Electronics

an introduction

Rico A. R. Picone Department of Mechanical Engineering Saint Martin's University

01 October 2021

Copyright © 2021 Rico A. R. Picone All Rights Reserved

fun	Fundamentals		6
	fun.vir	Voltage, current, resistance, and all that	7
		Voltage	7
		Current	8
		Circuits	8
		Circuit topology	8
		Element types	9
		Power	9
		Kirchhoff's laws	10
		Ohm's law	11
		Combining resistance	11
	fun.vdiv	Voltage dividers	14
	fun.src	Sources	17
		Ideal voltage sources	17
		Ideal current sources	18
		Modeling real sources	19
	fun.eq	Thevenin's and Norton's theorems	20
		Thévenin's theorem	20
		Norton's theorem	20
		Converting between Thévenin and Norton equivalents	21
	fun.load	Output and input resistance and circuit loading	23
		Loading the source	23
	fun.cap	Capacitors	25
	fun.ind	Inductors	27
	fun.exe	Exercises for Chapter fun	29
		Exe. fun.corporationism	29
		Exe. fun.pseudoscarus	29
		Exe. fun.banana	29
		Exe. fun.doorbell	30
		Exe. fun.crumble	30

		Exe. fun.coracomorph	30	
		Exe. fun.masticurous	31	
can	Circuit analysis		32	
	can.sgn	Sign convention	33	
	can.mthd	Methodology for analyzing circuits	35	
	can.exa	A sinusoidal input example	38	
	can.trss	Transient and steady-state response	41	
	can.exe	Exercises for Chapter can	45	
		Exe. can.mad	45	
		Exe. can.theocratically	45	
		Exe. can.hippophobia	46	
		Exe. can.fruitarianism	46	
		Exe. can.gastrolobium	46	
		Exe. can.thyroprivic	47	
		Exe. can.hemogenesis	47	
		Exe. can.photochromascope	48	
55d11	Steauy-State City	Complex or phaser representations of voltage and gurrent	50	
	ssan.pna	Traversing representations	52	
	con imp		55	
	ssan.mp		54	
		Combining the impedance of multiple elements	54	
	con mthd	Methodology for impedance based circuit analysis	55	
	ssan div	Voltage and gurrent dividers	57	
	SSall.ulv	Voltage dividers	60	
			60	
	22 27 21/2		62	
	ssan.exe		62	
		Exe. ssan.ungoopably	62	
		Exe. ssan.overexplication	63	
			63	
		Exe. scan voetmontal	61	
		Exe scan beluga	65	
		Exe scan overparticular	65	
		Exel scan radiomicromatar	65	
		Exe ssan melodic	66	
		Exe ssan entitatively	67	
nlnmul	Nonlinear and r	nultiport circuit elements	68	
	nlnmul.tx	Transformers	69	

Α

nlnmul.dio	Diodes
	A piecewise linear model
	Method of assumed states
	An algorithm for determining R_d
nlnmul.fet	MOSFETs
	The switch unified (SU) model
nlnmul.op	Operational amplifiers
-	Negative feedback
	Non-inverting opamp circuit
nlnmul.exe	Exercises for Chapter nlnmul
	Exe. nlnmul.rhinoceros
	Exe. nlnmul.flamingo 91
	Exe. nlnmul.astringent
	Exe. nlnmul.prolongate
	Exe. nlnmul.synopses
	Exe. nlnmul.horklump
	Exe. nlnmul.spartanism
	Exe. nlnmul.outsmart
	Exe. nlnmul.combmaker
	Exe. nlnmul.cloisteral
	Exe. nlnmul.diaspora
	Exe. nlnmul.porosity
	Exe. nlnmul.overbroil
	Exe. nlnmul.polynucleate
	Exe. nlnmul.lush
	Exe. nlnmul.hogwash
	Exe. nlnmul.virtue
	Exe. nlnmul.nonabstract
	Exe. nlnmul.ear
Algebra and tri	iconometry reference
algebra and un	Quadratic forms 101
aigui.quau	Completing the square 101
alatri tria	Trigonometry 102
aiguituig	Triangle identities 102
	Reciprocal identities 102
	Pythagoroan identities 102
	Co-function identities
	Even-odd identities
	Sum-difference formulas (AM or lock-in)
	Double angle formulas

		Power-reducing or half-angle formulas	. 103
		Sum-to-product formulas	104
		Product-to-sum formulas	. 104
		Two-to-one formulas	. 104
	algtri.matrix	Matrix inverses	105
liograp	hy		106

Bibliography

fun

Fundamentals

 $Read^1$.

1. P Horowitz and W Hill. The Art of Electronics. Cambridge University Press, 2015. ISBN: 9780521809269.

fun.vir Voltage, current, resistance, and all that

Two quantities will be of special importance in analyzing and designing electronic systems: voltage and current. The relationship between them defines a third important quantity: resistance (more generally, impedance). Momentarily, we will define each of these, but we start with the fundamental quantity in electronics.

current resistance

voltage

Definition fun.1: electric charge

Electric charge (or simply charge) is a property of matter that describes the attractive or repulsive force acting on the matter in an electric field. At the microscopic level, charge is quantized into charges of subatomic particles such as protons and electrons, which have opposite charges e and -e, where e is the elementary charge.

Charge has derived SI unit coulomb with symbol C. It is considered to be a conserved quantity.

Voltage

Definition fun.2: voltage

Voltage is the difference in electrical potential energy of a unit of charge moved between two locations in an electrical field.

