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nonlinear state-space model

sim.fluid Nonlinear fluid system example

1 This example gets one started on the design

problem Exercise sim..

2 Consider a fluid system with an input

volumeric flowrate Qs into a capacitance C that

is drained by only a single pipe of nonlinear

resistance R and L, as shown in the linear graph

of Figure fluid.1. The nonlinearity of R is a good

way to model an overflow. In this lecture, we

will derive a nonlinear state-space model for the

system—specifically, a state equation—and

solve it, numerically using Matlab.

Normal tree, order, and variables

3 Fig. fluid.1 already shows the normal tree.

There are two independent energy storage

elements, making it a second-order (n = 2)

system. We define the state vector to be

x =
[
PC QL

]>
. (1)

The input vector is defined as u =
[
Qs

]
.

Elemental, continuity, and compatibility equations

4 Before turning to our familiar elemental

equations, we’ll consider the nonlinear resistor.

Nonlinear elemental equation

5 Suppose we are trying to model an overflow

with the pipe R–L to ground. An overflow

Qs

C

R

L

Figure fluid.1: a linear graph and normal tree (green) for a nonlinear fluid system.
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would have no flow until the fluid capcitor fills

to a certain height, then it would transition to

flowing quite rapidly. This process seems to be

inherently nonlinear because we cannot write

an element that depends linearly on the height

of the fluid in the capacitor (even if height was

one of our state variables, which it is not).

6 The volume in the tank can be found by

integrating in flow (Qs) minus out flow (QR),

but this is not accessible within a simulation,

since it must be integrated, so it’s not an ideal

variable for our model. However, the pressure

PC—a state variable—is proportional to the

fluid height in the capacitor, which we’ll call h:

PC = ρgh, (2)

where ρ is the density of the fluid and g is the

gravitational acceleration. Since the height of

the capacitor is presumably known, we can use

PC to be our fluid height metric.

7 When the height h reaches a certain level,

probably near the capacitor’s max, which we’ll

denote hm, we want our overflow pipe R-L to

start flowing. Since PC is our height metric, we

want to define a resistance as a function of it,

R(PC).

8 Now we must determine the form of R(PC).

Clearly, when h ∼ PC is small, we want as little

as possible flow through R-L, so R(PC) should be

large. If Rwas infinitely large, divisions by zero

would likely arise in a simulation, so we choose

to set our low-pressure R to some finite value:

R(PC)|PC→0 = R0. (3)

Conversely, when h ∼ PC is large (near max), we

want maximum flow through R-L, so R(PC)

should be some finite value, say, that of the pipe:

R(PC)|PC→∞ = R∞. (4)

Clearly, this model requires R∞ � R0.
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2. Note that this model might be said to assume the overflow pipe
is attached to the bottom of the capacitor since the pressure driving
fluid through this pipe is supposed to be PC. However, no matter the
overflow valve’s inlet height, if its outlet is at the height of the bottom of
the capacitor, this model is still valid.

9 The transition from R0 to R∞ should be

smooth in order to minimize numerical solver

difficulties. Furthermore, a smooth transition is

consistent with, say, a float opening a valve at

the bottom of the capacitor,2 since the valve

would transition continuously from closed to

open. Many functions could be used to model

this transition, especially if piecewise functions

are considered. However, the tanh function has

the merit of enabling us to easily define a single

non-piecewise function for the entire domain.

Let PC be the transition pressure and ∆PC be the

transition width. A convenient nonlinear

resistor, then, is

R(PC) = R∞ +
R0 − R∞

2

(
1− tanh 5(PC − PC)

∆PC

)
.

(5)

Note that this function only approximately

satisfies R(PC)|PC→0 = R0, but the small

deviation from this constraint is worth it for the

convenience it provides. Another noteworthy

aspect of Equation 5 is the factor of 5, which

arises from the tanh function’s natural transition

width, which we alter via ∆PC.

Other elemental equations and the continuity

and compatibility equations

10 The other elemental equations have been

previously encountered and are listed in the

table, below. Furthermore, continuity and

compatibility equations can be found in the

usual way—by drawing contours and

temporarily creating loops by including links in

the normal tree. We proceed by drawing a table

of all elements and writing an elemental

equation for each element, a continuity equation

for each branch of the normal tree, and a

compatibility equation for each link.
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el. elemental eq.

C
dPC
dt

=
1

C
QC

L
dQL
dt

=
1

L
PL

R PR = QRR(PC)

el. cont/comp. eq.

C QC = Qs −QL

L PL = PC − PR

R QR = QL

State equation

11 The system of equations composed of the

elemental, continuity, and compatibility

equations can be reduced to the state equation.

This equation nonlinear, so it cannot be written

in the linear for with A and Bmatrices.

However, it can still be written as a system of

first-order ordinary differential equations, as

follows:

dx

dt
= f(x,u)

=

[
(Qs −QL)/C

(PC −QLR(PC))/L

]
. (6)

Although it appears simple, this nonlinear

differential equation likely has no known

analytic solution. Two other options are

available:

1. linearize the model about an operating

point and solve the linearized equation or

2. numerically solve the nonlinear equation.

