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voltage

current

resistance

coulomb

conserved quantity

volt

ground

fun.vir Voltage, current, resistance, and all that

Two quantities will be of special importance in

analyzing and designing electronic systems:

voltage and current. The relationship between

them defines a third important quantity:

resistance (more generally, impedance).

Momentarily, we will define each of these, but

we start with the fundamental quantity in

electronics.

Definition fun.1: electric charge

Electric charge (or simply charge) is a property

of matter that describes the attractive or

repulsive force acting on the matter in an

electric field. At the microscopic level, charge

is quantized into charges of subatomic particles

such as protons and electrons, which have

opposite charges e and −e, where e is the

elementary charge.

Charge has derived SI unit coulomb with

symbol C. It is considered to be a conserved

quantity.

Voltage

Definition fun.2: voltage

Voltage is the difference in electrical potential

energy of a unit of charge moved between two

locations in an electrical field.

Voltage is typically given the variable v and has

derived SI unit volt with symbol V.

Voltage is always defined by referring to two

locations. Sometimes one of these locations is

implicitly ground—an arbitrarily-defined

reference (datum) voltage considered to have

zero electrical potential energy—such that we

can talk about the voltage “at this” or “at that”

location by implicit reference to ground. It is

https://en.wikipedia.org/wiki/Elementary_charge
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ampere

2. Note that subtlety emerges not only when considering fields, small
distances, and short durations—it also emerges when we consider
certain circuit elements that are exhibit behavior related to the time rate
of change of voltage or current.

circuit

wire

node

element

terminals

parallel

good form to describe the voltage as being

“between” two locations or “across” an element.

Current

Definition fun.3: current
Current is a flow of charge.

Current is typically denoted i and has derived

SI unit ampere with symbol A.

We typically generate voltage by doing work on

charges. Conversely, we get currents by placing

voltage across matter through which current can

flow. This implies that voltage causes current.

Causality here is quite complex, but I will posit

the following proposition. We typically observe

current when applying voltage, so from a

phenomenological point-of-view, it is natural to

consider voltage causal of current.2

Circuits

Electric circuits are dynamic electrical systems

in which charge accumulates in and flows

through elements. Circuit elements are

connected via metallic conductors called wires,

which ideally have the same voltage (relative to,

say, ground) everywhere.

Circuit topology

A circuit has a few basic topological features.

A circuit node is a continuous region of a circuit

that has the same voltage everywhere. A node is

an idealized concept that is approximate in most

instantiations.

A circuit element is a region of a circuit

considered to have properties distinct from the

surrounding circuit. Examples of elements are

resistors, capacitors, inductors, and sources.

A circuit element has terminals through which it

connects to a circuit.

Circuit elements in parallel are those that have
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series

energy storage element

energy dissipative element

energy source element

energy transducing element

two terminals, each of which is shared by

another element’s two terminals.

Circuit elements in series are those that have

two terminals, only one of which is shared

between them and this one cannot be shared

with any other element.

Element types

The following are common types of circuit

element.

• Energy storage elements store energy in

electric (capacitors) or magnetic

(inductors) fields.

• Energy dissipative elements dissipate

energy from a circuit, typically as heat,

such as in a resistor.

• Energy source elements provide external

energy to the circuit (e.g. batteries).

• Energy transducing elements convert

electronic energy to another form (e.g.

motors convert electric to mechanical

energy.)

Power

Power is the time rate of change of energy. Let

us now define electric power.

Definition fun.4: power

The instantaneous electric power P into a circuit

element is defined as the product of the voltage

v across and the current i through it at a given

time t:

P(t) = v(t)i(t). (1)

Power typically goes into:

• heat (usually),

• mechanical work (motors),

• radiated energy (lamps, transmitters), or

• stored energy (batteries, capacitors).
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Box fun.1 terminological note

“[D]on’t call current ‘amperage’; that’s

strictly bush-league. The same caution

will apply to the term ‘ohmage’ ....”

—Horowitz & Hill, The Art of Electronics

Kirchhoff’s laws

Gustav Kirchhoff formulated two laws

fundamental to circuit analysis.

Kirchhoff’s current law (KCL) depends on the

fact that charge is a conserved quantity.

Therefore, the charge flowing in a node is equal

to that flowing out, which implies KCL.

Definition fun.5: Kirchhoff’s current law
The current in a node is equal to the current out.

KCL implies that the sum of the current into a

node must be zero. Assume, for instance, that k

wires with currents ij connect to form a node.

Kirchhoff’s current law states that

k∑
j=1

ij = 0. (2)

It can be discovered empirically that elements

connected in parallel have the same voltage

across them. This doesn’t mean they share the

same current, but it does imply Kirchhoff’s

voltage law (KVL).

Definition fun.6: Kirchhoff’s voltage law

The sumof the voltage drops around any closed

loop is zero.a

a. A loop is a series of elements that begins and ends at the same
node.

KVL implies that the voltage drops across

elements that form a loop must be zero.

Assume, for instance, that k elements with



fun Fundamentals vir Voltage, current, resistance, and all that p. 1

resistor

voltage drops vj form a loop. KVL states that

k∑
j=1

vj = 0. (3)

Ohm’s law

Much of electronics is about the relationship

between a voltage and a corresponding current.

Applying a voltage to a material typically

induces a current through it. The functional

relationship between v and i is of the utmost

importance to the analysis and design of

circuits.

The simplest relationship is known as Ohm’s

law, for which we will first need the concept of

resistance.

Definition fun.7: resistance
Let a circuit element have voltage v and current

i. The resistance R is defined as the ratio

R = v/i (4)

Now we are ready to define Ohm’s law.

Definition fun.8: Ohm’s law
Some materials such as conductors in certain

environments exhibit approximately constant

resistance.

This is pretty weak. However, it’s still quite

useful, as we’ll see. With it we can assume, for

certain elements and situations, that the

resistance of the element is a static property and

that the voltage and current are proportional.

We call such elements resistors.

Combining resistance

Resistors can be connected together in different

topologies to form composite elements that

exhibit “equivalent” resistances of their own.
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K resistors with resistances Rj connected in

series have equivalent resistance Re given by the

expression

Re =

K∑
j=1

Rj. (5)

K resistors with resistances Rj connected in

parallel have equivalent resistance Re given by

the expression

Re = 1/

K∑
j=1

1/Rj. (6)

In the special case of two resistors with

resistances R1 and R2,

Re =
1

1
R1

+ 1
R2

=
R1R2
R1 + R2

. (7)

Example fun.vir-1 re: understanding a circuit

Answer the questions below about the circuit

shown. Voltage across and current through a

circuit element x are denoted vx and ix. Signs

are defined on the diagram.

1. What does it mean if we refer to the

voltage at node a?

2. What is the current iR2
through R2 at a

given time t in terms of the power it is

dissipating PR2
and the voltage across it

vR2
?

3. If Vs(t) = 5 V and vR1
= 3 V, what is vR2

?

4. What is the equivalent resistance of the

resistors R1 and R2 combined as in the

circuit?

5. If vR1
= 3 V and R1 = 100 Ω, what is iR2

?
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voltage divider

fun.vdiv Voltage dividers

In Chapter can we’ll learn about how to

approach circuit analysis in a systematic way.

For now, we’ll limp along unsystematically with

our toolbelt of concepts and equations in order

to introduce some more circuit elements,

concepts, and theorems. But we can’t resist just

a bit of circuit analysis now.

The voltage divider is a ubiquitous and useful

circuit. In a sense, it’s less of a circuit and more

of concept. For resistors, that concept can be

stated as the following.

The voltage across resistors in series

is divided among the resistors.

An immediately useful result is that we can

“divide voltage” into any smaller voltage we

like by putting in a couple resistors.

In order to show how the voltage divider

“divides up” the voltage, we must do some

basic circuit analysis. Consider the circuit in

Fig. vdiv.1. The input voltage vin is divided into

vR1
and vR2

= vout. We want to know vout as a

function of vin and parameters R1 and R2. Let’s

write down the equations we know from the

laws of Kirchhoff and Ohm:

vR1
= iR1

R1,

vR2
= iR2

R2,

vin = vR1
+ vR2

, and

iR1
= iR2

.

Figure vdiv.1: a simple voltage divider circuit.
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3. Alternatively, we could solve for all four unknown variables with our
four equations.

We’ve already established that vout = vR2
, so we

can solve for vR2
in (∗). We want to eliminate the

three “unknown” variables vR1
, iR1

, and iR2
, so

it is good that we have four equations.3 We

begin with (∗b) and proceed by substitution of

the others of (∗):

vR2
= iR2

R2

= iR1
R2

=
R2
R1
vR1

=
R2
R1

(vin − vR2
) ⇒

vR2
+
R2
R1
vR2

=
R2
R1
vin ⇒

vR2
=

R2/R1
1+ R2/R1

vin ⇒

=
R2

R1 + R2
vin.

Nice! So we can now write the input-output

relationship for a two-resistor voltage divider.

Equation 1 two-resistor voltage

divider

So the voltage divider had the effect of dividing

the input voltage into a fraction governed by the

relationship between the relative resistances of

the two resistors. This fraction takes values in

the interval [0, 1]. Now, whenever we see the

voltage divider circuit, we can just remember

this easy formula!

Similarly, for n resistors in series, it can be

shown that the voltage divider relationship is as

follows.
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Equation 2 general voltage divider
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fun.src Sources

Sources (a.k.a. supplies) supply power to a

circuit. There are two primary types: voltage

sources and current sources.

Ideal voltage sources

An ideal voltage source provides exactly the

voltage a user specifies, independent of the

circuit to which it is connected. All it must do in

order to achieve this is to supply whatever

current necessary. Let’s unpack this with a

simple example.

Example fun.src-1 re: limitations of a voltage source

In the circuit shown,

determine how much

current and power the ideal

voltage source Vs must

provide in order to maintain

voltage if R → ∞ and if

R→ 0.
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Ideal current sources

An ideal current source provides exactly the

current a user specifies, independent of the

circuit to which it is connected. All it must do in

order to achieve this is to supply whatever

voltage necessary. Let’s unpack this with a

simple example.

Example fun.src-2 re: limitations of a current source

In the circuit shown,

determine how much

voltage and power the

ideal current source Is must

provide in order to maintain

voltage if R → 0 and if

R→ ∞.
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Modeling real sources

No real source can produce infinite power.

Some have feedback that controls the output

within some finite power range. These types of

sources can be approximated as ideal when

operating within their specifications. Many

voltage sources (e.g. batteries) do not have

internal feedback controlling the voltage. When

these sources are “loaded” (delivering power)

they cannot maintain their nominal output, be

that voltage or current. We model these types of

sources as ideal sources in series or parallel with

a resistor, as illustrated in Fig. src.1.