Voltage is typically given the variable *v* and has derived SI unit volt with symbol V. Voltage is always defined by referring to two locations. Sometimes one of these locations is implicitly ground—an arbitrarily-defined reference (datum) voltage considered to have zero electrical potential energy—such that we can talk about the voltage "at this" or "at that" location by implicit reference to ground. It is coulomb conserved quantity

volt

ground

good form to describe the voltage as being "between" two locations or "across" an element.

Current

Definition fun.3: current

Current is a flow of charge.

Current is typically denoted i and has derived SI unit ampere with symbol A. We typically generate voltage by doing work on charges. Conversely, we get currents by placing voltage across matter through which current can flow. This implies that voltage causes current. Causality here is quite complex, but I will posit the following proposition. We typically observe current when applying voltage, so from a phenomenological point-of-view, it is natural to consider voltage causal of current.²

Circuits

Electric circuits are dynamic electrical systems in which charge accumulates in and flows through elements. Circuit elements are connected via metallic conductors called wires, which ideally have the same voltage (relative to, say, ground) everywhere.

Circuit topology

A circuit has a few basic topological features. A circuit node is a continuous region of a circuit **node** that has the same voltage everywhere. A node is an idealized concept that is approximate in most instantiations. A circuit element is a region of a circuit **element**

considered to have properties distinct from the surrounding circuit. Examples of elements are resistors, capacitors, inductors, and sources. A circuit element has terminals through which it terminals connects to a circuit. Circuit elements in parallel are those that have parallel

ampere

2. Note that subtlety emerges not only when considering fields, small distances, and short durations—it also emerges when we consider certain circuit elements that are exhibit behavior related to the time rate of change of voltage or current.

circuit

wire

two terminals, each of which is shared by another element's two terminals. Circuit elements in series are those that have two terminals, only one of which is shared between them and this one cannot be shared with any other element.

Element types

The following are common types of circuit element.

- Energy storage elements store energy in electric (capacitors) or magnetic (inductors) fields.
- Energy dissipative elements dissipate energy from a circuit, typically as heat, such as in a resistor.
- Energy source elements provide external energy to the circuit (e.g. batteries).
- Energy transducing elements convert electronic energy to another form (e.g. motors convert electric to mechanical energy.)

Power

Power is the time rate of change of energy. Let us now define electric power.

Definition fun.4: power

The instantaneous electric power \mathcal{P} into a circuit element is defined as the product of the voltage v across and the current i through it at a given time t:

$$\mathcal{P}(t) = v(t)i(t). \tag{1}$$

Power typically goes into:

- heat (usually),
- mechanical work (motors),
- radiated energy (lamps, transmitters), or
- stored energy (batteries, capacitors).

series

energy storage element

energy dissipative element

energy source element

energy transducing element

Box fun.1 terminological note

"[D]on't call current 'amperage'; that's strictly bush-league. The same caution will apply to the term 'ohmage'"—Horowitz & Hill, The Art of Electronics

Kirchhoff's laws

Gustav Kirchhoff formulated two laws fundamental to circuit analysis. Kirchhoff's current law (KCL) depends on the fact that charge is a conserved quantity. Therefore, the charge flowing in a node is equal to that flowing out, which implies KCL.

Definition fun.5: Kirchhoff's current law

The current in a node is equal to the current out.

KCL implies that the sum of the current into a node must be zero. Assume, for instance, that k wires with currents i_j connect to form a node. Kirchhoff's current law states that

$$\sum_{j=1}^{k} i_{j} = 0.$$
 (2)

It can be discovered empirically that elements connected in parallel have the same voltage across them. This doesn't mean they share the same current, but it does imply Kirchhoff's voltage law (KVL).

Definition fun.6: Kirchhoff's voltage law

The sum of the voltage drops around any closed loop is zero.^a

KVL implies that the voltage drops across elements that form a loop must be zero. Assume, for instance, that k elements with

a. A loop is a series of elements that begins and ends at the same node.

voltage drops v_j form a loop. KVL states that

$$\sum_{j=1}^k \nu_j = 0. \tag{3}$$

Ohm's law

Much of electronics is about the relationship between a voltage and a corresponding current. Applying a voltage to a material typically induces a current through it. The functional relationship between v and i is of the utmost importance to the analysis and design of circuits.

The simplest relationship is known as Ohm's law, for which we will first need the concept of resistance.

Definition fun.7: resistance

Let a circuit element have voltage v and current

i. The resistance R is defined as the ratio

$$R = \nu/i \tag{4}$$

Now we are ready to define Ohm's law.

Definition fun.8: Ohm's law

Some materials such as conductors in certain environments exhibit approximately constant resistance.

This is pretty weak. However, it's still quite useful, as we'll see. With it we can assume, for certain elements and situations, that the resistance of the element is a static property and that the voltage and current are proportional. We call such elements resistors.

resistor

Combining resistance

Resistors can be connected together in different topologies to form composite elements that exhibit "equivalent" resistances of their own. K resistors with resistances R_j connected in series have equivalent resistance R_e given by the expression

$$\mathbf{R}_e = \sum_{j=1}^{K} \mathbf{R}_j. \tag{5}$$

K resistors with resistances R_j connected in parallel have equivalent resistance R_e given by the expression

$$R_e = 1 / \sum_{j=1}^{K} 1 / R_j.$$
 (6)

In the special case of two resistors with resistances R_1 and R_2 ,

(7)

Example fun.vir-1

Answer the questions below about the circuit shown. Voltage across and current through a circuit element x are denoted v_x and i_x . Signs are defined on the diagram.

