper limit of integration
integral_a(:,i) = ... % transposes for trapz

trapz(t_a(1:i_up)',integrand_a(:,1:i_up)')';
end

Now, evaluate the forced response at each time.

y_fo = NaN*ones(size(C,1),length(t_a)); % initialize
for i = 1:length(t_a)

y_fo(:,i) = C*Phi(t_a(i))*integral_a(:,i);
end
y_fo(:,1:3) % first three columns

ans =

0.0000 + 0.0000i 0.1583 - 0.0000i 0.3342 -
0.0000i↪→

0.0000 + 0.0000i -0.0109 + 0.0000i -0.0426 +
0.0000i↪→

max(max(abs(imag(y_fo))))
y_fo = real(y_fo);



ssresp State-space response sim Simulating state-space response p. 1

0 1 2 3 4 5
−1

0

1

2

3

time (s)

fo
rc
ed

re
sp
o
n
se

y
fo
(t
)

y1
y2

Figure sim.2: forced response yfo.

0 1 2 3 4 5

−2

0

2

4

time (s)

to
ta
l
re
sp
o
n
se

y
(t
)

y1
y2

Figure sim.3: total response y.

ans =

2.1409e-16

The forced response is shown in Fig. sim.2,

which shows damped oscillations.

Total response

The total response is found from the sum of the

free and forced responses: y(t) = yfr + yfo. We

can simply sum the arrays.

y_t = y_fr + y_fo;

The result is plotted in Fig. sim.3.

Numerical solution

The numerical solution of the state equations is

rather simple using Matlab’s ss and step or



ssresp State-space response exe Simulating state-space response p. 2

0 1 2 3 4 5

−2

0

2

4

time (s)

to
ta
l
re
sp
o
n
se

(n
u
m
er
ic
al
)
y
(t
)

y1
y2

Figure sim.4: total response y from lsim.

lsim commands, as we show, here. First, we

define an ssmodel object—a special kind of

object that encodes a state-space model.

sys = ss(A,B,C,D);

At this point, using the step function would be

the easiest way to solve for the step response.

However, we choose the more-general lsim for
demonstration purposes.

y_t_num = lsim(sys,u(t_a),t_a,x_0);

This total solution is shown in Fig. sim.4.

d_y = y_t-y_t_num';

Fig. sim.5 shows a plot of the differences

between the analytic total solution y_t and the

numerical y_t_num for each output. Note that

calling this “error” is a bit presumptuous, given

that we used numerical integration in the

analytic solution. If a more accurate method is

desired, working out the solution, symbolically,

is the best.



ssresp State-space response exe Simulating state-space response p. 3

0 1 2 3 4 5

−4

−2

0

2

4
·10−3

time (s)

to
ta
l
re
sp
o
n
se

er
ro
r

y1
y2

Figure sim.5: total response error y_t-y_t_num.