Most manufacturers specify the nominal

resistance of a source as the “output resistance.”

A typical value is 50 Ω.

(a) real voltage source model

(b) real current source model.

Figure src.1: Models for power-limited “real” sources.
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equivalent resistance Re

equivalent voltage source Ve

fun.eq Thevenin’s and Norton’s theorems

Thévenin’s and Norton’s theorems yield ways

to simplify our models of circuits.

Thévenin’s theorem

The following remarkable theorem has been

proven.

Theorem fun.9: Thévenin’s theorem
Given a linear network of voltage sources,

current sources, and resistors, the behavior

at the network’s output terminals can be

reproduced exactly by a single voltage source

Ve in series with a resistor Re.

The equivalent circuit has two quantities to

determine: Ve and Re.

Determining Re

The equivalent resistance Re of a circuit is the

resistance between the output terminals with all

inputs set to zero. Setting a voltage source to

zero means the voltage on both its terminals are

equal, which is equivalent to treating it as a

short or wire. Setting a current source to zero

means the current through it is zero, which is

equivalent to treating it as an open circuit.

Determining Ve

The equivalent voltage source Ve is the voltage

at the output terminals of the circuit when they

are left open (disconnected from a load).

Determining this value typically requires some

circuit analysis with the laws of Ohm and

Kirchhoff.

Norton’s theorem

Similarly, the following remarkable theorem has

been proven.
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equivalent current source Ie

Theorem fun.10: Norton’s theorem
Given a linear network of voltage sources,

current sources, and resistors, the behavior

at the network’s output terminals can be

reproduced exactly by a single current source

Ie in parallel with a resistor Re.

The equivalent circuit has two quantities to

determine: Ie and Re. The equivalent resistance

Re is identical to that of Thévenin’s theorem,

which leaves the equivalent current source Ie to

be determined.

Determining Ie

The equivalent current source Ie is the current

through the output terminals of the circuit when

they are shorted (connected by a wire).

Determining this value typically requires some

circuit analysis with the laws of Ohm and

Kirchhoff.

Converting between Thévenin and Norton equivalents

There is an equivalence between the two

equivalent circuit models that allows one to

convert from one to another with ease. The

equivalent resistance Re is identical in each and

provides the following equation for converting

between the two representations:

Equation 1 converting between

Thévenin and Norton equivalents

Example fun.eq-1 re: Thévenin and Norton equivalents

For the circuit

shown, find a

Thévenin and a

Norton equivalent.
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equivalent resistance

output resistance

4. Sometimes, instead of resistance, the term impedance is substituded.
In these situations, there is no difference in meaning.

input resistance

loading a source

fun.load Output and input resistance and circuit

loading

When considering a circuit from the perspective

of two terminals—either as input or output—it

is often characterized as having a

Thévenin/Norton equivalent resistance and, if

it is considered as an output, as having an

equivalent (Thévenin or Norton) source.

If the terminals are considered to be an output,

its output resistance is just the

Thévenin/Norton equivalent resistance. Other

names for this output resistance are source or

internal resisistance.4 Fig. load.1 illustrates this

model.

If the terminals are considered to be an input, its

input resistance is the is the Thévenin/Norton

equivalent resistance of the circuit. Another

term for this input resistance is the load

resistance.

Loading the source

Loading a source means to connect another

circuit to it that draws power. Let’s explore

what happens when we connect the load to the

source for the circuit in Fig. load.1.

Before connecting, the source output voltage is

Figure load.1: source with Thévenin equivalent source voltage Ve and
output/internal resistance Re and a load with input resistance RL.
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matching load

5. A matching load can be shown to have maximum power transfer.

vout = Ve − vRe

= Ve − ���
0

iRe
Re

= Ve.

This is equivalent to connecting a load with an

infinite resistance. After connecting, we have a

voltage divider, so

vout =
RL

Re + RL
Ve

=
1

1+ Re/RL
Ve.

So, as Re/RL → 0, vout → Ve. Also, as

Re/RL → ∞, vout → 0.

So, relatively small output resistance and large

input resistance yield a “loaded” voltage nearer

nominal. Some sources are labeled with

nominal values assuming no load and others

assuming a matching load5—a load equal to the

output impedance. For this reason, it is best to

measure the actual output of any source.
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capacitance

farad (F)

electrolytic capacitor

fun.cap Capacitors

Capacitors have two terminal and are composed

of two conductive surfaces separated by some

distance. One surface has charge q and the other

−q. A capacitor stores energy in an electric field

between the surfaces.

Let a capacitor with voltage v across it and

charge q be characterized by the parameter

capacitance C, where the constitutive equation

is

q = Cv. (1)

The capacitance has derived SI unit farad (F),

where F = A · s/V. A farad is actually quite a lot

of capacitance. Most capacitors have

capacitances best represented in µF, nF, and pF.

The time-derivative of this equation yields the

v-i relationship (what we call the “elemental

equation”) for capacitors.

Equation 2 capacitor elemental

equation

A time-derivative! This is new. Resistors have

only algebraic i-v relationships, so circuits with

only sources and resistors can be described by

algebraic relationships. The dynamics of circuits

with capacitors are described with differential

equations.

Capacitors allow us to build many new types of

circuits: filtering, energy storage, resonant,

blocking (blocks dc-component), and bypassing

(draws ac-component to ground).

Capacitors come in a number of varieties, with

those with the largest capacity (and least

expensive) being electrolytic and most common
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ceramic capacitor

bipolar capacitor

polarized capacitor

anode

cathode

explosion

cathode-to-cathode

being ceramic. There are two functional

varieties of capacitors: bipolar and polarized,

with circuit diagram symbols shown in

Fig. cap.1. Polarized capacitors can have voltage

drop across in only one direction, from anode

(+) to cathode (−)—otherwise they are damaged

or may explode. Electrolytic capacitors are

polarized and ceramic capacitors are bipolar.

So what if you need a high-capacitance bipolar

capacitor? Here’s a trick: place identical

high-capacity polarized capacitors

cathode-to-cathode. What results is effectively a

bipolar capacitor with capacitance half that of

one of the polarized capacitors.

C

(a) bipolar capacitor.

C

−+

(b) polarized capacitor

Figure cap.1: capacitor circuit diagram symbols.
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pure inductor

flux linkage λ

ideal inductor

inductance L

henry (H)

core

fun.ind Inductors

L

Figure ind.1:
inductor circuit diagram
symbol.

A pure inductor is defined

as an element in which flux

linkage λ—the integral of the

voltage—across the inductor

is a monotonic function

F of the current i; i.e. the

pure constitutive equation is

λ = F(i). (1)

An ideal inductor is such that this monotonic

function is linear, with slope called the

inductance L; i.e. the ideal constitutive equation

is

λ = Li

The units of inductance are the SI derived unit

henry (H). Most inductors have inductance best

represented in mH or µH.

The elemental equation for an inductor is found

by taking the time-derivative of the constitutive

equation.

Equation 2 inductor elemental

equation

Inductors store energy in a magnetic field. It is

important to notice how inductors are, in a

sense, the opposite of capacitors. A capacitor’s

current is proportional to the time rate of

change of its voltage. An inductor’s voltage is

proportional to the time rate of change of its

current.

Inductors are usually made of wire coiled into a

number of turns. The geometry of the coil

determines its inductance L.

Often, a core material—such as iron and



fun Fundamentals exe Inductors p. 2

ferrite—is included by wrapping the wire

around the core. This increases the inductance L.

Inductors are used extensively in

radio-frequency (rf) circuits, with which we

won’t discuss in this text. However, they play

important roles in ac-dc conversion, filtering,

and transformers—all of which we will consider

extensively.

The circuit diagram for an inductor is shown in

Fig. ind.1.



fun Fundamentals exe Exercises for Chapter fun p. 1

fun.exe Exercises for Chapter fun

Exercise fun.corporationism

a. Let two resistors with resistances 1 kΩ and

2 kΩ be connected in series. What is their

combined effective resistance?

b. Let two resistors R1 and R2 be connected

in series. Prove that their combined

effective resistance is greater than that of

either resistor, individually.

c. Let two resistors with resistances 1 kΩ and

2 kΩ be connected in parallel. What is

their combined effective resistance?

d. Let any two resistors R1 and R2 be

connected in parallel. Prove that their

combined effective resistance is less than

that of either resistor, individually.

Exercise fun.pseudoscarus

Beginning with the definition of electrical

power and the elemental equation of an ideal

resistor, find

a. an expression for the power dissipated by

a resistor in terms of voltage vR and

resistance R, only; and

b. an expression for the power dissipated by

a resistor in terms of current iR and

resistance R, only.

Exercise fun.banana

An unregulated function generator has a 50 Ω

output resistance. The function generator front

panel displays a nominal voltage amplitude of

10 V, which assumes a matching load of 50 Ω.

However, the output is not connected to this

nominal matching load. Instead, it is connected

to an oscilloscope with high input

resistance—let’s say it’s infinite. Respond to the
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6. This exercise was inspired by Horowitz and Hill. (Horowitz and Hill,
The Art of Electronics)

following questions and imperatives about this

situation.

a. Draw a circuit diagram.

b. Using the given information about the

“nominal” voltage amplitude, determine

what the ideal source voltage amplitude

Vs should be in your circuit

diagram/function generator model.

c. Solve for the actual voltage amplitude va

at the oscilloscope if the function

generator front panel says 5 V amplitude.

Exercise fun.doorbell

Consider two signals with voltage ratios

expressed in decibels as follows. What are the

corresponding power and voltage amplitude

ratios?6

a. 0 dB

b. 3 dB

c. 10 dB

d. 20 dB

Exercise fun.crumble

For the circuit diagram below with voltage

source VS and output voltage vo, (a) construct a

Thévenin equivalent circuit. Be sure to specify

the equivalent source Ve and resistance Re. Let

R1 = R2 = 1 kΩ and R3 = 2 kΩ. (b) Convert the

Thévenin equivalent circuit from (a) to a Norton

equivalent.

+
−VS

R1

R2 R3

+

−

vo
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Exercise fun.coracomorph

For the circuit diagram below with current

source IS and output voltage vo, (a) construct a

Norton equivalent circuit. Be sure to specify the

equivalent source Ie and resistance Re. Let

R1 = R2 = 1 kΩ and R3 = 2 kΩ. (b) Convert the

Norton equivalent circuit from (a) to a Thévenin

equivalent.