- 1. What does it mean if we refer to the voltage at node a?
- 2. What is the current i_{R_2} through R_2 at a given time t in terms of the power it is dissipating \mathcal{P}_{R_2} and the voltage across it v_{R_2} ?
- 3. If $V_s(t) = 5$ V and $v_{R_1} = 3$ V, what is v_{R_2} ?
- 4. What is the equivalent resistance of the resistors R₁ and R₂ combined as in the circuit?
- 5. If $v_{R_1} = 3$ V and $R_1 = 100 \Omega$, what is i_{R_2} ?

re: understanding a circuit

fun.vdiv Voltage dividers

In Chapter can we'll learn about how to approach circuit analysis in a systematic way. For now, we'll limp along unsystematically with our toolbelt of concepts and equations in order to introduce some more circuit elements, concepts, and theorems. But we can't resist just a bit of circuit analysis now. The voltage divider is a ubiquitous and useful circuit. In a sense, it's less of a circuit and more of concept. For resistors, that concept can be stated as the following.

The voltage across resistors in series is divided among the resistors.

An immediately useful result is that we can "divide voltage" into any smaller voltage we like by putting in a couple resistors. In order to show how the voltage divider "divides up" the voltage, we must do some basic circuit analysis. Consider the circuit in Fig. vdiv.1. The input voltage v_{in} is divided into v_{R_1} and $v_{R_2} = v_{out}$. We want to know v_{out} as a function of v_{in} and parameters R_1 and R_2 . Let's write down the equations we know from the laws of Kirchhoff and Ohm:

Figure vdiv.1: a simple voltage divider circuit.

voltage divider

We've already established that $v_{out} = v_{R_2}$, so we can solve for v_{R_2} in (*). We want to eliminate the three "unknown" variables v_{R_1} , i_{R_1} , and i_{R_2} , so it is good that we have four equations.³ We begin with (*b) and proceed by substitution of the others of (*):

3. Alternatively, we could solve for all four unknown variables with our four equations.

Nice! So we can now write the input-output relationship for a two-resistor voltage divider.

So the voltage divider had the effect of dividing the input voltage into a fraction governed by the relationship between the relative resistances of the two resistors. This fraction takes values in the interval [0, 1]. Now, whenever we see the voltage divider circuit, we can just remember this easy formula!

Similarly, for n resistors in series, it can be shown that the voltage divider relationship is as follows.

Equation 2 general voltage divider

fun.src Sources

Sources (a.k.a. supplies) supply power to a circuit. There are two primary types: voltage sources and current sources.

Ideal voltage sources

An ideal voltage source provides exactly the voltage a user specifies, independent of the circuit to which it is connected. All it must do in order to achieve this is to supply whatever current necessary. Let's unpack this with a simple example.

Example fun.src-1

In the circuit shown, determine how much current and power the ideal voltage source V_s must provide in order to maintain voltage if $R \rightarrow \infty$ and if $R \rightarrow 0$.

$V_{s} \stackrel{+}{=} Q \stackrel{+}{=} R$

re: limitations of a voltage source

Ideal current sources

An ideal current source provides exactly the current a user specifies, independent of the circuit to which it is connected. All it must do in order to achieve this is to supply whatever voltage necessary. Let's unpack this with a simple example.

Example fun.src-2

In the circuit shown, determine how much voltage and power the ideal current source I_s must provide in order to maintain voltage if $R \rightarrow 0$ and if $R \rightarrow \infty$.

re: limitations of a current source

Modeling real sources

No real source can produce infinite power. Some have feedback that controls the output within some finite power range. These types of sources can be approximated as ideal when operating within their specifications. Many voltage sources (e.g. batteries) do not have internal feedback controlling the voltage. When these sources are "loaded" (delivering power) they cannot maintain their nominal output, be that voltage or current. We model these types of sources as ideal sources in series or parallel with a resistor, as illustrated in Fig. src.1. Most manufacturers specify the nominal resistance of a source as the "output resistance." A typical value is 50 Ω .

Figure src.1: Models for power-limited "real" sources.

fun.eq Thevenin's and Norton's theorems

Thévenin's and Norton's theorems yield ways to simplify our models of circuits.

Thévenin's theorem

The following remarkable theorem has been proven.

Theorem fun.9: Thévenin's theorem

Given a linear network of voltage sources, current sources, and resistors, the behavior at the network's output terminals can be reproduced exactly by a single voltage source V_e in series with a resistor R_e .

The equivalent circuit has two quantities to determine: V_e and R_e .

Determining R_e

The equivalent resistance R_e of a circuit is the resistance between the output terminals with all inputs set to zero. Setting a voltage source to zero means the voltage on both its terminals are equal, which is equivalent to treating it as a short or wire. Setting a current source to zero means the current through it is zero, which is equivalent to treating it as a short or treating it as a short between through it is zero.

Determining V_e

The equivalent voltage source V_e is the voltage at the output terminals of the circuit when they are left open (disconnected from a load). Determining this value typically requires some circuit analysis with the laws of Ohm and Kirchhoff.

