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poles

zeros

1. It is common to use this as the definition of a pole, which allows
us to talk of “pole-zero cancellation.” Occasionally we will use this
terminology.

2. It is common to use this as the definition of a zero, which allows
us to talk of “pole-zero cancellation.” Occasionally we will use this
terminology.

tf.zp Poles and zeros

1 Two important types of objects defined from

a transfer function H can be used to characterize

a system’s behavior: poles and zeros.

Definition tf.1: poles

Let a system have transfer function H. Its poles

are values of s for which

|H(s)| → ∞.
2 A transfer function written as a ratio has

poles wherever the denominator is zero; that is,

s for which1

denH(s) = 0.

Definition tf.2: zeros
Let a system have transfer function H. Its zeros

are values of s for which

|H(s)| → 0.

3 A transfer function written as a ratio has

zeros wherever the numerator is zero; that is, s

for which2

numH(s) = 0.

4 Given a transfer function Hwith n poles pi

and ν zeros zj, we can write, for K ∈ R,

H(s) = K

ν∏
j=1

s− zj

n∏
i=1

s− pi

.

5 Poles and zeros can define a single-input,

single-output (SISO) system’s dynamic model,

within a constant.

6 Recall that, even for multiple-input,

multiple-output (MIMO) state-space models,
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pole-zero plot

the denominator of every transfer function is

the corresponding system’s characteristic

equation—the roots of which dominate the

system’s response and are equal to its

eigenvalues. It is now time to observe a crucial

identity.

Corollary tf.3: poles = eigenvalues = char. eq.

roots
A system’s poles equal its eigenvalues equal its

characteristic equation roots.

7 Therefore, everything we know about a

system’s eigenvalues and characteristic equation

roots is true for a system’s poles. This includes

that they characterize a system’s response

(especially its free response) and stability.

Pole-zero plots and stability

8 The complex-valued poles and zeros

dominate system behavior via their values and

value-relationships. Often, we construct a

pole-zero plot—a plot in the complex plane of a

system’s poles and zeros—such as that of

Fig. zp.1.
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Figure zp.1: a pole-zero plot for a system with nine poles and four zeros. In this example, six of the poles are complex-conjugate pairs and three are real. Three are
in the right half-plane, making the system unstable. One zero is in the right half-plane, making the system “minimum phase.”
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Figure zp.2: free response contributions from poles at different locations. Complex poles contribute oscillating free responses, whereas real poles do not. Left half-plane
poles contribute stable responses that decay. Right half-plane poles contribute unstable responses that grow. Imaginary-axis poles contribute marginal stability.

9 From our identification of poles with

eigenvalues and roots of the characteristic

equation, we can recognize that each pole

contributes an exponential response that

oscillates if it is complex. There are three

stability contribution possibilities for each pole

pi:

• Re(pi) < 0: a stable, decaying
contribution;

• Re(pi) = 0: a marginally stable, neither

decaying nor growing contribution; and

• Re(pi) > 0: an unstable, growing

contribution.
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real-axis symmetry

This is explored graphically in Fig. zp.2.

10 Of course, we must not forget that a

system’s stability is spoiled with a single

unstable pole.

11 It can be shown that complex poles and

zeros always arise as conjugate pairs. A

consequence of this is that the pole-zero plot is

always symmetric about the real axis.

Second-order systems

12 Second-order response is characterized by a

damping ratio ζ and natural frequency ωn.

These parameters have clear complex-plane

“geometric” interpretations, as shown in

Fig. zp.3. Pole locations are interpreted

geometrically in accordance with their relation

to rays of constant damping from the origin and

circles of constant natural frequency, centered

about the origin.
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Figure zp.3: second-order free response contributions from poles at different locations, characterized by the damping ratio ζ and natural frequency ωn. Constant
damping occurs along rays from the origin. Constant natural frequency occurs along arcs of constant radius, centered at the origin.