IS

R1

R2

R3

+

−

vo

Exercise fun.masticurous

For the circuit diagram below with voltage

source VS and output voltage vo, (a) construct a

Norton equivalent circuit. Be sure to specify the

equivalent source Ie and resistance Re. Let

R1 = 1 kΩ, R2 = 2 kΩ, and R3 = 3 kΩ. (b)

Convert the Norton equivalent circuit from (a)

to a Thévenin equivalent.

+
−VS

R1

R2

R3

+

−

vo
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passive sign convention

passive element

active element

interpretation

can.sgn Sign convention

We use the passive sign convention of electrical

engineering, defined below and illustrated in

Fig. sgn.1.

Definition can.1: passive sign convention

Power flowing in to a component is considered

to be positive and power flowing out of a

component is considered negative.

Because power P = vi, this implies the current

and voltage signs are prescribed by the

convention. For passive elements, the electrical

potential must drop in the direction of positive

current flow. This means the assumed direction

of voltage drop across a passive element must

be the same as that of the current flow. For

active elements, which supply power to the

circuit, the converse is true: the voltage drop

and current flow must be in opposite directions.

Fig. sgn.2 illustrates the possible configurations.

When analyzing a circuit, for each passive

element, draw an arrow beside it pointing in the

direction of assumed current flow and voltage

drop. Try it out on Fig. sgn.3.

The purpose of a sign convention is to help us

interpret the signs of our results. For instance,

Figure sgn.1: passive sign convention in terms of power P.

Figure sgn.2: passive sign convention in terms of voltage v and current
i.
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Figure sgn.3: an illustration of the passive sign convention on a circuit.

if, at a given instant, a capacitor has voltage

vC = 3 V and current iC = −2 A, we compute

PC = −6W and we know 6W of power is

flowing from the capacitor into the circuit.

For passive elements, there is no preferred

direction of “assumed” voltage drop and

current flow. If a voltage or current value

discovered by performing a circuit analysis is

positive, this means the “assumed” and “actual”

directions are the same. For a negative value,

the directions are opposite.

For active elements, we don’t get to choose the

direction. The physical situation prescribes it.

For instance, if a positive terminal of a battery is

connected to a certain terminal in a circuit, I

cannot simply say “meh, I’m going to call that

negative.” It’s positive whether you like it or

not, Nancy.
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can.mthd Methodology for analyzing circuits

We have all the tools we need to do some pretty

badass circuit analysis. Later we’ll learn a more

systematic method for analyzing the dynamics

of a circuit, but for now we can use broad

strokes to get the idea. It will work most of the

time, but occasionally you may need to write

some extra KCL or KVL equations or use a more

advanced algebraic technique.

Let n be the number of passive circuit elements

in a circuit, which gives 2n (v and i for each

element) unknowns. The method is this.

1. Draw a circuit diagram.

2. Label the circuit diagram with the sign

assignment by labeling each element with

the “assumed” direction of current flow.

3. Write the elemental equation for each

circuit element (e.g. Ohm’s law).

4. For every node not connected to a voltage

source, write Kirchhoff’s current law

(KCL).

5. For each loop not containing a current

source, write Kirchhoff’s voltage law

(KVL).

6. You probably have a linear system of 2n

algebraic and first-order, ordinary

differential equations (and 2n unknowns)

to be solved simultaneously.

a) Eliminate n (half) of the unknowns

by substitution into the elemental

equations.

b) Try substition or elimination to get

down to only those variables with

time derivatives and inputs. If this

doesn’t work, use a linear algebra

technique.

c) Solve the remaining set of first-order,

linear ordinary differential equations.

This can be done either directly or by
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turning it into a single higher-order

differential equation and then

solving.

Example can.mthd-1 re: RC circuit analysis with a constant source

In the RC circuit shown,

let Vs(t) = 12 V. If

vC(t)|t=0 = 0, what is

vo(t) for t > 0?.

+
−Vs

R
iR

C

iC

+

−

vo
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ac circuit analysis

dc circuit analysis

transient response

steady-state response

can.exa A sinusoidal input example

Notice that we have yet to talk about alternating

current (ac) circuit analysis or direct current (dc)

circuit analysis. In fact, these ambiguous terms

can mean a few different things.

Approximately, an ac circuit analysis is one for

which the input is sinusoidal and a dc circuit

analysis is one for which the input is a constant.

This ignores transient response (early response

when the initial-condition response dominates)

versus steady-state response (later response

when the initial-condition response has

decayed) considerations. We’ll consider this

more in Lec. can.trss.

We have remained general enough to be able to

handle sinusoidal and constant sources in both

transient and steady-state response.

Example can.mthd-1 features a circuit with a

constant voltage source and a capacitor. Now

we consider circuit with a sinusoidal current

source and an inductor because why change

only one thing when you could change more?

Example can.exa-1 re: RL circuit analysis with a sinusoidal source

Given the RL circuit

shown, current input

Is(t) = A sinωt,
and initial condition

iL(t)|t=0 = i0, what

are iL(t) and vL(t) for

t > 0?.

Is

L

iL

R

iR
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can.trss Transient and steady-state response

.

The source for this lecture is in SageMath kernel

Jupyter notebook. For more information, see

jupyter.org and sagemath.org.

See ricopic.one/electronics/notebooks for the

source code notebook. First, we import

packages and all that. We use matplotlib for

plotting and numpy for numerics.

Let’s consider them response of the circuit in

Example can.exa-1. We found that the inductor

had current and voltage responses

iL(t) =

(
i0 +

Aτω

(τω)2 + 1

)
e−t/τ+

A√
(τω)2 + 1

sin(ωt− arctan τω) (1)

and

vL(t) = −
L

τ

(
i0 +

Aτω

(τω)2 + 1

)
e−t/τ+

ALω√
(τω)2 + 1

cos(ωt− arctan τω). (2)

Note that the top line of each of these equations

decays exponentially to zero. The response

while this term dominates is the transient

response and the response thereafter is the

steady-state response.

In 6τ (six time constants) the exponential term

has decayed to less than 1%, so we often assume

the other term will be dominating by that point.

We will plot iL(t) and vL(t) from above to

illustrate transient and steady-state response.

Plots cannot be created without some definition

of parameters. Let us define them as follows.

R = 1 # Ohms ... resistance
L = 1e-3 # H ... inductance
i_0 = 10 # A ... initial current in inductor
A = 10 # sinusoidal input amplitude
omega = 5e3 # sinusoidal input angular frequency
tau = L/R # s ... time constant

http://jupyter.org/
http://www.sagemath.org/
http://ricopic.one/electronics/notebooks
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The current and voltage can be defined as

follows.

i_L(t) = (i_0+A*tau*omega/((tau*omega)^2+1))*exp(-t/tau) + \
(A/sqrt((tau*omega)^2+1)* \
sin(omega*t - arctan2(tau*omega,1)))

v_L(t) = -L/tau*(i_0+A*tau*omega/ \
((tau*omega)^2+1))*exp(-t/tau) + \
(A*L*omega/sqrt((tau*omega)^2+1)* \
cos(omega*t - arctan2(tau*omega,1)))

What type of object are these? In Python, one

can query an object with the function type, as
follows.

type(i_L)

<type 'sage.symbolic.expression.Expression'>

So they are SageMath symbolic expressions.

Nowwe turn to defining simulation parameters.

N = 201 # number of points to plot
t_min = 0 # minimum time
t_max = 8*tau # maximum time
t_s = np.linspace(t_min,t_max,N) # array of time values

Now to create numerical arrays to plot.

i_Ls = [] # initializing sampled array
v_Ls = [] # initializing sampled array
for i in range(0,N):

i_Ls.append(i_L(t_s[i])) # build array of values
v_Ls.append(v_L(t_s[i])) # build array of values

We use the package matplotlib to plot it.

fig = plt.figure()
ax = plt.subplot(111)
ax.plot(t_s,i_Ls,'b-',linewidth=2,label='$i_L(t)$') # plot
ax.plot(t_s,v_Ls,'r-',linewidth=2,label='$v_L(t)$') # plot
# shrink current axis by 20%
box = ax.get_position()
ax.set_position(

[box.x0, box.y0, box.width * 0.8, box.height]
)
# put legend to the right of the current axis
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
# annotate
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transient steady-state

τ 2τ 3τ 4τ 5τ 6τ 7τ 8τ

−10

0

10

time (s)

iL(t) (A)
vL(t) (V)

Figure trss.1: current iL and voltage vL of the inductor for transient
and steady-state response. Note that the transition is not precisely defined.

ax.set_xlabel('time (s)')
ax.set_xlim([t_s[0],t_s[-1]])
ax.set_xticks(

tau*np.linspace(1,int(t_max/tau),int(t_max/tau))
)
ax.set_xticklabels(

["$\\tau$","$2\\tau$","$3\\tau$","$4\\tau$",
"$5\\tau$","$6\\tau$","$7\\tau$","$8\\tau$"]

)
# save for LaTeX's pgfplots
if save_figures:

tikz_save(
'figures/'+fig_file_01+'.tex',
figureheight='.5\linewidth',
figurewidth='1\linewidth'

)
# shade and annotate transient and steady-state regions
ax.axvspan(0, 5.5*tau,

edgecolor='#FFFFFF',facecolor='#222222',alpha=float(0.1)
)
ax.annotate(

'transient', xy=(0.003, -14), xytext=(.003, -13)
)
ax.annotate(

'steady-state', xy=(0.006, -14), xytext=(.006, -13)
)
plt.show() # display here

The figure (Figure trss.1) shows that in around

six time constants, as is typical, the responses

settle in to steady oscillations. Note that the

steady-state is not necessarily static, but can also

be oscillatory, as in this case. In fact, every
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linear dynamic system driven by a sinusoid will

have a sinusoidal steady-state response, as we

will explore further in the coming lectures.

Often the term ac circuit analysis is used refer to

circuits with sinusoidal sources in steady-state.

In many circuits, steady-state is acheived

relatively quickly, which is why this is the most

popular type of analysis. Our approach has

yielded both responses, together. In order to

consider the steady-state only, all we must do is

ignore the exponentially decaying terms, which

are the initial conditions’ contributions to the

transient response.

However, there are easier methods of obtaining

the steady-state response if the transient

response isn’t of interest. The next chapter

(Chapter ssan) considers these.
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can.exe Exercises for Chapter can

Exercise can.mad

Use the diagram below to answer the following

questions and imperatives. Let Is = A0, where

A0 ∈ R is a known constant. Perform a full

circuit analysis, including the transient

response. The initial inductor current is

iL(0) = 0.

(a) Write the elemental, KCL, and KVL

equations.