Norton's theorem

Similarly, the following remarkable theorem has been proven.

equivalent resistance R_e

equivalent voltage source V_{e}

fun Fundamentals

Theorem fun.10: Norton's theorem

Given a linear network of voltage sources, current sources, and resistors, the behavior at the network's output terminals can be reproduced exactly by a single current source I_e in parallel with a resistor R_e .

The equivalent circuit has two quantities to determine: I_e and R_e . The equivalent resistance R_e is identical to that of Thévenin's theorem, which leaves the equivalent current source I_e to be determined.

Determining Ie

The equivalent current source I_e is the current through the output terminals of the circuit when they are shorted (connected by a wire). Determining this value typically requires some circuit analysis with the laws of Ohm and Kirchhoff.

Converting between Thévenin and Norton equivalents

There is an equivalence between the two equivalent circuit models that allows one to convert from one to another with ease. The equivalent resistance R_e is identical in each and provides the following equation for converting between the two representations:

Equation 1 converting between Thévenin and Norton equivalents

Example fun.eq-1

For the circuit shown, find a Thévenin and a Norton equivalent.

equivalent current source I_e

re: Thévenin and Norton equivalents

fun Fundamentals

fun.load Output and input resistance and circuit loading

When considering a circuit from the perspective of two terminals—either as input or output—it is often characterized as having a Thévenin/Norton equivalent resistance and, if it is considered as an output, as having an equivalent (Thévenin or Norton) source. If the terminals are considered to be an output, its output resistance is just the Thévenin/Norton equivalent resistance. Other names for this output resistance are source or internal resisistance.⁴ Fig. load.1 illustrates this model. If the terminals are considered to be an input, its input resistance is the is the Thévenin/Norton equivalent resistance of the circuit. Another

resistance.

Loading the source

Loading a source means to connect another circuit to it that draws power. Let's explore what happens when we connect the load to the source for the circuit in Fig. load.1. Before connecting, the source output voltage is

term for this input resistance is the load

Figure load.1: source with Thévenin equivalent source voltage V_e and output/internal resistance R_e and a load with input resistance R_L .

equivalent resistance

output resistance

4. Sometimes, instead of resistance, the term impedance is substituded. In these situations, there is no difference in meaning.

input resistance

loading a source

This is equivalent to connecting a load with an infinite resistance. After connecting, we have a voltage divider, so

So, as $R_e/R_L \rightarrow 0$, $v_{out} \rightarrow V_e$. Also, as $R_e/R_L \rightarrow \infty$, $v_{out} \rightarrow 0$. So, relatively small output resistance and large input resistance yield a "loaded" voltage nearer nominal. Some sources are labeled with nominal values assuming no load and others assuming a matching load⁵—a load equal to the output impedance. For this reason, it is best to measure the actual output of any source.

matching load

5. A matching load can be shown to have maximum power transfer.

fun.cap Capacitors

Capacitors have two terminal and are composed of two conductive surfaces separated by some distance. One surface has charge q and the other -q. A capacitor stores energy in an electric field between the surfaces.

Let a capacitor with voltage *v* across it and charge q be characterized by the parameter capacitance C, where the constitutive equation is

capacitance

(1)

farad (F)

The capacitance has derived SI unit farad (F), where $F = A \cdot s/V$. A farad is actually quite a lot of capacitance. Most capacitors have capacitances best represented in μ F, nF, and pF. The time-derivative of this equation yields the *v*-i relationship (what we call the "elemental equation") for capacitors.

A time-derivative! This is new. Resistors have only algebraic i-v relationships, so circuits with only sources and resistors can be described by algebraic relationships. The dynamics of circuits with capacitors are described with differential equations.

Capacitors allow us to build many new types of circuits: filtering, energy storage, resonant, blocking (blocks dc-component), and bypassing (draws ac-component to ground).

Capacitors come in a number of varieties, with those with the largest capacity (and least expensive) being electrolytic and most common

electrolytic capacitor

being ceramic. There are two functional varieties of capacitors: bipolar and polarized, with circuit diagram symbols shown in Fig. cap.1. Polarized capacitors can have voltage drop across in only one direction, from anode (+) to cathode (–)—otherwise they are damaged or may explode. Electrolytic capacitors are polarized and ceramic capacitors are bipolar. So what if you need a high-capacitance bipolar capacitor? Here's a trick: place identical high-capacity polarized capacitors cathode-to-cathode. What results is effectively a bipolar capacitor with capacitance half that of one of the polarized capacitors.

ceramic capacitor bipolar capacitor polarized capacitor anode cathode

explosion

cathode-to-cathode

(b) polarized capacitor

Figure cap.1: capacitor circuit diagram symbols.

fun.ind Inductors

A pure inductor is defined as an element in which flux linkage λ —the integral of the voltage—across the inductor is a monotonic function \mathcal{F} of the current i; i.e. the pure constitutive equation is

L flux linkage λ

pure inductor

ideal inductor

inductance L

Figure ind.1: inductor circuit diagram symbol.

 $\lambda = \mathcal{F}(\mathfrak{i}). \tag{1}$

An ideal inductor is such that this monotonic function is linear, with slope called the inductance L; i.e. the ideal constitutive equation is

The units of inductance are the SI derived unit henry (H). Most inductors have inductance best represented in mH or µH.

henry (H)

The elemental equation for an inductor is found by taking the time-derivative of the constitutive equation.

Equation 2 inductor elemental equation

Inductors store energy in a magnetic field. It is important to notice how inductors are, in a sense, the opposite of capacitors. A capacitor's current is proportional to the time rate of change of its voltage. An inductor's voltage is proportional to the time rate of change of its current.

