
four Fourier series and transforms dft Discrete and fast Fourier transforms p. 1

1. Python code in this section was generated from a Jupyter notebook
named discrete_fourier_transform.ipynbwith a python3 kernel.

four.dft Discrete and fast Fourier transforms

Modern measurement systems primarily

construct spectra by sampling an analog

electronic signal y(t) to yield the sample

sequence (yn) and perform a discrete Fourier

transform.

Definition four.6: discrete Fourier transform
The discrete Fourier transform (DFT) of a

sample sequence (yn) of length N is (Ym),

wherem ∈ [0, 1, · · · , N− 1] and

Ym =

N−1∑
n=0

yne
−j2πmn/N.

The inverse discrete Fourier transform

(IDFT) reconstructs the original sequence for

n ∈ [0, 1, · · · , N− 1] and

yn =
1

N

N−1∑
n=0

Yme
j2πmn/N.

The DFT (Ym) has a frequency interval equal to

the sampling frequency ωs/N and the IDFT

(yn) has time interval equal to the sampling

time T . The first N/2+ 1 DFT (Ym) values

correspond to frequencies

(0,ωs/N, 2ωs/N, · · ·ωs/2)

and the remaining N/2− 1 correspond to

frequencies

(−ωs/2,−(N− 1)ωs/N, · · · ,−ωs/N).

In practice, the definitions of the DFT and IDFT

are not the most efficent methods of

computation. A clever algorithm called the fast

Fourier transform (FFT) computes the DFT

much more efficiently. Although it is a good

exercise to roll our own FFT, in this lecture we

will use scipy’s built-in FFT algorithm, loaded

with the following command.

four Fourier series and transforms dft Discrete and fast Fourier transforms p. 1

from scipy import fft

Now, given a time series array y representing
(yi), the DFT (using the FFT algorithm) can be

computed with the following command.

fft(y)

In the following example, we will apply this

method of computing the DFT.

Example four.dft-1 re: FFT of a sawtooth signal

We would like to compute the DFT of a sample

sequence (yn) generated by sampling a spaced-

out sawtooth. Let’s first generate the sample

sequence and plot it.

In addition to scipy, let’s import matplotlib
for figures and numpy for numerical

computation.

import matplotlib.pyplot as plt
import numpy as np

We define several “control” quantities for the

spaced-sawtooth signal.

f_signal = 48 # frequency of the signal
spaces = 1 # spaces between sawteeth
n_periods = 10 # number of signal periods
n_samples_sawtooth = 10 # samples/sawtooth

These quantities imply several “derived”

quantities that follow.

n_samples_period = n_samples_sawtooth*(1+spaces)
n_samples = n_periods*n_samples_period
T_signal = 1.0/f_signal # period of signal

four Fourier series and transforms dft Discrete and fast Fourier transforms p. 2

t_a = np.linspace(0,n_periods*T_signal,n_samples)
dt = n_periods*T_signal/(n_samples-1) # sample time
f_sample = 1./dt # sample frequency

We want an interval of ramp followed by an

interval of “space” (zeros). The following

method of generating the sampled signal y
helps us avoid leakage, which we’ll describe at

the end of the example.

arr_zeros = np.zeros(n_samples_sawtooth) # frac of period
arr_ramp = np.arange(n_samples_sawtooth) # frac of period
y = [] # initialize time sequence
for i in range(n_periods):
y = np.append(y,arr_ramp) # ramp
for j in range(spaces):

y = np.append(y,arr_zeros) # space

We plot the result in Fig. dft.1, generated by the

following code.

fig, ax = plt.subplots()
plt.plot(t_a,y,'b-',linewidth=2)
plt.xlabel('time (s)')
plt.ylabel('y_n')
plt.show()

0.00 0.05 0.10 0.15 0.20

time (s)

0

2

4

6

8

y n

Figure dft.1: the sawtooth signal in the time-domain.

Now we have a nice time sequence on which

we can perform our DFT. It’s easy enough to

compute the FFT.

Y = fft(y)/n_samples # FFT with proper normalization

Recall that the latter values correspond to

negative frequencies. In order to plot it,

we want to rearrange our Y array such that

the elements corresponding to negative

frequencies are first. It’s a bit annoying, but

c’est la vie.

four Fourier series and transforms dft Discrete and fast Fourier transforms p. 3

Y_positive_zero = Y[range(int(n_samples/2))]
Y_negative = np.flip(

np.delete(Y_positive_zero,0),0
)
Y_total = np.append(Y_negative,Y_positive_zero)

Now all we need is a corresponding frequency

array.

freq_total = np.arange(
-n_samples/2+1,n_samples/2

)*f_sample/n_samples

The plot, created with the following code, is

shown in Fig. dft.2.

fig, ax = plt.subplots()
plt.plot(freq_total, abs(Y_total),'r-',linewidth=2)
plt.xlabel('frequency f (Hz)')
plt.ylabel('Y_m')
plt.show()

−400 −200 0 200 400

frequency f (Hz)

0.0

0.5

1.0

1.5

2.0

Y
m

Figure dft.2: the DFT spectrum of the sawtooth function.

Leakage

The DFT assumes the sequence (yn) is periodic

with period N. An implication of this is

that if any periodic components have period

Nshort < N, unless N is divisible by Nshort,

spurious components will appear in (Yn).

Avoiding leakage is difficult, in practice.

Instead, typically we use a window function

to mitigate its effects. Effectively, windowing

functions—such as the Bartlett, Hanning,

and Hamming windows—multiply (yn) by a

function that tapers to zero near the edges of

the sample sequence.

Numpy has several window functions such as

bartlett(), hanning(), and hamming().
Let’s plot the windows to get a feel for them –

see Fig. dft.3.

https://docs.scipy.org/doc/numpy-1.13.0/reference/routines.window.html

four Fourier series and transforms exe Discrete and fast Fourier transforms p. 4

bartlett_window = np.bartlett(n_samples)
hanning_window = np.hanning(n_samples)
hamming_window = np.hamming(n_samples)

fig, ax = plt.subplots()
plt.plot(t_a,bartlett_window,
'b-',label='Bartlett',linewidth=2)

plt.plot(t_a,hanning_window,
'r-',label='Hanning',linewidth=2)

plt.plot(t_a,hamming_window,
'g-',label='Hamming',linewidth=2)

plt.xlabel('time (s)')
plt.ylabel('window w_n')
plt.legend()
plt.show()

0.00 0.05 0.10 0.15 0.20

time (s)

0.0

0.2

0.4

0.6

0.8

1.0
w

in
d

ow
w
n

Bartlett

Hanning

Hamming

Figure dft.3: three window functions to minimize leakage.