(b) Write the differential equation for iL(t)

arranged in the standard form and

identify the time constant τ.

(c) Solve the differential equation for iL(t)

and use the solution to find the output

voltage vo(t).

Is L

iL

R

iR

+

−

vo

Exercise can.theocratically

Use the diagram below to answer the following

questions and imperatives. Let Is = A0, where

A0 ∈ R is a known constant. Perform a full

circuit analysis, including the transient

response. The initial capacitor voltage is

vC(0) = vC0, a known constant.

(a) Write the elemental, KCL, and KVL

equations.

(b) Write the differential equation for vC(t)

arranged in the standard form.

(c) Solve the differential equation for vC(t).

Is C

iC

R

iR
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Exercise can.hippophobia

For the RC circuit diagram below, perform a

complete circuit analysis to solve for vo(t) if

VS(t) = A sinωt, where A ∈ R is a given

amplitude and ω ∈ R is a given angular

frequency. Let vC(t)|t=0 = vC0, where vC0 ∈ R is

a given initial capacitor voltage. Hint: you will

need to solve a differential equation for vC(t).

+
−Vs

R
iR

C

iC

+

−

vo

Exercise can.fruitarianism

For the circuit diagram below, perform a

complete circuit analysis to solve for vo(t) if

Vs(t) = A sinωt, where A ∈ R is a given

amplitude and ω ∈ R is a given angular

frequency. Let iL(t)|t=0 = 0 be the initial

inductor current. Hint: you will need to solve a

differential equation for iL(t).

+
−Vs

R1

L R2

+

−

vo

Exercise can.gastrolobium

For the circuit diagram below, perform a

complete circuit analysis to solve for vo(t) if

Vs(t) = 0. Let vC(t)|t=0 = 5 V and

dvC/dt|t=0 = 0 V/s be the initial conditions.

Assume the characteristic equation has distinct

roots. Recommendation: due to the initial

conditions being given in it, solve the

differential equation in vC.
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low-pass filter

+
−Vs

L R

C

+

−

vo

Exercise can.thyroprivic

For the circuit diagram below, perform a

complete circuit analysis to solve for vo(t) if

Vs(t) = 3 sin(10t). Let vC(t)|t=0 = 0 V and

dvC/dt|t=0 = 0 V/s be the initial conditions.

Assume the characteristic equation has distinct,

complex roots. Recommendation: due to the

initial conditions being given in it, solve the

differential equation in vC. Also, consider

which, if any, of your results from Exercise can.

apply and re-use them, if so.
+
−Vs

R L

C

+

−

vo

Exercise can.hemogenesis

For the circuit diagram below, solve for vo(t) if

Vs(t) = A sinωt, where A = 2 V is the given

amplitude and ω ∈ R is a given angular

frequency. Let R = 50 Ω, L = 50mH, and

C = 200 nF. Let the circuit have initial conditions

vC(0) = 1 V and iL(0) = 0 A. Find the

steady-state ratio of the output amplitude to the

input amplitude A for ω = {5000, 10000, 50000}

rad/s. This circuit is called a low-pass

filter—explain why this makes sense. Plot vo(t)

in MATLAB, Python, or Mathematica for

ω = 400 rad/s (you think this won’t be part of

the quiz, but it will be!). Hint: either re-write



can Circuit analysis exe Exercises for Chapter can p. 1

/20 p.

your system of differential-algebraic equations

and initial conditions as a single second-order

differential equation with initial conditions in

the differential variable or re-write it as a system

of two first-order differential equations and

solve that.

+
−Vs

R L

C

+

−

vo

Exercise can.photochromascope

Use the circuit diagram below to answer the

following questions and imperatives. Let

Is = A0, where A0 > 0 is a known constant.

Perform a full circuit analysis, including the

transient response. The initial inductor current

is iL(0) = 0 and the initial capacitor voltage is

vC(0) = 0. Assume the damping ratio ζ ∈ (0, 1);

i.e. the system is underdamped and the roots of

the characteristic equation are complex.

(a) Write the elemental, KCL, and KVL

equations.

(b) Write the second-order differential

equation for iL(t) arranged in the standard

form and identify the natural frequency

ωn and damping ratio ζ.

(c) Convert the initial condition in vC to a

second initial condition in iL.

(d) Solve the differential equation for iL(t)

and use the solution to find the output

voltage vo(t). It is acceptable to use a

known solution and to express your

solution in terms of ωn and ζ.
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Is L R C

+

−

vo



ssan

Steady-state circuit analysis

Steady-state circuit analysis does not require

the, at times, lengthy process of solving

differential equations. Impedance methods,

presented in this chapter, are shortcuts to

steady-state analysis. It is important to note that

impedance methods do not give information

about the transient response.
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Euler’s formula

complex plane

ssan.pha Complex or phasor representations of voltage

and current

It is common to represent voltage and current in

circuits as complex exponentials, especially

when they are sinusoidal. Euler’s formula is our

bridge back-and forth from trigonomentric form

(cos θ and sin θ) and exponential form (ejθ):

ejθ = cos θ+ j sin θ.

Here are a few useful identities implied by

Euler’s formula.

e−jθ = cos θ− j sin θ (1a)

cos θ = Re (ejθ) (1b)

=
1

2

(
ejθ + e−jθ

)
(1c)

sin θ = Im (ejθ) (1d)

=
1

j2

(
ejθ − e−jθ

)
. (1e)

These equations can be considered to be

describing a vector in the complex plane, which

is illustrated in Fig. pha.1. Note that a ejθ has

both a magnitude and a phase.

1

ejθ

cos θ

sin θ

θ
Re

Im

Figure pha.1: Euler’s formula interpreted with a vector in the complex
plane.
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phasor form

Consider a sinusoidal voltage signal

v(t) = v0 cos(ωt+ φ) with amplitude v0, angular

frequency ω, and phase φ. We encountered in

Lec. can.trss the fact that, for a linear system

with a sinusoidal input in steady-state, the

output is a sinusoid at the same frequency as the

input. The only aspects of the sinusoid that the

system changed from input to output were its

magnitude (amplitude) and phase. Therefore,

these are the two quantities of interest in a

steady-state circuit analysis. Our notation

simply ignores the frequency ω and represents

v(t) as

v(t) = v0e
jφ.

We call this the complex or phasor form of v(t).

This is meant to be shorthand notation and, if

interpreted literally, can cause confusion. In

fact, mathematically,

v(t) = v0 cos(ωt+ φ)

= v0 Re(ej(ωt+φ)).

Technically, we can use this more complicated

form in our analysis but we won’t because,

conveniently, if we just treat the signal as if it

was equal to v0ejφ, and at the end apply our

“implied” ejωt term and Re() to the result,
everything just works ... trust me, I’m a doctor

;).

v(t) = v0 cos(ωt+ φ) v(t) = v ′0 cos(ωt+ φ ′)

v(t) = v0e
jφ v ′(t) = v ′0e

jφ′

phaze it!

circuit operates

Re(ejωt · )
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trigonometric
A cos(ωt+ φ)

phasor/polar
Aejφ

rectangular
x+ jy

phaze it

dephaze it

x = A cosφ
y = A sinφ

A =
√
x2 + y2

φ = arctan(y/x)

Figure pha.2: showing transformations among trigonometric, phasor or
polar, and rectangular forms of representation.

The same process can be used to convert a

sinusoidal current to and from phasor form. An

alternative notation for a phasor v0ejφ is

v0∠φ.

Traversing representations

Fig. pha.2 shows transformations one might use

to change signal representations. Often we

begin with a trigonometric form and convert to

phasor/polar form for analysis, which might

require switching back and forth between

phasor/polar and rectangular, depending on

the operation:

• for multiplication or division,

phasor/polar form is best and

• for addition or subtraction rectangular

form is best.

Finally, it is often desirable to convert the result

to trigonometric form, i.e. “dephaze” it.
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impedance

resistance

reactance

generalized Ohm’s law

ssan.imp Impedance

With complex representations for voltage and

current, we can introduce the concept of

impedance.

Definition ssan.1: impedance

Impedance Z is the complex ratio of voltage v to

current i of a circuit element:

Z =
v

i
.

The real part Re(Z) is called the resistance and

the imaginary part Im(Z) is called the reactance.

As with complex voltage and current, we can

represent the impedance as a phasor.

Note that Definition ssan.1 is a generalization of

Ohm’s law. In fact, we call the following

expression generalized Ohm’s law:

v = iZ. (1)

Impedance of circuit elements

The impedance of each of the three passive

circuit elements we’ve considered thus far are

listed, below. Wherever it appears, ω is the

angular frequency of the element’s voltage and

current.

resistor For a resistor with resistance R, the

impedance is all real:

ZR = Rej0 = R.

capacitor For a capacitor with capacitance C,

the impedance is all imaginary:

ZC =
1

ωC
e−jπ/2 =

1

jωC
.

inductor For an inductor with inductance L,

the impedance is all imaginary:
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effective impedance

ZL = ωLejπ/2 = jωL.

These are represented in the complex plane in

Fig. imp.1.

Combining the impedance of multiple elements

As with resistance, the impedance of multiple

elements may be combined to find an effective

impedance.

K elements with impedances Zj connected in

series have equivalent impedance Ze given by

the expression

Ze =

K∑
j=1

Zj. (2)

K elements with impedances Zj connected in

parallel have equivalent impedance Ze given by

the expression

Ze = 1/

K∑
j=1

1/Zj. (3)

In the special case of two elements with

impedances Z1 and Z2,

∠Z

|Z|

Z

ZR = R

ZL = jωL

ZC = −j 1
ωC

Re (resistance)

Im (reactance)

Figure imp.1: the impedance of a resistorZR, a capacitorZC, and an
inductor ZL in the complex plane.



ssan Steady-state circuit analysis mthd Impedance p. 2

Ze =
1

1/Z1 + 1/Z2

=
Z1Z2

Z1 + Z2
. (4)

Example ssan.imp-1 re: combining impedance and phasors

Given the circuit shown

with voltage source

Vs(t) = Aejφ, what is

the total impedance at

the source?.

+
−Vs

R
iR

C

iC

L

iL
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ssan.mthd Methodology for impedance-based circuit

analysis

It turns out we can follow essentially the same

algorithm presented in Lec. can.mthd for

analyzing circuits in steady-state with

impedance. There are enough variations that we

re-present it here.

Let n be the number of passive circuit elements

in a circuit, which gives 2n (v and i for each

element) unknowns. The method is this.

1. Draw a circuit diagram.

2. Label the circuit diagram with the sign

convention by labeling each element with

the “assumed” direction of current flow.