Inductors are usually made of wire coiled into a number of turns. The geometry of the coil determines its inductance L.

Often, a core material—such as iron and

ferrite—is included by wrapping the wire around the core. This increases the inductance L. Inductors are used extensively in radio-frequency (rf) circuits, with which we won't discuss in this text. However, they play important roles in ac-dc conversion, filtering, and transformers—all of which we will consider extensively.

The circuit diagram for an inductor is shown in Fig. ind.1.

fun.exe Exercises for Chapter fun

Exercise fun.corporationism

- a. Let two resistors with resistances $1 k\Omega$ and $2 k\Omega$ be connected in series. What is their combined effective resistance?
- b. Let two resistors R₁ and R₂ be connected in series. Prove that their combined effective resistance is greater than that of either resistor, individually.
- c. Let two resistors with resistances $1 \text{ k}\Omega$ and $2 \text{ k}\Omega$ be connected in parallel. What is their combined effective resistance?
- d. Let any two resistors R₁ and R₂ be connected in parallel. Prove that their combined effective resistance is less than that of either resistor, individually.

Exercise fun.pseudoscarus

Beginning with the definition of electrical power and the elemental equation of an ideal resistor, find

- a. an expression for the power dissipated by a resistor in terms of voltage v_R and resistance R, only; and
- b. an expression for the power dissipated by a resistor in terms of current i_R and resistance R, only.

Exercise fun.banana

An unregulated function generator has a 50 Ω output resistance. The function generator front panel displays a nominal voltage amplitude of 10 V, which assumes a matching load of 50 Ω . However, the output is not connected to this nominal matching load. Instead, it is connected to an oscilloscope with high input resistance—let's say it's infinite. Respond to the following questions and imperatives about this situation.

- a. Draw a circuit diagram.
- b. Using the given information about the "nominal" voltage amplitude, determine what the ideal source voltage amplitude V_s should be in your circuit diagram/function generator model.
- c. Solve for the actual voltage amplitude ν_{α} at the oscilloscope if the function generator front panel says 5 V amplitude.

Exercise fun.doorbell

Consider two signals with voltage ratios expressed in decibels as follows. What are the corresponding power and voltage amplitude ratios?⁶

- a. 0 dB
- b. 3 dB
- c. 10 dB
- d. 20 dB

Exercise fun.crumble

For the circuit diagram below with voltage source V_S and output voltage v_o , (a) construct a Thévenin equivalent circuit. Be sure to specify the equivalent source V_e and resistance R_e . Let $R_1 = R_2 = 1 \ k\Omega$ and $R_3 = 2 \ k\Omega$. (b) Convert the Thévenin equivalent circuit from (a) to a Norton equivalent.

6. This exercise was inspired by Horowitz and Hill. (Horowitz and Hill, The Art of Electronics)

can Fundamentals

Exercise fun.coracomorph

For the circuit diagram below with current source I_S and output voltage v_o , (a) construct a Norton equivalent circuit. Be sure to specify the equivalent source I_e and resistance R_e. Let $R_1 = R_2 = 1 \text{ k}\Omega$ and $R_3 = 2 \text{ k}\Omega$. (b) Convert the Norton equivalent circuit from (a) to a Thévenin equivalent.

Exercise fun.masticurous

For the circuit diagram below with voltage source V_S and output voltage v_o , (a) construct a Norton equivalent circuit. Be sure to specify the equivalent source I_e and resistance R_e. Let R₁ = 1 k Ω , R₂ = 2 k Ω , and R₃ = 3 k Ω . (b) Convert the Norton equivalent circuit from (a) to a Thévenin equivalent. _/20 p.

can

Circuit analysis

can.sgn Sign convention

We use the passive sign convention of electrical engineering, defined below and illustrated in Fig. sgn.1.

Definition can.1: passive sign convention

Power flowing in to a component is considered to be positive and power flowing out of a component is considered negative.

Because power $\mathcal{P} = vi$, this implies the current and voltage signs are prescribed by the convention. For passive elements, the electrical potential must drop in the direction of positive current flow. This means the assumed direction of voltage drop across a passive element must be the same as that of the current flow. For active elements, which supply power to the circuit, the converse is true: the voltage drop and current flow must be in opposite directions. Fig. sgn.2 illustrates the possible configurations. When analyzing a circuit, for each passive element, draw an arrow beside it pointing in the direction of assumed current flow and voltage drop. Try it out on Fig. sgn.3.

The purpose of a sign convention is to help us interpret the signs of our results. For instance,

Figure sgn.1: passive sign convention in terms of power \mathcal{P} .

Figure sgn.2: passive sign convention in terms of voltage $\boldsymbol{\nu}$ and current i.

passive sign convention

passive element

active element

interpretation

Figure sgn.3: an illustration of the passive sign convention on a circuit.

if, at a given instant, a capacitor has voltage $v_{\rm C} = 3$ V and current $i_{\rm C} = -2$ A, we compute $\mathcal{P}_{\rm C} = -6$ W and we know 6 W of power is flowing from the capacitor into the circuit. For passive elements, there is no preferred direction of "assumed" voltage drop and current flow. If a voltage or current value discovered by performing a circuit analysis is positive, this means the "assumed" and "actual" directions are the same. For a negative value, the directions are opposite.

