
sim Simulating nonlinear systems matlab Nonlinear systems in Matlab p. 1

1. This is a van der Pol equation.

ODE stiffness

required accuracy

sim.matlab Nonlinear systems in Matlab

Many of the Matlab tools we’ve used will not

work for nonlinear systems; for instance,

system-definition with tf, ss, and zpk and
simulation with lsim, step, initial—none will

work with nonlinear systems.

Defining a nonlinear system

We can define a nonlinear system in Matlab by

defining its state-space model in a function file.

Consider the nonlinear state-space model1

ẋ = f(x)

=

[
x2

(1− x21)x2 − x1

]
. (1)

A function file describing it is as follows.

type van_der_pol.m

function dxdt = van_der_pol(t,x)
dxdt = [...
x(2); ...
(1-x(1)^2)*x(2) - x(1) ...

];

Note that x is representing the (two) state vector

x, which, along with time t (t), are passed as

arguments to van_der_pol. The variable dxdt
serves as the output (return) of the function.

Effectively, van_der_pol is simply f(x), the

right-hand side of the state equation.

Simulating a nonlinear system

The nonlinear state equation is a system of

ODEs. Matlab has several numerical ODE

solvers that perform well for nonlinear systems.

When choosing a solver, the foremost

considerations are ODE stiffness and required

accuracy. Stiffness occurs when solutions

evolve on drastically different time-scales. For a

sim Simulating nonlinear systems matlab Nonlinear systems in Matlab p. 1

more-thorough guide for selecting an ODE

solver, see

mathworks.com/help/matlab/math/choose-an-ode-solver.html

For most ODEs, the ode45 Runge-Kutta solver is
the best choice, so try it first. Its syntax is

paradigmatic of all Matlab solvers.

[t,y] = ode45(...
odefun, ... % ODE function handle, e.g. van_der_pol
time, ... % time array or span
x0 ... % initial state

)

Details here include

1. the ODE function given must have exactly

two arguments: t and x;
2. the time array or span doesn’t impact

solver steps; and

3. the initial conditions must be specified in a

vector size matching the state vector x.

Let’s apply this to our example from above. We

begin by specifying the simulation parameters.

x0 = [3;0];
t_a = linspace(0,25,300);

And now we simulate.

[~,x] = ode45(@van_der_pol,t_a,x0);

Note that since we specified a full time array

t_a, and not simply a range, the time (first)

output is superfluous. We can avoid assigning it

a variable by inserting ~ appropriately.

Plotting the response

In time, the response is shown in Fig. matlab.1.

Note the weirdness—this is certainly no

decaying exponential!

http://mathworks.com/help/matlab/math/choose-an-ode-solver.html

sim Simulating nonlinear systems fluid Nonlinear systems in Matlab p. 2

0 5 10 15 20 25

−2

0

2

time (s)

fr
ee

re
sp
o
n
se x1

x2

Figure matlab.1: free response plotted through time.

−6 −4 −2 0 2 4 6

−2

0

2

x1

x
2

Figure matlab.2: free response plotted in phase space.

figure
plot(...

t_a,x.', ...
'linewidth',1.5 ...

)
xlabel('time (s)')
ylabel('free response')
legend('x_1','x_2')

It seems the response is settling into a

non-sinusoidal periodic function. This is

especially obvious if we consider the phase

portrait of Fig. matlab.2.

figure
plot(...

x(:,1),x(:,2), ...
'linewidth',2 ...

)
xlabel('x_1')
ylabel('x_2')