3. Write generalized Ohm’s law for each

circuit element and define the impedance

of each element.

4. For every node not connected to a voltage

source, write Kirchhoff’s current law

(KCL).

5. For each loop not containing a current

source, write Kirchhoff’s voltage law

(KVL).

6. You probably have a linear system of 2n

algebraic equations (and 2n unknowns) to

be solved simultaneously. If only certain

variables are of interest, these can be

found by eliminating other variables such

that the remaining system is smaller. The

following steps can facilitate this process.

a) Eliminate n (half) of the unknowns

by substitution into the elemental

equations (generalized Ohm’s law

equations).

b) Try substition to eliminate to get

down to only those variables of

interest and inputs.

c) Solve the remaining system of linear

algebraic equations for the unknowns
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of interest.

Example ssan.mthd-1 re: steady-state RL circuit analysis with a

sinusoidal sourceGiven the RL circuit

shown with current

input Is(t) = A sinωt,
what are iL(t) and vL(t)

in steady-state?. Note

that this is very similar

to Example can.exa-

1, but we will use

impedance methods.

Is

L

iL

R

iR
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ssan.div Voltage and current dividers

+
−Vs

Z1 i1

Z2

i2

Figure div.1: the two-element
voltage divider.

In Lec. fun.vdiv,

we developed

the useful voltage

divider formula

for quickly analyzing

how voltage

divides among series

resistors. This can be

considered a special

case of a more general voltage divider equation

for any elements described by an impedance.

After developing the voltage divider, we also

introduce the current divider, which divides an

input current among parallel elements.

Voltage dividers

First, we develop the solution for the

two-element voltage divider shown in

Fig. div.1. We choose the voltage across Z2 as

the output. The analysis can follow our usual

methodology of six steps, solving for v2.

1. The circuit diagram is given in Fig. div.1.

2. The assumed directions of positive current

flow are given in Fig. div.1.

3. The elemental equations are just

generalized Ohm’s law equations.

Z1

Z2

v1 = i1Z1

v2 = i2Z2

4. The KCL equation is

5. The KVL equation is

6. Solve.

a) Eliminating i2 and v1 from KCL and

KVL, our elemental equations

become the following.
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Z1

Z2

i1 = v1/Z1 = (Vs − v2)/Z1

v2 = i1Z2

b) Eliminating i1,

v2 =
Z2

Z1
(Vs − v2).

c) Solving for v2,

v2 =
Z2

Z1 + Z2
Vs.

A similar analysis can be conducted for n

impedance elements.

Equation 1 general impedance

voltage divider

Current dividers

By a similar process, we can analyze a circuit

that divides current into n parallel impedance

elements.

Equation 2 general impedance

current divider
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Example ssan.div-1 re: voltage divider with impedance

Given the circuit

shown with voltage

source Vs(t) = Aejφ

and output vL, what is

the ratio of output over

input amplitude? What

is the phase shift from

input to output?

+
−Vs

R
iR

C

iC

L

iL
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R L

(a)

C

R

(b)

L

R

C

(c)

R

C

L

(d)

Figure exe.1: Circuits for Exercise ssan..

ssan.exe Exercises for Chapter ssan

Exercise ssan.ungoopably

Convert the following to trigonametric form:

a. jA
(
e−jωt − ejωt

)
b. A

(
e
(
jω− 1

τ

)
t + e

(
−jω− 1

τ

)
t
)

Exercise ssan.overexplication

Convert the following to phasor form:

a. A sin (ωt+ φ)

b. Ae
−t
τ sinωt

c. A (cosωt− j sinωt)

Exercise ssan.empetheticism

Find the combined effective impedance of the

circuits shown in Fig. exe.1. Write your answer

in rectangular form.
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Exercise ssan.roup

For the RC circuit diagram below, perform a

circuit analysis to solve for the steady state

voltage vo(t) if VS(t) = A sinωt, where A ∈ R is

a given amplitude and ω ∈ R is a given angular

frequency. Use a sine phasor in the problem.

Write your answer as a single sine phasor in

polar form. Evaluate your answer for the

following two sets of parameters.

A = 2, 5 V

ω = 10× 103, 20× 103 rad/s

R = 100, 1000 Ω

C = 100, 10 nF.

The first set should yield vo = 1.99e−j0.0997.

+
−Vs

R
iR

C

iC

+

−

vo

Exercise ssan.vestmental

For the circuit diagram below, perform a

complete circuit analysis to solve for the steady

state voltage vo(t) if Vs(t) = A sinωt, where

A ∈ R is a given amplitude and ω ∈ R is a given

angular frequency. Use a sine phasor in the

problem. Write your answer as a single sine

phasor in polar form. Evaluate your answer for

the following two sets of parameters.

A = 3, 8 V

ω = 30× 103, 60× 103 rad/s

R1 = 100, 1000 Ω

R2 = 1000, 100 Ω

L = 10, 100mH.

The first set should yield vo = 2.61ej0.294.
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+
−Vs

R1

L R2

+

−

vo

Exercise ssan.beluga

For the circuit diagram below, solve for the

steady state voltage vo(t) if Vs(t) = Ae
jφ, where

A ∈ R is a given input amplitude and φ ∈ R is a

given input phase. Write your answer as a

single phasor in polar form (you may use

intermediate variables in this final form as long

as they’re clearly stated).

+
−Vs

R1

C R2

+

−

vo

Exercise ssan.overparticular

For the circuit diagram below, solve for the

steady state output voltage vo(t) if

VS(t) = A cos(ωt). Do write VS and the

impedance of each element in phasor/polar

form. Do not substitute VS or the impedance of

each element into your expression for vo(t).

Recommendation: use a divider rule.

+
−Vs

R

CL

+

−

vo
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low-pass filter

Exercise ssan.radiomicrometer

For the circuit diagram below, solve for the

steady state output voltage vo(t) if

Vs(t) = 3 sin(10t). Use a sine phasor in the

problem. Write your answer as a single sine

phasor in polar form. Evaluate your answer for

the following two sets of parameters.

R = 10, 106 Ω

L = 500, 50mH

C = 100, 10 µF.

The first set should yield vo = 3.01e−j0.0100.

+
−Vs

R L

C

+

−

vo

Exercise ssan.melodic

For the circuit diagram below, solve for vo(t) if

Vs(t) = A sinωt, where A = 2 V is the given

amplitude and ω ∈ R is a given angular

frequency. Let R = 50 Ω, L = 50mH, and

C = 200 nF. Find the steady-state ratio of the

output amplitude to the input amplitude A for

ω = {5000, 10000, 50000} rad/s. Plot the

steady-state ratio as a function of ω in

MATLAB, Python, or Mathematica. This circuit

is called a low-pass filter—explain why this

makes sense. Note that using impedance

methods for steady state analysis makes this

problem much easier than the transient analysis

of this circuit in Exercise can..

+
−Vs

R L

C

+

−

vo
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Exercise ssan.entitatively

For the circuit diagram below, perform a circuit

analysis to solve for the steady state voltage

vo(t) if IS = Aej0, where A > 0 is a given

amplitude. Identify all impedance values in the

circuit, but express your answer in terms of

impedances (i.e. don’t substitute for them in

your final expression).

IS L R C

+

−

vo
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nlnmul

Nonlinear and multiport circuit elements

Thus far, we have considered only one-port,

linear circuit elements. One-port elements have

two terminals. Linear elements have

voltage-current relationships that can be

described by linear algebraic or differential

equations.

Multi-port elements are those that have more

than one port. In this chapter, we will consider

several multi-port elements: transformers

(two-port), transistors (two-port), and opamps

(four-port).

Nonlinear elements have voltage-current

relationships that cannot be described by a

linear algebraic or differential equations. The

convenient impedance methods of Chapter ssan

apply only to linear circuits, so we must return

to the differential equation-based analysis of

Chapter can. In this chapter, we will consider

several nonlinear circuits containing three

different classes of nonlinear elements: diodes,

transistors, and opamps.

A great number of the most useful circuits today

include multi-port and nonlinear elements.

Tasks such as ac-dc conversion, switching,

amplification, and isolation require these

elements.

We explore only the fundamentals of each

element considered and present basic analytic

techniques, but further exploration in Horowitz

and Hill,1 Agarwal and Lang,2 and Ulaby,

Maharbiz and Furse3 is encouraged.
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primary side

secondary side

nlnmul.tx Transformers

Electrical transformers are two-port linear

elements that consist of two tightly coupled

coils of wire. Due to the coils’ magnetic field

interaction, time-varying current through one

side induces a current in the other (and

vice-versa).

N
+

−

v1

+

−

v2

Figure tx.1: circuit
symbol for a transformer
with a core. Those with “air
cores” are denoted with a
lack of vertical lines.

Let the terminals

on the primary (source)

side have label “1” and

those on the secondary (load)

side have label “2,” as shown

in Fig. tx.1. These devices

are very efficient, so we often

assume no power loss. With

this assumption, the power

into the transformer must sum to zero, giving us

one voltage-current relationship:

P1 + P2 = 0

v1i1 = −v2i2.

Note that with two ports, we need two

elemental equations to fully describe the

voltage-current relationships. Another equation

can be found from the magnetic field

interaction. Let N1 and N2 be the number of

turns per coil on each side and N ≡ N2/N1.

Then

v1
v2

=
1

N
.

These two equations can be combined to form

the following elemental equations.
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step-down

step-up

Definition nlnmul.1: transformer elemental

equations

v2 = Nv1 i2 = −
1

N
i1

So we can step-down voltage if N < 1. This is

better, in some cases, than the voltage divider

because it does not dissipate much energy.

However, transformers can be bulkier and

somewhat nonlinear; moreover, they only work

for ac signals. Note that when we step-down

voltage, we step-up current due to our power

conservation assumption.

If N > 1 we can step-up voltage. Voltage

dividers cannot do this! It is not amplification,

however, because power is conserved—we

simultaneously step-down current. So with a

transformer, we can freely trade ac voltage and

current.

Example nlnmul.tx-1 re: transformers and impedance

Given the circuit

shown, what

is the effective

impedance of

ZL on the source

side?

N
+

−

1

+

−

2

+
−Vs

ZS iS

ZL

iL
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semiconductor diode

light-emitting diode (LED)

photodiode

Schottky diode

Zener diode

4. The paradigmatic exception is the Zener diode, which is typically used
in reverse bias in order to take advantage of its highly stable reverse bias
voltage over a large range of reverse current. We will not consider this
application here.

forward-bias

reverse-bias

breakdown voltage

5. Unless otherwise specified, it is usually reasonable to assume room-
temperature operation.

nlnmul.dio Diodes

Diodes are single-port nonlinear elements that,

approximately, conduct current in only one

direction. We will consider the ubiquitous

semiconductor diode, varieties of which include

the light-emitting diode (LED), photodiode (for

light sensing), Schottky diode (for fast

switching), and Zener diode (for voltage

regulation). See Fig. dio.1 for corresponding

circuit symbols.