For active elements, we don't get to choose the direction. The physical situation prescribes it. For instance, if a positive terminal of a battery is connected to a certain terminal in a circuit, I cannot simply say "meh, I'm going to call that negative." It's positive whether you like it or not, Nancy.

can.mthd Methodology for analyzing circuits

We have all the tools we need to do some pretty badass circuit analysis. Later we'll learn a more systematic method for analyzing the dynamics of a circuit, but for now we can use broad strokes to get the idea. It will work most of the time, but occasionally you may need to write some extra KCL or KVL equations or use a more advanced algebraic technique.

Let n be the number of passive circuit elements in a circuit, which gives 2n (v and i for each element) unknowns. The method is this.

- 1. Draw a circuit diagram.
- 2. Label the circuit diagram with the sign assignment by labeling each element with the "assumed" direction of current flow.
- 3. Write the elemental equation for each circuit element (e.g. Ohm's law).
- For every node not connected to a voltage source, write Kirchhoff's current law (KCL).
- 5. For each loop not containing a current source, write Kirchhoff's voltage law (KVL).
- You probably have a linear system of 2n algebraic and first-order, ordinary differential equations (and 2n unknowns) to be solved simultaneously.
 - a) Eliminate n (half) of the unknowns
 by substitution into the elemental equations.
 - b) Try substition or elimination to get down to only those variables with time derivatives and inputs. If this doesn't work, use a linear algebra technique.
 - c) Solve the remaining set of first-order, linear ordinary differential equations. This can be done either directly or by

turning it into a single higher-order differential equation and then solving.

Example can.mthd-1

re: RC circuit analysis with a constant source

can Circuit analysis

can.exa A sinusoidal input example

Notice that we have yet to talk about alternating current (ac) circuit analysis or direct current (dc) circuit analysis. In fact, these ambiguous terms can mean a few different things.

Approximately, an ac circuit analysis is one for which the input is sinusoidal and a dc circuit analysis is one for which the input is a constant. This ignores transient response (early response when the initial-condition response dominates) versus steady-state response (later response when the initial-condition response has decayed) considerations. We'll consider this more in Lec. can.trss.

We have remained general enough to be able to handle sinusoidal and constant sources in both transient and steady-state response.

Example can.mthd-1 features a circuit with a constant voltage source and a capacitor. Now we consider circuit with a sinusoidal current source and an inductor because why change only one thing when you could change more?

Example can.exa-1

```
Given the RL circuit
shown, current input
I_s(t) = A \sin \omega t,
and initial condition
i_L(t)|_{t=0} = i_0, what
are i_L(t) and \nu_L(t) for
t \ge 0?.
```


ac circuit analysis dc circuit analysis

transient response

steady-state response

re: RL circuit analysis with a sinusoidal source

can Circuit analysis

can Circuit analysis

can.trss Transient and steady-state response

The source for this lecture is in SageMath kernel Jupyter notebook. For more information, see jupyter.org and sagemath.org. See ricopic.one/electronics/notebooks for the source code notebook. First, we import packages and all that. We use matplotlib for plotting and numpy for numerics. Let's consider them response of the circuit in Example can.exa-1. We found that the inductor had current and voltage responses

$$i_{L}(t) = \left(i_{0} + \frac{A\tau\omega}{(\tau\omega)^{2} + 1}\right)e^{-t/\tau} + \frac{A}{\sqrt{(\tau\omega)^{2} + 1}}\sin(\omega t - \arctan\tau\omega) \qquad (1)$$

and

$$\begin{split} \nu_{L}(t) &= -\frac{L}{\tau} \left(i_{0} + \frac{A\tau\omega}{(\tau\omega)^{2} + 1} \right) e^{-t/\tau} + \\ &\frac{AL\omega}{\sqrt{(\tau\omega)^{2} + 1}} \cos(\omega t - \arctan\tau\omega). \end{split} \tag{2}$$

Note that the top line of each of these equations decays exponentially to zero. The response while this term dominates is the transient response and the response thereafter is the steady-state response.

In 6τ (six time constants) the exponential term has decayed to less than 1 %, so we often assume the other term will be dominating by that point. We will plot $i_L(t)$ and $v_L(t)$ from above to illustrate transient and steady-state response. Plots cannot be created without some definition of parameters. Let us define them as follows.

```
R = 1 # Ohms ... resistance
L = 1e-3 # H ... inductance
i_0 = 10 # A ... initial current in inductor
A = 10 # sinusoidal input amplitude
omega = 5e3 # sinusoidal input angular frequency
tau = L/R # s ... time constant
```

The current and voltage can be defined as follows.

What type of object are these? In Python, one can query an object with the function type, as follows.

type(i_L)

<type 'sage.symbolic.expression.Expression'>

So they are SageMath symbolic expressions. Now we turn to defining simulation parameters.

```
N = 201 # number of points to plot
t_min = 0 # minimum time
t_max = 8*tau # maximum time
t_s = np.linspace(t_min,t_max,N) # array of time values
```

Now to create numerical arrays to plot.

```
i_Ls = [] # initializing sampled array
v_Ls = [] # initializing sampled array
for i in range(0,N):
    i_Ls.append(i_L(t_s[i])) # build array of values
    v_Ls.append(v_L(t_s[i])) # build array of values
```