Both methods are widely useful, but let’s

assume we require the model to be accurate over
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3. Source Matlab files can be found on
ricopic.one/dynamic_systems_ii/source as
ricopic.one/dynamic_systems_ii/source/nonlinear_tank_example.m
and ricopic.one/dynamic_systems_ii/source/nonlinear_fluid_state.m.

a wide range of capacitor fullness. Therefore,

we choose to investigate via numerical solution.

Simulation

Broadly, the numerical investigation will be

conducted via Matlab’s ode23t solver.3 Of
course, as with any numerical solution, specific

values of the parameters must be selected. We

begin with declaring the fluid to be water,

endowing it with a density, and specify the

gravitational acceleration g. Furthermore, an

“anonymous” function P_fun is defined,
accepting the height h of the fluid in the

capacitor and returning the corresponding

pressure. Other parameters specified include

the fluid capacitance C and the overflow pipe

inertance L.

global C L % global to be used in state equation
C = 1e3; % ... fluid capacitance
L = 1e-3; % ... fluid inertance
rho = 997; % kg/m^3 ... density of water
g = 9.81; % m/s^2 ... gravitational constant
P_fun = @(h) rho*g*h; % pressure as a function of height

Next, we define the maximum height h_max of
fluid in the capacitor, the transition height h_t,
and the distance dh over which the resistor will

transition from high to low impedance.

h_max = 1; % m ... maximum height of fluid
h_t = .88; % m ... transition height
dh = .05; % m ... height difference for transition

Corresponding pressures, which we prefer for

computation, can be computed with P_fun.

P_t = P_fun(h_t); % N/m^2 ... transition pressure
dP = P_fun(dh); % N/m^2 ... pressure dif for transition

Nonlinear resistance

Now, let’s define the variable resistance

function R_fun (R(PC)). We define the

http://ricopic.one/dynamic_systems/source
http://ricopic.one/dynamic_systems/source/nonlinear_tank_example.m
http://ricopic.one/dynamic_systems/source/nonlinear_fluid_state.m
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Figure fluid.2: nonlinear resistance versus tank water level.

anonymous function via the two “limiting”

resistances R_0 (R0) and R_inf (R∞).
R_inf = 1e-1; % N/m^2 / m^3/s ... resistance with full cap
R_0 = 1e2; % ... resistance with empty capacitor
R_fun = @(P) (R_0-R_inf)/2*(1-tanh(5/dP*(P-P_t)))+R_inf;

Let’s take a moment to plot this function. See

Figure fluid.2 for the results. This is a

reasonable approximation of a valve that allows

no flow until the capacitor fluid height reaches a

threshold, then allows a significant amount of

flow.

h_half = linspace(0,h_t-dh,50);
h_a = [... % heights to plot

h_half(1:end-1),...
linspace(h_half(end),h_max,50)...

];
P_a = P_fun(h_a); % N/m^2 ... pressures to plot

Numerical solution

The numerical ODE solver we’ll use (ode23t)
requires we define the first-order system of

differential equations from Equation 6. This is

done by writing a function file

nonlinear_fluid_state.m that the function
return the time derivative of the state vector x_a
(x) at a given time.
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function dx = nonlinear_fluid_state(t,x,u_fun,R_fun)
global C L
% x(1) is P_C
% x(2) is Q_L
% R_fun is the nonlinear resistance

% call input function at this time step
Q_s = u_fun(t);

% compute nonlinear resistance at this time step
R = R_fun(x(1));

dx = zeros(2,1); % a column vector
dx(1) = (Q_s - x(2))/C; % d P_C/dt
dx(2) = (x(1) - x(2)*R)/L; % d Q_L/dt
end

We also pass it the nonlinear resistance function

R_fun and the input function Q_s_fun. Let’s
model an offset sinusoidal input flowrate,

defined as an anonymous function as follows.

Q_s_fun = @(t) 1e4*(1+sin(2*pi/1e2*t));

We’re ready to simulate! The time array and

zero initial conditions are specified, then

simulation commences. There are several

Matlab ODE solver routines with the same or

similar syntax. Many ODEs can be solved with

the ode45 function. However, this problem is

what is called “stiff,” which runs much better on

the solver ode23t.

t_a = linspace(0,1.4e3,1e3);
x_0 = [0;0];
x_sol_struc = ode23t(...

@(t,x) nonlinear_fluid_state(t,x,Q_s_fun,R_fun),...
t_a,...
x_0...

);
x_sol = deval(x_sol_struc,t_a);

We plot the results in Figure fluid.3. So the

overflow is relatively inactive while the

capacitor fills, until PC achieves the pressure

associated with a near-full capacitor. Then the
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Figure fluid.3: state response to inputQs.

flowrate suddenly increases rapidly due to the

sudden drop in R(PC). Since the input is

oscillating, the overflow pipe loses flowrate,

then gains it again when the input flowrate

increases enough to increase the capacitor

pressure.