In most cases, we use the diode to conduct

current in one direction and block reverse

current.4 When conducting current in its

forward direction, it is said to have

forward-bias; when blocking current flow in its

reverse direction, it is said to have reverse-bias.

If the reverse breakdown voltage is reached,

current will flow in the reverse direction. It is

important to check that a circuit design does not

subject a diode to its breakdown voltage, except

in special cases (e.g. when using a Zener diode).

We begin with a nonlinear model of the

voltage-current vD-iD relationship. Let

• Is be the saturation current (typically

˜10−12 A) and

• VTH = kbT/e be the thermal voltage (at

room temperature ˜25mV) with5

– kb the Boltzmann constant,

– e the fundamental charge, and

– T the diode temperature.

+ −
vD

iD

+ −
vD

iD

+ −
vD

iD

+ −
vD

iD

+ −
vD

iD

Figure dio.1: diode symbols. From left to right, the generic symbol, LED,
photodiode, Schottky, Zener.

https://en.wikipedia.org/wiki/Boltzmann_constant
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−0.4 −0.2 0 0.2 0.4 0.6 0.8
0

0.2
0.4
0.6
0.8
1

open circuit
reverse-bias

fo
rw

ar
d
-b
ia
s

vD (V)

i D
(A

) nonlinear model

piecewise linear model

Figure dio.2: the voltage-current relationship in the nonlinear and
piecewise linear models. In the figure, Rd = 0.1 Ω.

ideal diode

piecewise linear model

Equation 1 nonlinear diode model

See Fig. dio.2 for a plot of this function. One can

analyze circuits with diodes using the methods

of Chapter can and Eq. 1 as the diode’s

elemental equation. A nonlinear set of

equations results, which typically require

numerical solution techniques.

A piecewise linear model

+ −
vD

iD

Figure dio.3: circuit
symbol for an ideal diode. Note
that this is a nonstandard use of
this symbol.

An

ideal diode is one that is

a perfect insulator (open

circuit, iD = 0) for vD < 0

conductor for vD > 0. We

use the symbol shown

in Fig. dio.3 for the ideal

diode. At times, the ideal diode is sufficient to

model a diode; often, however, we prefer a

more accurate model that is piecewise linear.

0.6 V
+ − Rd

Figure dio.4: piecewise
linear model.

The piecewise

linear model is shown in

Fig. dio.4. It includes an

ideal diode in series with

a fixed voltage drop of

0.6 V and a resistor with

resistance Rd. This approximates the nonlinear

model with two linear approximations.



nlnmul Nonlinear and multiport circuit elements dio Diodes p. 1

operating point

method of assumed states

Equation 2 piecewise linear diode

model

See Fig. dio.2 for a plot of this function and a

comparison to the nonlinear model.

The slope in forward-bias is 1/Rd. This model’s

effectiveness is highly dependant on Rd, so an

operating point must be chosen and Rd chosen

to match most closely with the nonlinear model

near that operating point.

Method of assumed states

The method of assumed states is a method for

using linear circuit analysis to analyze circuits

with nonlinear components. The method is

summarized in the following steps.

1. Begin at the initial time t = 0.

2. Replace each diode in the circuit diagram

with the piecewise linear diode model.

3. Proceed with the circuit analysis of

Chapter can, ignoring the elemental

equations for the ideal diodes Di. Your

system of equations will have unknown

ideal diode current iDi
and voltage vDi

.

Simplify it to the extent possible.

4. Guess the current state of each ideal diode:

ON or OFF. For each ideal diode Di guessed

to be ON,

set vDi
= 0 and assume that iDi

> 0.

(3)

For each ideal diode assumed to be OFF,

set iDi
= 0 and assume that vDi

< 0.

(4)
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For n diodes in the circuit, there are 2n

possibilities at each moment in time.

Guess just one to start.

5. If even one diode violates its assumption

from above, dismiss the results and return

to step 4 and choose a different

combination of assumed states (consider

flipping the assumptions on those diodes

that violated the old assumptions).

6. If not even one diode violates its

assumptions, this is the correct solution

for this moment in time.

7. This solution is valid for as long as its

assumptions are valid. Once they fail, go

back to step 4.

Since impedance methods are valid only for

linear circuits, steady-state analyses should

proceed with the same process outlined above.

With a periodic input, a periodic (steady)

solution may emerge.

Example nlnmul.dio-1 re: half wave rectifier

Given the circuit shown

with voltage source

Vs(t) = 3 cos 2πt, what is

the output vR? Explain why

this might be called a “half-

wave rectifier.” Let R = 10 Ω.

+
−Vs

iD

R

iR
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An algorithm for determining Rd

The piecewise linear approximation of the

exponential diode current will never be great,

but we can at least try to choose Rd in a

somewhat optimal way, recognizing that when

highly accurate results are required, there’s no

substitute for the nonlinear model.

Consider the algorithm of Fig. dio.6. Initially set

−1 −0.5 0 0.5 1

−2

0

2

−1 −0.5 0 0.5 1

−0.4

−0.2

0

0.2
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)

o
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)
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)

Figure dio.5: the input and output voltage of the half-wave rectifier circuit
of Example nlnmul.dio-1. Note that the “on” diode subcircuit is valid for iD > 0
and the “off” diode circuit is valid for iD < 0.
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analyze circuit with Rdi
undetermined

let Rdi
= 0

solve for iDi
(t)

use nonlinear model to find vDi
(t)

find means iDi
, vDi

use linear model to find Rdi

Rdi

converged?
stop

Figure dio.6: an algorithm for determining Rdi
.

6. Note that if T0 is ignored, our estimate ofRd will include the effects of
time during which no current is flowing and the diode is in reverse-bias,
during which time Rd is not applicable.

to zero the diode resistances Rdi
of each resistor.

Solve for each diode current iDi
(t), then use this

to find vDi
(t) from the nonlinear model of Eq. 1:

vDi
(t) = VTH ln(iDi

(t)/Is + 1). (5)

Now take the means of these signals (assuming

steady state oscillation) over a period T ,

excluding the time T0 during which the diode

voltage was in reverse-bias:6

iDi
=

1

T − T0

ˆ t0+T

t0

iDi
(τ)dτ (6a)

vDi
=

1

T − T0

ˆ t0+T

t0

vDi
(τ)dτ. (6b)

Now us the piecewise linear model of ?? to

estimate Rdi
:

Rdi
=
vDi

− 0.6V

iDi

. (7)

We can use this estimate of Rdi
to re-analyze the

circuit and repeat the same process of deriving a

new estimate of Rdi
. This process should

converge on an estimate of Rdi
that is in some

sense optimal.
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Note that if, during this iterative process, one

finds vDi
< 0.6 V, a negative Rd will result. At

this point, a couple different reasonable

approaches can be taken:

1. just use Rdi
= 0 or

2. use some reasonably central value of

vDi
> 0.6 V.

The second case is preferred if vDi
(t) spends

much time above 0.6 V. But usually, if it spends

much time, the mean vDi
should be great

enough to avoid this situation. Circuits that

tend to express this behavior are those with high

impedance and correspondingly low currents.
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transistor

bipolar junction transistor (BJT)

n-channel MOSFET

p-channel MOSFET

7. Note that if we consider the gate-side to be the input with iGS = 0

and vGS and the drain-source-side to be the output with iDS and vDS,
the MOSFET can be seen to be two-port.

gate G

drain D

source S

switch S-model

threshold voltage

nlnmul.fet MOSFETs

A metal–oxide–semiconductor field-effect

transistor (MOSFET) is a two-port, nonlinear

circuit element that lies at the heart of digital

electronics, with sometimes millions integrated

into a single microprocessor. They are the

dominant type of transistor, a class of elements

that includes the bipolar junction transistor

(BJT).

MOSFETs are not just common in integrated

circuits made of silicon, they are also available

as discrete elements, which is the form most

often encountered by the mechatronicist.

There are two primary types of MOSFET: the

n-channel and the p-channel, determined by the

type of semiconductor doping (negative or

positive) used in the manufacturing process.

These types are “opposites,” so we choose to

focus on n-channel, here.

G

D

iDS
S

Figure fet.1:
circuit symbol for a n-channel
MOSFET.

Fig. fet.1 displays the circuit

diagram symbol for the

MOSFET. There are three7

terminals: the gate G, drain

D, and source S. The current

flowing from one terminal

to another is labeled with

consecutive subscripts; for instance, the current

flowing from drain to source is iDS. Similarly,

the voltage drop across two terminals is labeled

with concurrent subscripts; for instance, the

voltage drop from gate to source is vGS.

The input-output characteristics of the MOSFET

are quite complex, but we may, in the first

approximation, consider it to be like a switch. In

this model, called the S-model, if the gate

voltage vGS is less than the threshold voltage VT

(typically around 0.7 V), the D and S terminals

are disconnected (open) from each other (OFF

mode). But when vGS > VT , D and S are

connected via a short and current iDS can flow
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switch unified (SU) model

cutoff region

(ON mode).

The input-output characteristics of a MOSFET

are actually much more complex than the

S-model captures. The S-model can build

intuition and suffice for digital logic circuit

analysis. However, we are here mostly

concerned with analog circuit models.

Specifically, we mechatronicists use MOSFETs

to drive power-hungry loads (e.g. motors) with

high-power sources controlled by low-power

microcontrollers. We now turn to a general

model, after which we consider a method of

analyzing MOSFET circuits.

The switch unified (SU) model

The switch unified (SU) model is reasonably

accurate at describing actual MOSFET

input-output characteristics. However, it is

quite nonlinear, and therefore can give us

headaches during analysis. As usual, we are

concerned with the element’s voltage-current

relationships.

Definition nlnmul.2: switch unified model
Let K be a constant parameter of the MOSFET

with units A/V2. K can be found from

parameters of a given MOSFET. The current

into the gate is zero: iG = 0. The current from

drain to source is controlled by the two voltage

variables vGS and vDS, as shown.

iDS =


0 for vGS < VT

K
(
(vGS − VT )vDS − v2DS/2

)
for vGS > VT and vDS < vGS − VT

K

2
(vGS − VT )

2 for vGS > VT and vDS > vGS − VT

So, as in the S-model, the gate voltage vGS must

exceed the threshold voltage VT for current to

flow. The interval below the threshold is called

the cutoff region (OFF). Note, however, that

current doesn’t just flow freely, as it would with

the short of the S-model. In fact, two distinct
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triode region

saturation region

dependent source

switch current source (SCS) model

method of assumed states

ON (vGS > VT ) intervals emerge. In both, the

current iDS depends on vGS. In the triode

region, vDS < vGS − VT , iDS also depends on

vDS. However, in the saturation region,

vDS > vGS − VT , iDS is independent of vDS and

can be controlled by vGS, alone.

