
tf Transfer functions tfmat Exploring transfer functions in Matlab p. 1

tf.tfmat Exploring transfer functions in Matlab

Matlab includes several nice functions for

working with transfer functions. We explore

some here.

The tf command and its friends

The tf command allows us to create LTI

transfer function objects (which we’ll abbreviate

as “tf objects”) that are recognized by lsim,
step, and initial.
Consider the transfer function

H(s) =
s+ 1

s3 + 3s2 + 7s+ 1
. (1)

We can make a Matlab model as follows.

sys = tf([1,1],[1,3,7,1])

sys =

s + 1
---------------------
s^3 + 3 s^2 + 7 s + 1

Continuous-time transfer function.

Alternatively, we could define s as a transfer
function model itself.

s = tf([1,0],[1]); % tf is 1*s+0/1 = s
(s+1)/(s^3+3*s^2+7*s+1)

ans =

s + 1
---------------------
s^3 + 3 s^2 + 7 s + 1

Continuous-time transfer function.

Algebraic operations with tfs

Say we have two transfer functions G(s) and

H(s) (already defined as sys). We might want to

concatenate them. The idea is that we might



tf Transfer functions tfmat Exploring transfer functions in Matlab p. 1

take the output of G(s) and use that as the input

to H(s). In this case, the transfer function from

the input of G(s) to the output of H(s) is just the

multiplication

G(s)H(s). (2)

G = 1/(s+2); % or tf([1],[1,2])
G*sys

ans =

s + 1
-------------------------------
s^4 + 5 s^3 + 13 s^2 + 15 s + 2

Continuous-time transfer function.

Note that we have seen that Matlab handles

addition and multiplication of scalars and tfs as
well as the products of tfs. (It will also handle

division.)

State-space models to tf models.

Consider the state-space model with standard

matrices as shown below.

A = [-2,0;0,-3];
B = [1;1];
C = [1,0;1,1;0,1];
D = [0;0;1];

We can create a ssmodel as usual.

sys_ss = ss(A,B,C,D);

First, let’s form a transfer function symbolically

We know the transfer function matrix is given

by

C(sI−A)−1B+D. (3)

syms S
sys_tf_s = C*inv(S*eye(size(A)) - A)*B + D



tf Transfer functions tfmat Exploring transfer functions in Matlab p. 1

sys_tf_s =

1/(S + 2)
1/(S + 2) + 1/(S + 3)

1/(S + 3) + 1

This gave us three symbolic transfer functions

in a 3× 1matrix, the first being that for the input

to the first output, the second for the input to

the second output, etc.

Or we can convert the ssmodel to a tfmodel

We can actually simply pass the ssmodel to the

tf function.

sys_tf = tf(sys_ss)

sys_tf =

From input to output...
1

1: -----
s + 2

2 s + 5
2: -------------

s^2 + 5 s + 6

s + 4
3: -----

s + 3

Continuous-time transfer function.

Note that the function ss2tf has a serious bug
and should not be trusted.

Poles, zeros, and stability

Let’s take a look at the poles and zeros of sys.

p_sys = pole(sys)
z_sys = zero(sys)

p_sys =

-1.4239 + 2.1305i
-1.4239 - 2.1305i



tf Transfer functions zpk Exploring transfer functions in Matlab p. 1

-0.1523 + 0.0000i

z_sys =

-1

Stability can be evaluated from p_sys. The
system is stable because the real parts of all

poles are negative.

Let’s take a look at the pole-zero map.

figure;
pzmap(sys)

The resulting figure is shown in Fig. tfmat.1.

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2

−2

2

Real Axis (seconds-1)Im
ag
in
ar
y
A
x
is
(s
ec
o
n
d
s-
1
)

Figure tfmat.1: the pole-zero map.

Simulating with tfs

All the simulation functions we’ve used for ss
models (lsim,step,impulse,initial) will also

work for tfmodels. Let’s try a impulse
response on our original sys transfer function
model.

t = linspace(0,15,200);
y = impulse(sys,t);

Plot.

figure
plot(t,y);
xlabel('time (s)')
ylabel('impulse response')



tf Transfer functions zpk Exploring transfer functions in Matlab p. 2

2 4 6 8 10 12 14

0.1

0.2

0.3

time (s)

st
ep

re
sp
o
n
se

Figure tfmat.2: the impulse response.

The resulting figure is shown in Fig. tfmat.2.


