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Fourier transform

forced response

freq.fir Frequency and impulse response

1 This lecture proceeds in three parts. First,

the Fourier transform is used to derive the

frequency response function. Second, this is

used to derive the frequency response. Third,

the frequency response for an impulse input is

explored.

Frequency response functions

2 Consider a dynamic system described by the

input-output differential equation—with

variable y representing the output, dependent

variable time t, variable u representing the

input, constant coefficients ai, bj, order n, and

m 6 n for n ∈ N0—as:
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(1)

3 The Fourier transform F of Eq. 1 yields

something interesting (assuming zero initial

conditions):
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+ b0F (u) ⇒

(jω)nY + an−1(jω)n−1Y + · · ·+ a1(jω)Y + a0Y =

bm(jω)mU+ bm−1(jω)m−1U+ · · ·+ b1(jω)U+ b0U.

Solving for Y,

Y =
bm(jω)m + bm−1(jω)m−1 + · · ·+ b1(jω) + b0

(jω)n + an−1(jω)n−1 + · · ·+ a1(jω) + a0
U.

The inverse Fourier transform F−1 of Y is the

forced response. However, this is not our
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1. It is traditional to use the non-standard, single-sided Fourier
transform for the frequency response function for H(jω). The
motivation is that it then pairs well with the (single-sided) Laplace
transform’s transfer function.

2. A caveat is thatH(jω) =H(s)|s7→jω only holds if the corresponding
single-sided Fourier transform exists.

convolution theorem

convolution operator ∗

primary concern; rather, we are interested to

solve for the frequency response function H(jω)

as the ratio of the output transform Y to the

input transform U, i.e.1

H(jω) ≡ Y(ω)

U(ω)
(2a)

=
bm(jω)m + bm−1(jω)m−1 + · · ·+ b1(jω) + b0

(jω)n + an−1(jω)n−1 + · · ·+ a1(jω) + a0
.

(2b)

4 Note that a frequency response function can

be converted to a transfer function via the

substitution jω 7→ s and, conversely, a transfer

function can be converted to a frequency

response function2 via the substitution s 7→ jω,

as in

H(jω) = H(s)|s→jω.

It is often easiest to first derive a transfer

function—using any of the methods described,

previously—then convert this to a frequency

response function.

Frequency response

5 From above, we can solve for the output

response y from the frequency response

function by taking the inverse Fourier

transform:

y(t) = F−1Y(ω). (3)

From the definition of the frequency response

function (2a),

y(t) = F−1(H(jω)U(ω)). (4)

6 The convolution theorem states that, for two

functions of time h and u,

F(h ∗ u) = F(h)F(u) (5a)

= H(jω)U(ω), (5b)

https://en.wikipedia.org/wiki/Convolution_theorem
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frequency response

sifting property

impulse response

where the convolution operator ∗ is defined by

(h ∗ u)(t) ≡
ˆ ∞
−∞ h(τ)u(t− τ)dτ. (6)

Therefore,

y(t) = F−1(H(jω)U(ω))

= (h ∗ u)(t) (from (5b))

=

ˆ ∞
−∞ h(τ)u(t− τ)dτ. (from (6))

This is the frequency response in terms of all

time-domain functions.

Impulse response

7 The frequency response result includes an

interesting object: h(t). What is the physical

significance of h, other than its definition, as the

inverse Fourier transform of H(jω)?

8 Consider the singularity input u(t) = δ(t), an

impulse. The frequency response is

y(t) =

ˆ ∞
−∞ h(τ)δ(t− τ)dτ. (7)

The so-called sifting property of δ yields

y(t) = h(t). (8)

That is, h is the impulse response.

9 A very interesting aspect of this result is that

H(jω) = F(h). (9)

That is, the Fourier transform of the impulse

response is the frequency response function. A

way to estimate, via measurement, the

frequency response function (and transfer

function) of a system is to input an impulse,

measure and fit the response, then Fourier

transform it. Of course, putting in an actual

impulse and fitting the response, perfectly are

impossible; however, estimates using

approximations remain useful.

http://mathworld.wolfram.com/SiftingProperty.html
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10 It is worth noting that frequency

response/transfer function estimation is a

significant topic of study, and many techniques

exist. Another method is described in

Lec. freq.sin.

Example freq.fir-1 re: impulse response estimation of H(jω)

Estimate the frequency response functionH(jω)

of a system from impulse response h(t) “data”.

(We’ll generate this data ourselves, simulating

a measured impulse response.) We will not

attempt to find the functional form of H(jω),

just its “numerical” form, i.e. we’ll plot our

estimate of the spectrum.

Note that if we wanted to find a functional

estimate of H(jω), it would behoove us to use

Matlab’s System Identification Toolbox.

Generate impulse response data

We need a system to simulate to get this

(supposedly “measured”) data. Let’s define a

transfer function

H(s) =
s+ 20

s2 + 4s+ 20
. (10)

sys = tf([1,20],[1,4,20])

sys =

s + 20
--------------
s^2 + 4 s + 20

Continuous-time transfer function.

What are the poles?

poles = pole(sys)

poles =

-2.0000 + 4.0000i
-2.0000 - 4.0000i

https://www.mathworks.com/products/sysid.html
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This corresponds to a damped oscillator with

natural frequency as follows.

abs(poles(1))

ans =

4.4721

Now let’s find the impulse response.

fs = 1000; % Hz .. sampling frequency
N = 2^12;
t_a = 0:1/fs:(N-1)/fs;
h_a = impulse(sys,t_a);

To make this seem a little more realistic as a

“measurement,” we should add some noise.

noise = 0.01*randn(N,1);
h_noisy = h_a + noise;

Plot the impulse response.

figure
plot(...
t_a,h_noisy, ...
'linewidth',1.5 ...

)
xlabel('time (s)')
ylabel('impulse response')
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Discrete Fourier transform

The discrete Fourier transform will give us

an estimate of the frequency spectrum of the

system; that is, a numerical version of H(jω).

H = fft(h_noisy);

Compute the one-sided magnitude spectrum.

H_mag = abs(H/fs); % note the scaling
H_mag = H_mag(1:N/2+1); % first half, only

Compute the one-sided phase spectrum.

H_pha = angle(H); % note the scaling
H_pha = H_pha(1:N/2+1); % first half, only

Now the corresponding frequencies.

f = fs*(0:(N/2))/N;

Plot the frequency response function

We like to use a logarithmic scale, at least in

frequency, for the spectrum plots.

figure
semilogx(...
2*pi*f,H_mag, ...
'linewidth',1.5 ...

)
xlabel('frequency (rad/s)')
ylabel('|H(j\omega)|')
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figure
semilogx(...
2*pi*f,180/pi*H_pha, ...
'linewidth',1.5 ...

)
xlabel('frequency (rad/s)')
ylabel('\angle H(j\omega) (deg)')
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When the magnitude |H(jω)| is small, the

signal-to-noise ratio is so low that the phase

estimates are dismal. This can be mitigated

by increasing sample-size and using more

advanced techniques for estimating H(jω),

such as those available in Matlab’s System

Identification Toolbox.