Note that in saturation, the MOSFET behaves

like a current source controlled by vGS. A

source controlled by a variable in the circuit is

called a dependent source. This behavior as a

dependent current source (that can also be

turned off) is the most valuable for us.

The switch current source (SCS) model is

actually just a recognition of this behavior and

an elimination of the triode region from

consideration. This is a reasonable assumption

if we can guarantee operation in cutoff or

saturation only.

Given the piecewise MOSFET models, we can

again use the method of assumed states for

MOSFET circuit analysis. Note however that

only the S-model is piecewise linear and that the

SU- and SCS-models are piecewise nonlinear.

We can handle some relatively simple nonlinear

cases analytically, but require either

linearization or numerical assistance for more

complex circuit analyses.

Example nlnmul.fet-1 re: transformers and impedance

Given the circuit

shown, solve for

the voltage across

the load RL for

varying Vg given the

following conditions:

saturation of the

MOSFET, RL = 1

kΩ, K = 0.5 mA/V2,

VT = 0.7 V, Vs = 10

V.

RL

iRL

+
− Vs

+
−Vg
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0 1 2 3 4 5
0

2

4

Vg (V)

v
R

L
(V
)

Figure fet.2: the load voltage as a function of gate voltage for
Example nlnmul.fet-1.
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operational amplifier

inverting input (−)

non-inverting input (+)

output

differential power supply

active element

nlnmul.op Operational amplifiers

The operational amplifier (opamp) is the queen

of analog electronic components. The opamp is

a four-port nonlinear voltage-controlled voltage

source, but it’s so much more. Here are a few

applications from the opamp highlight reel:

summing two signals, subtracting two signals,

amplifying a signal, integrating a signal,

differentiating a signal, filtering a signal,

isolating two subcircuits, generating periodic

functions (e.g. sinusoids and square waves), and

analog feedback control. Although they are

nonlinear, in most applications a linear

approximation is sufficiently accurate.

−

+v+

v−

vo

Figure op.1:
circuit symbol for an opamp.

Fig. op.1 shows the circuit

symbol for the opamp. Three

terminals are displayed:

inverting input (−)

The inverting

input is labeled

with the “−” symbol.

non-inverting input (+)

The non-inverting input is labeled with

the “+” symbol.

output The output extends

from the tip of the

symbol, opposite the

inputs.

These comprise an input and an output port.

However, there are two power supply ports that

are typically suppressed in the circuit diagram.

These two power supply ports are from a

differential supply, which has a positive

terminal (e.g. +12 V), symmetrically negative

terminal (e.g. −12 V), and a common ground.

The supply provides the opamp with external

power, making it an active element.

When an opamp is operating in its linear mode,

it outputs a voltage vo that is A times the
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open-loop gain A

dependent voltage source

8. Note that, while the transistor can be considered a nonlinear
dependent current source, the opamp can be considered a linear
dependent voltage source. However, we can easily adapt an opamp
circuit to behave as a linear dependent current source, so typically the
opamp is still preferred.

negative feedback

difference between its inputs v+ and v−. The

open-loop gain A is different for every opamp,

but is usually greater than 105. Let’s formalize

this model.

Definition nlnmul.3: opamp model

An opamp’s input terminals+ and− draw zero

current (i.e. have infinite input impedance). Let

A be a positive real number. The output voltage

vo is given by

vo = A(v+ − v−).

The output terminal has zero impedance.

Note that this model is equivalent to a

dependent voltage source controlled by the

input voltage difference. In fact, it is also

linearly dependent, so linear circuit analysis

techniques can be applied.8

The model is fairly accurate as long as |vo| is less

than the maximum power source voltage. Due

to the high open-loop gain, the difference in

input gain is highly restrictive for linear

operation. This turns out not to be difficult to

achieve, but does lead to a convenient

approximation during analysis that applies

most of the time:

v+ ≈ v− (1)

because other voltages in the circuit are

typically much larger than the input voltage

difference. We cannot, however, make this

assumption unless (1) the opamp is operating in

linear mode and (2) the opamp is part of a

circuit that connects its output—via a wire or

circuit elements—back to its inverting input (−).

This second condition is called negative

feedback and is used in most opamp circuits for

several reasons, the most important of which is

that Eq. 1 holds due to the virtual guarantee of

linear operation in this case.
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9. Negative feedback is considered in detail in courses on control theory.
The opamp was used extensively for feedback control until low-cost,
high-performance digital microcontrollers became available. Opamp-
based feedback control is now called analog feedback control, which still
has certain applications.

unity feedback

voltage follower

loop gain

non-inverting opamp circuit

Negative feedback

We can think of negative feedback as

continuously adjusting the output such that

Eq. 1 is approximately true.9 Consider the

feedback of vo to the inverting input (called

unity feedback), as shown in Fig. op.2(a), such

that the output equation can be transformed as

follows:

vo = A(v+ − v−)

= A(vi − vo) ⇒

vo =
A

1+A
vi

Since A� 1, vo ≈ vi. In other words, for

negative unity feedback, vo follows vi. For this

reason, this particular opamp circuit is called a

voltage follower. Let’s consider negative

feedback’s effect on the difference in input

voltage:

v+ − v− = v+ −
A

1+A
v+

≈ 0.

This is equivalent to Eq. 1. That is, for negative

feedback, the input voltages are nearly equal:

v+ ≈ v−. This is control theory—this is how we

make a system behave the way we want! In this

instance, the loop gain—the effective gain from

vi to vo—is one. This same principle applies

when elements such as resistors and capacitors

are placed in the feedback path. The resulting

loop gain can be nonunity and respond

dynamically to the signal.

Non-inverting opamp circuit

The non-inverting opamp circuit is shown in

Fig. op.2(b). Let’s analyze the circuit to find
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−

+
vo

Z

+
−vi

(a) negative unity feedback controlling the voltage across an element
Z.

−

+

R1

R2

+
−vi

+

−

vo

(b) the non-inverting opamp circuit.

Figure op.2: two opamp circuits.

vo(vi). We begin with the KVL expression for vo

in terms of vR1
and vR2

:

vo = vR1
+ vR2

.

Let’s use Ohm’s law to write:

vo = iR1
R1 + iR2

R2.

The KCL equation for the node between R1 and

R2 gives

iR1
− iR2

−���
0

i− = 0 ⇒

iR1
= iR2

⇒

vo = iR2
(R1 + R2) ⇒

iR2
= vo/(R1 + R2).
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We can write another equation for vo from the

opamp:

vo = A(v+ − v−)

= A(vi − vR2
).

We have an expression for iR2
that can eliminate

vR2
with a little Ohm’s law action:

vo = A(vi − iR2
R2)

= A(vi − voR2/(R1 + R2)) ⇒

vo + voAR2/(R1 + R2) = Avi

vo =
A

1+AR2/(R1 + R2)
vi

=
(R1 + R2)/R2

(R1 + R2)/(R2K) + 1
vi.

If A� (R1 + R2)/R2, the denominator of this

expression goes to 1 and we have the loop gain

approximately

R1 + R2
R2

.

This gives the following input-output equation

for the circuit.

Equation 2 non-inverting opamp

circuit i/o equation

It is highly significant that Eq. 2 doesn’t depend

on A, which can be quite variable. Rather, it

depends on the resistances R1 and R2, only—and

these are very reliable. As long as the condition

A� R1 + R2
R2

(3)

is satisfied, Eq. 2 is valid.
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This independence of the input-output

relationship on the open-loop gain A is very

common for opamp circuits. We have

essentially traded gain for better linearity and

gain invariance. It can be shown that this is

equivalent to the assumption that v+ ≈ v−.
Making this assumption earlier in the analysis

can simplify the process. Note that we do not

use the assumption for the opamp equation

vo = A(v+ − v−), for this would imply vo = 0.

Instead, in the previous analysis, we could

immediately assume that vR2
= vi and proceed

in a similar fashion.



nlnmul Nonlinear and multiport circuit elements exe Exercises for Chapter nlnmul p. 1

nlnmul.exe Exercises for Chapter nlnmul

Exercise nlnmul.rhinoceros

Write a one- or two-sentence response to each of

the following questions and imperatives. The

use of equations is acceptable when they appear

in a sentence. Don’t quote me (use your own

words, other than technical terminology).

(a) Write the equivalent impedance of a

resistor R and an inductor L in series.

Express the result in rectangular and polar

(phasor) form.

(b) How do you find the Norton equivalent

resistance?

(c) Explain how a diode operates in

forward-bias.

(d) In a MOSFET, how much current will flow

from the drain D to the source Swhen the

gate-source voltage is 0.3 V? Succinctly

explain/justify.

Exercise nlnmul.flamingo

Write a one- or two-sentence response to each of

the following questions and imperatives. The

use of equations is acceptable when they appear

in a sentence. Don’t quote me (use your own

words, other than technical terminology).

(a) Describe a couple differences between

MOSFETs and opamps.

(b) If a DC source is connected to a circuit in

steady state, describe how an inductor in

the circuit will be operating.

(c) If a transformer increases an AC signal’s

voltage by a factor of 119, what happens to

the signal’s current?

(d) How do we determine the diode resistance

for the piecewise linear model of a diode?
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1 2
N

+
−Vs

Rs iRs

L
iL

RL

iRL

+

−

vo

Figure exe.1: circuit diagram for Exercise nlnmul. and Exercise nlnmul..

Exercise nlnmul.astringent

Write a one- or two-sentence response to each of

the following questions and imperatives. The

use of equations is acceptable when they appear

in a sentence. Don’t quote me (use your own

words, other than technical terminology).

(a) If the current through an inductor is

suddenly switched off, what happens?

(b) Let the output voltage of a resistor circuit

be 5 V and the equivalent resistance 500Ω.

What is the Thevenin equivalent circuit?

(c) In the preceding part of this question,

what is the Norton equivalent?

(d) When can we use impedance analysis?

Exercise nlnmul.prolongate

For the circuit diagram of Fig. exe.1, solve for

vo(t) if Vs(t) = A cosωt. Let N = n2/n1, where

n1 and n2 are the number of turns in each coil, 1

and 2, respectively. Also let iL(0) = 0 be the

initial condition.

