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thermoflu.fem Thermal finite element model

Example thermoflu.fem—1 re: thermal finite element model
Ts ] insulation
Consider the long homogeneous copper bar of x |
Fig. fem.1, insulated around its circumference, L 1

and initially at uniform temperature. At time . )
Figure fem.1: aninsulated bar.

t = 0, the temperature at one end of the bar

(x = 0) is increased by one Kelvin. We wish to

find the dynamic variation of the temperature at

any location x along the bar, at any time t > 0.

Construct a discrete element model of thermal
conduction in the bar, for which the following
parameters are given for its length L and

diameter d.
L=1; /m
d=0.01; 4m

Geometrical considerations

The cross-sectional area for the bar is as follows.

a = pi/4xd~2; J m 2 z-sectional area

Dividing the bar into n sections (“finite
elements”) such that we have length of each dx
gives the following.

n = 100; 7 number of chunks

dx = L/n; Z m ... length of chunk

Material considerations

The following are the material properties of

copper.
cp = 390; 7 SI ... specific heat capacity
rho = 8920; 7 SI ... density

ks = 401; 7 SI ... thermal conductivity
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« Lumping

From the geometrical and  material
considerations above, we can develop a
lumped thermal resistance R and thermal
capacitance c of each cylindrical section of the
bar of length dx. From Eq. 6 and Eq. 4, these
parameters are as follows.

R = dx/(ks*a); / thermal resistance
dV = dx*a; 4 m~3 ... section volume
dm = rhoxdV; / kg ... section mass

c = dm*cp; / section volume

Linear graph model

The linear graph model is shown in Fig. fem.2
with the corresponding normal tree overlayed.

State-space model T

The state variables are clearly the temperatures
of Ci: Tc,,- -+, Tc,. Therefore, the order of the

system is n.

Figure fem.2: alinear graph of the insulated bar.

The state, input, and output variables are

X = [TQ ---TCH}T, u= [Ts},and y=x.

Elemental, continuity, and compatibility
equations Consider the elemental, continuity,
and compatibility equations, below, for
the first, a middle, and the last elements.

. The following makes the assumption of
- homogeneity, which yields R; = R and C; = C.
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element elemental eq. continuity eq. compatibility eq.
G Te, = Lqc, qc, = qr; — 4dRr,

R1 qr, = g Ir; Tr, =Ts —Tc,

Ci Te,=¢de,  de = dr, — dri

Ri qr, = Tk, Try =Tci, — Tgy

Cn Te, =<de,  de, = dr,

Rn qr, = g IRn Tk, =Tc, , —Tc,

Deriving the state equations for sections 1, i,
and n For each of the first, a representative
middle, and the last elements, we can derive the
state equation with relatively few substitutions,

as follows.
. 1
TC1 = éq(ﬁ
1
- é(qlﬁ *qu)
1
- E(T]% _TRz)
1
= E(TS —Tc, = Tc, +Tc,)
1
= R(TS —2TC1 +TC2)'
. 1
Te, = —qc,
Cy Cqu

1
= 6((]]2-1 - qRi+1)
1

" RC
1

" RC

(Tr, — T

1)

(TCi,] - ZTCI + TC

i+1)'

. 1
Te, ==
Cn Can
_ 1
- Can

1
— T
RC Rn
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< Let 1 = RC. The A and B matrices are, then

-2/t 1/ 0 - 0 0 0
1/t -2/t 1/t --- 0 0 0
A= 1/t =2/t 1/t
0 0 0 0 0 0
| 0 0 o -~ 0 0 0
-]/T
0
B=| .
0
L nxl
The outputs are the states: y = x. Or, in

standard form with identity matrix I, the

matrices are:

C:ITLXTL and D :OTL><1'

Simulation of a step response

Define the A matrix.

A = zeros(n);

% first row

A(1,1) = -2/(R*c);

A(1,2) = 1/(R*c);

% last row

A(n,n-1) = 1/(R*c);

A(n,n) = -1/(R*c);

% middle rows

for i = 2:(n-1)
A(i,i-1) = 1/(Rxc);
A(i,i) = -2/(R*c);
A(i,i+1) = 1/(Rxc);

end

Now define B, C, and D.

B = zeros([n,1]);
B(1) = 1/(R*c);
C = eye(n);

D = zeros([n,1]);

< Create a state-space model.

1/t
0

—2/T
1/t

1/t
—1/1]
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o0

sys = ss(4,B,C,D);

Simulate a unit step in the input temperature.

Tmax = 1200; 7 sec ... final sim time
t

y

linspace(0,Tmax,100);

step(sys,t);

Plot the step response To prepare for creating
a 3D plot, we need to make a grid of points.

x = dx/2:dx:(L-dx/2);
[X,T] = meshgrid(x,t);

Now we’re ready to plot. The result is shown in
Fig. fem.3.

figure

contourf (X,T,y)
shading(gca, 'interp')
xlabel('x")
ylabel('time')
zlabel('temp (K)')
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Figure fem.3: spatiotemporal thermal response.

temperature from reference