We use the package matplotlib to plot it.

```
fig = plt.figure()
ax = plt.subplot(111)
ax.plot(t_s,i_Ls,'b-',linewidth=2,label='$i_L(t)$') # plot
ax.plot(t_s,v_Ls,'r-',linewidth=2,label='$v_L(t)$') # plot
# shrink current axis by 20%
box = ax.get_position()
ax.set_position(
    [box.x0, box.y0, box.width * 0.8, box.height]
)
# put legend to the right of the current axis
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
# annotate
```


Figure trss.1: current i_L and voltage v_L of the inductor for transient and steady-state response. Note that the transition is not precisely defined.

```
ax.set_xlabel('time (s)')
ax.set_xlim([t_s[0],t_s[-1]])
ax.set_xticks(
    tau*np.linspace(1,int(t_max/tau),int(t_max/tau))
)
ax.set_xticklabels(
    ["$\\tau$","$2\\tau$","$3\\tau$","$4\\tau$",
     "$5\\tau$","$6\\tau$","$7\\tau$","$8\\tau$"]
)
# save for LaTeX's pgfplots
if save_figures:
   tikz_save(
        'figures/'+fig_file_01+'.tex',
        figureheight='.5\linewidth',
        figurewidth='1\linewidth'
   )
# shade and annotate transient and steady-state regions
ax.axvspan(0, 5.5*tau,
    edgecolor='#FFFFFF',facecolor='#222222',alpha=float(0.1)
)
ax.annotate(
    'transient', xy=(0.003, -14), xytext=(.003, -13)
)
ax.annotate(
    'steady-state', xy=(0.006, -14), xytext=(.006, -13)
)
plt.show() # display here
```

The figure (Figure trss.1) shows that in around six time constants, as is typical, the responses settle in to steady oscillations. Note that the steady-state is not necessarily static, but can also be oscillatory, as in this case. In fact, every linear dynamic system driven by a sinusoid will have a sinusoidal steady-state response, as we will explore further in the coming lectures. Often the term ac circuit analysis is used refer to circuits with sinusoidal sources in steady-state. In many circuits, steady-state is acheived relatively quickly, which is why this is the most popular type of analysis. Our approach has yielded both responses, together. In order to consider the steady-state only, all we must do is ignore the exponentially decaying terms, which are the initial conditions' contributions to the transient response.

However, there are easier methods of obtaining the steady-state response if the transient response isn't of interest. The next chapter (Chapter ssan) considers these.

can.exe Exercises for Chapter can

Exercise can.mad

Use the diagram below to answer the following questions and imperatives. Let $I_s = A_0$, where $A_0 \in \mathbb{R}$ is a known constant. Perform a full circuit analysis, including the transient response. The initial inductor current is $i_L(0) = 0$.

- (a) Write the elemental, KCL, and KVL equations.
- (b) Write the differential equation for i_L(t) arranged in the standard form and identify the time constant τ.
- (c) Solve the differential equation for $i_L(t)$ and use the solution to find the output voltage $v_o(t)$.

Exercise can.theocratically

Use the diagram below to answer the following questions and imperatives. Let $I_s = A_0$, where $A_0 \in \mathbb{R}$ is a known constant. Perform a full circuit analysis, including the transient response. The initial capacitor voltage is $v_C(0) = v_{C0}$, a known constant.

- (a) Write the elemental, KCL, and KVL equations.
- (b) Write the differential equation for $v_C(t)$ arranged in the standard form.
- (c) Solve the differential equation for $v_C(t)$.

Exercise can.hippophobia

For the RC circuit diagram below, perform a complete circuit analysis to solve for $v_o(t)$ if $V_S(t) = A \sin \omega t$, where $A \in \mathbb{R}$ is a given amplitude and $\omega \in \mathbb{R}$ is a given angular frequency. Let $v_C(t)|_{t=0} = v_{C0}$, where $v_{C0} \in \mathbb{R}$ is a given initial capacitor voltage. Hint: you will need to solve a differential equation for $v_C(t)$.

Exercise can.fruitarianism

For the circuit diagram below, perform a complete circuit analysis to solve for $v_o(t)$ if $V_s(t) = A \sin \omega t$, where $A \in \mathbb{R}$ is a given amplitude and $\omega \in \mathbb{R}$ is a given angular frequency. Let $i_L(t)|_{t=0} = 0$ be the initial inductor current. Hint: you will need to solve a differential equation for $i_L(t)$.

Exercise can.gastrolobium

For the circuit diagram below, perform a complete circuit analysis to solve for $v_o(t)$ if $V_s(t) = 0$. Let $v_C(t)|_{t=0} = 5$ V and $dv_C/dt|_{t=0} = 0$ V/s be the initial conditions. Assume the characteristic equation has distinct roots. Recommendation: due to the initial conditions being given in it, solve the differential equation in v_C .

Exercise can.thyroprivic

For the circuit diagram below, perform a complete circuit analysis to solve for $v_o(t)$ if $V_s(t) = 3 \sin(10t)$. Let $v_C(t)|_{t=0} = 0$ V and $dv_C/dt|_{t=0} = 0$ V/s be the initial conditions. Assume the characteristic equation has distinct, complex roots. Recommendation: due to the initial conditions being given in it, solve the differential equation in v_C . Also, consider which, if any, of your results from Exercise can. apply and re-use them, if so.