Exercise nlnmul.synopses

Re-do Exercise nlnmul., but only consider the

steady-state response. Use impedance methods!

Exercise nlnmul.horklump

Calculate the current through a diode using the

ideal model under the following conditions,
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diode clipping circuit

vD = 5, 8,−3 V

T = 38, 21, 28 ◦C.

The diode can be assumed to have a saturation

current of Is = 10−12 A. You may find the

following helpful,

• Boltzmann constant: 1.381× 10−23 m2kg
s2K ,

and

• fundamental charge: 1.602× 10−19 C.

Exercise nlnmul.spartanism

When considering the steady state of circuits

with only DC sources, all voltages and currents

are constant and all diodes are in constant states

(each is ON or OFF). The methods of

Lec. nlnmul.dio still apply, of course, but we

needn’t be concerned with a time evolution.

Consider the circuits of Fig. exe.2. For each

circuit, solve for the voltage across the 5 kΩ

resistor. Treat each diode as an ideal diode.

Exercise nlnmul.outsmart

Repeat Exercise nlnmul., but use the piecewise

linear model of each diode.

Exercise nlnmul.combmaker

A diode clipping circuit is one that “clips” the

tops and or bottoms of a signal. These circuits

can be used to set a maximum or minimum

voltage for a signal.

Consider the diode clipping circuit of Fig. exe.3.

Source V1 effectively adjusts the maximum

possible load voltage vRL
, and V2 the minimum.

Let VS(t) = 10 cos 4πt, V1 = 5 V, V2 = −3 V, and

Rs = RL = 50 Ω. Solve for vRL
(t). Use the ideal

diode model.
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+
−3 V

D

5 kΩ

(a)

+
−12 V

D1

5 kΩ

+
− 5 V

D2

(b)

+
−5 V

D1

D2 5 kΩ

(c)
+
−−5 V

D1

D2 5 kΩ

(d)

Figure exe.2: diode circuits for Exercise nlnmul..

+
−VS

RS

RL

D1

+

−
V1

+

−
V2

D2

Figure exe.3: a diode clipping circuit for Exercise nlnmul..

Exercise nlnmul.cloisteral

Repeat Exercise nlnmul., but use the piecewise

linear model of each diode.
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+
−Vs

D R

C

+

−

vo

Figure exe.4: circuit diagram for Exercise nlnmul..

Exercise nlnmul.diaspora

For the circuit diagram of Fig. exe.4, solve for

vo(t) if Vs(t) = A for some given A > 0.6 V. Let

vC(t)|t=0 = 0 V be the initial condition. Use a

piecewise linear model for the diode with some

Rd ∈ R>0. Do not estimate Rd.

Exercise nlnmul.porosity

For the circuit shown in Fig. exe.5, determine

the voltage across the load vRL
in terms of

parameters and the gate voltage source voltage

Vg and Vs. The parameters of the MOSFET are K

and VT . Assume MOSFET saturation operation.

RS

+
−Vg

+
−Vs

RL

Figure exe.5: circuit for Exercise nlnmul..

Exercise nlnmul.overbroil

The opamp circuit of Fig. exe.6 is used as a

voltage-controlled current source for the load

RL. Show that it behaves as a current source

with current iRL
controlled by voltage source vi.

Use two separate methods: (a) assuming

v+ ≈ v− and (b) not assuming v+ ≈ v−, rather,
assuming the open loop gain of the opamp A is
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large. Comment on the differences between the

methods of (a) and (b).

−

+

RL

iRL

RS

+
−vi

Figure exe.6: circuit for Exercise nlnmul..

Exercise nlnmul.polynucleate

Use the circuit diagram of Fig. exe.7 to answer

the questions below. Use the sign convention

from the diagram. Let vi = A cosωt be an ac

input voltage. The load ZL impedance is not

given.

(a) Write the elemental equations in terms of

ZR1
, ZR2

, ZRS
and ZL (the impedances of

the components).

(b) Write the KCL and KVL equations.

(c) Solve for the steady-state vo(t) without

inserting the values of the impedances

(that is, leave it in terms of ZR1
, ZR2

, ZRS

and ZL).

−

+

R1

R2

+
−vi

RS iRS

ZL

iL

+

−

vo

Figure exe.7: circuit for Exercise nlnmul..
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Exercise nlnmul.lush

Consider the circuit in Fig. exe.8. Solve for vo(t)

for input voltage vi(t) = 5 V, a sine wave of

vi(t) = 5 sin 25t, and a sine wave of

vi(t) = 5 sin 2525t. Let R1 = 50 Ω, R2 = 10 kΩ,

C = 10 µF, and the opamp open-loop gain be

A = 105. Let the initial condition be vC(t) = 0 V.

In each case, plot the solution to show the

transient response until it reaches steady-state.

−

+

R2

iR2

−

+

vi

R1 iR1

C

iC

−

+

vo

Figure exe.8: opamp circuit for Exercise nlnmul.

Exercise nlnmul.hogwash

Consider the circuit in Fig. exe.9. Solve for vo(t)

for a known input voltage vi(t).

−

+

−

+

vi

C

R

−

+

vo

Figure exe.9: opamp circuit for Exercise nlnmul.
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Exercise nlnmul.virtue

In each of the figures of Fig. exe.10, solve for the

voltage v100 across the 100Ω resistor. Use the

assumptions in the associated caption. Clearly

justify each response.

100Ω

+
−5 V

+
−10 V

(a) VT = 0.7 V,K = 0.5 mA/V2

1 2
N

+
−VS 100Ω

(b) VS = 5ej0 ,N = 5

−

+

100Ω

+
−5 V

(c)

+
−5V 100Ω

D

+

−
7 V

(d) D is ideal

Figure exe.10: circuits for Exercise nlnmul..

Exercise nlnmul.nonabstract

Consider the circuit below with input voltage

sources VS and Vg. Determine Vg such that the

load voltage vRL
= 10 V. Let RL = 2 kΩ,

K = 0.5mA/V2, VT = 0.7 V, Vs = 20 V.
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RL

iRL

+
− Vs

+
−Vg

Exercise nlnmul.ear

Consider the circuit below with input voltage

source VS(t) = A where A > 0 is a known (but

unspecified) constant. Perform a circuit analysis

to solve for vo(t) for the initial condition

vC(0) = 0. Hint: it is easier if you realize the

opamp output voltage is effectively an ideal

voltage source (so it does not depend on vR3
and

vC) and you can therefore treat the two parts of

the circuit separately.

−

+

R1

R2

+
−VS

R3

C

+

−

vo
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algtri.quad Quadratic forms

The solution to equations of the form

ax2 + bx+ c = 0 is

x =
−b±

√
b2 − 4ac

2a
. (1)

Completing the square

This is accomplished by re-writing the quadratic

formula in the form of the left-hand-side (LHS)

of this equality, which describes factorization

x2 + 2xh+ h2 = (x+ h)2. (2)
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algtri.trig Trigonometry

Triangle identities

With reference to the below figure, the law of

sines is

sin α

a
=

sin β

b
=

sin γ

c
(1)

and the law of cosines is

c2 = a2 + b2 − 2ab cos γ (2a)

b2 = a2 + c2 − 2ac cos β (2b)

a2 = c2 + b2 − 2cb cos α (2c)

b

c
a

α γ

β

Reciprocal identities

cscu =
1

sinu (3a)

secu =
1

cosu (3b)

cotu =
1

tanu (3c)

Pythagorean identities

1 = sin2 u+ cos2 u (4a)

sec2 u = 1+ tan2 u (4b)

csc2 u = 1+ cot2 u (4c)
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Co-function identities

sin
(π
2
− u

)
= cosu (5a)

cos
(π
2
− u

)
= sinu (5b)

tan
(π
2
− u

)
= cotu (5c)

csc
(π
2
− u

)
= secu (5d)

sec
(π
2
− u

)
= cscu (5e)

cot
(π
2
− u

)
= tanu (5f)

Even-odd identities

sin(−u) = − sinu (6a)

cos(−u) = cosu (6b)

tan(−u) = − tanu (6c)

Sum-difference formulas (AM or lock-in)

sin(u± v) = sinu cos v± cosu sin v (7a)

cos(u± v) = cosu cos v∓ sinu sin v (7b)

tan(u± v) = tanu± tan v
1∓ tanu tan v (7c)

Double angle formulas

sin(2u) = 2 sinu cosu (8a)

cos(2u) = cos2 u− sin2 u (8b)

= 2 cos2 u− 1 (8c)

= 1− 2 sin2 u (8d)

tan(2u) = 2 tanu
1− tan2 u

(8e)

Power-reducing or half-angle formulas

sin2 u =
1− cos(2u)

2
(9a)

cos2 u =
1+ cos(2u)

2
(9b)

tan2 u =
1− cos(2u)
1+ cos(2u) (9c)
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Sum-to-product formulas

sinu+ sin v = 2 sin u+ v

2
cos u− v

2
(10a)

sinu− sin v = 2 cos u+ v

2
sin u− v

2
(10b)

cosu+ cos v = 2 cos u+ v

2
cos u− v

2
(10c)

cosu− cos v = −2 sin u+ v

2
sin u− v

2
(10d)

Product-to-sum formulas

sinu sin v = 1

2
[cos(u− v) − cos(u+ v)] (11a)

cosu cos v = 1

2
[cos(u− v) + cos(u+ v)] (11b)

sinu cos v = 1

2
[sin(u+ v) + sin(u− v)] (11c)

cosu sin v = 1

2
[sin(u+ v) − sin(u− v)] (11d)

Two-to-one formulas

A sinu+ B cosu = C sin(u+ φ) (12a)

= C cos(u+ψ) where (12b)

C =
√
A2 + B2 (12c)

φ = arctan B
A

(12d)

ψ = − arctan A
B

(12e)
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adjoint

algtri.matrix Matrix inverses

This is a guide to inverting 1× 1, 2× 2, and n×n
matrices.

Let A be the 1× 1matrix

A =
[
a
]
.

The inverse is simply the reciprocal:

A−1 =
[
1/a

]
.

Let B be the 2× 2matrix

B =

[
b11 b12

b21 b22

]
.

It can be shown that the inverse follows a

simple pattern:

B−1 =
1

detB

[
b22 −b12

−b21 b11

]

=
1

b11b22 − b12b21

[
b22 −b12

−b21 b11

]
.

Let C be an n× nmatrix. It can be shown that

its inverse is

C−1 =
1

detC adjC,

where adj is the adjoint of C.
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