Exercise can.hemogenesis

For the circuit diagram below, solve for $v_o(t)$ if $V_s(t) = A \sin \omega t$, where A = 2 V is the given amplitude and $\omega \in \mathbb{R}$ is a given angular frequency. Let $R = 50 \Omega$, L = 50 mH, and C = 200 nF. Let the circuit have initial conditions $v_C(0) = 1$ V and $i_L(0) = 0$ A. Find the steady-state ratio of the output amplitude to the input amplitude A for $\omega = \{5000, 10000, 50000\}$ rad/s. This circuit is called a low-pass filter—explain why this makes sense. Plot $v_o(t)$ in MATLAB, Python, or Mathematica for $\omega = 400$ rad/s (you think this won't be part of the quiz, but it will be!). Hint: either re-write your system of differential-algebraic equations and initial conditions as a single second-order differential equation with initial conditions in the differential variable or re-write it as a system of two first-order differential equations and solve that.

Exercise can.photochromascope

Use the circuit diagram below to answer the following questions and imperatives. Let $I_s = A_0$, where $A_0 > 0$ is a known constant. Perform a full circuit analysis, including the transient response. The initial inductor current is $i_L(0) = 0$ and the initial capacitor voltage is $v_C(0) = 0$. Assume the damping ratio $\zeta \in (0, 1)$; i.e. the system is underdamped and the roots of the characteristic equation are complex.

- (a) Write the elemental, KCL, and KVL equations.
- (b) Write the second-order differential equation for i_L(t) arranged in the standard form and identify the natural frequency ω_n and damping ratio ζ.
- (c) Convert the initial condition in v_C to a second initial condition in i_L .
- (d) Solve the differential equation for $i_L(t)$ and use the solution to find the output voltage $v_o(t)$. It is acceptable to use a known solution and to express your solution in terms of ω_n and ζ .

____/20 p.

ssan

Steady-state circuit analysis

Steady-state circuit analysis does not require the, at times, lengthy process of solving differential equations. Impedance methods, presented in this chapter, are shortcuts to steady-state analysis. It is important to note that impedance methods do not give information about the transient response.

ssan.pha Complex or phasor representations of voltage and current

It is common to represent voltage and current in circuits as complex exponentials, especially when they are sinusoidal. Euler's formula is our **Euler's formula** bridge back-and forth from trigonomentric form $(\cos \theta \text{ and } \sin \theta)$ and exponential form $(e^{j\theta})$:

Here are a few useful identities implied by Euler's formula.

$$e^{-j\theta} = \cos\theta - j\sin\theta$$
 (1a)

$$\cos \theta = \operatorname{Re}\left(e^{j\theta}\right) \tag{1b}$$

$$=\frac{1}{2}\left(e^{j\theta}+e^{-j\theta}\right) \tag{1c}$$

$$\sin \theta = \operatorname{Im} \left(e^{j\theta} \right) \tag{1d}$$

$$=\frac{1}{j2}\left(e^{j\theta}-e^{-j\theta}\right). \tag{1e}$$

These equations can be considered to be describing a vector in the complex plane, which is illustrated in Fig. pha.1. Note that a $e^{j\theta}$ has both a magnitude and a phase.

Figure pha.1: Euler's formula interpreted with a vector in the complex plane.

Consider a sinusoidal voltage signal $v(t) = v_0 \cos(\omega t + \phi)$ with amplitude v_0 , angular frequency ω , and phase ϕ . We encountered in Lec. can.trss the fact that, for a linear system with a sinusoidal input in steady-state, the output is a sinusoid at the same frequency as the input. The only aspects of the sinusoid that the system changed from input to output were its magnitude (amplitude) and phase. Therefore, these are the two quantities of interest in a steady-state circuit analysis. Our notation simply ignores the frequency ω and represents v(t) as

We call this the complex or phasor form of v(t). This is meant to be shorthand notation and, if interpreted literally, can cause confusion. In fact, mathematically, phasor form

Technically, we can use this more complicated form in our analysis but we won't because, conveniently, if we just treat the signal as if it was equal to $v_0 e^{j\phi}$, and at the end apply our "implied" $e^{j\omega t}$ term and Re() to the result, everything just works ... trust me, I'm a doctor ;).

$$\begin{split} \nu(t) &= \nu_0 \cos(\omega t + \varphi) & \nu(t) = \nu'_0 \cos(\omega t + \varphi') \\ & & & \uparrow \\ \text{phaze it!} & & & \uparrow \\ \nu(t) &= \nu_0 e^{j\varphi} & \xrightarrow{\text{circuit operates}} \nu'(t) = \nu'_0 e^{j\varphi'} \end{split}$$

Figure pha.2: showing transformations among trigonometric, phasor or polar, and rectangular forms of representation.

The same process can be used to convert a sinusoidal current to and from phasor form. An alternative notation for a phasor $v_0 e^{j\phi}$ is

Traversing representations

Fig. pha.2 shows transformations one might use to change signal representations. Often we begin with a trigonometric form and convert to phasor/polar form for analysis, which might require switching back and forth between phasor/polar and rectangular, depending on the operation:

- for multiplication or division, phasor/polar form is best and
- for addition or subtraction rectangular form is best.

Finally, it is often desirable to convert the result to trigonometric form, i.e. "dephaze" it.

Impedance ssan.imp

With complex representations for voltage and current, we can introduce the concept of impedance.

impedance

Definition ssan.1: impedance

Impedance Z is the complex ratio of voltage v to current i of a circuit element:

$$Z = \frac{v}{i}.$$

resistance The real part $\operatorname{Re}(Z)$ is called the resistance and the imaginary part Im(Z) is called the reactance. As with complex voltage and current, we can represent the impedance as a phasor. Note that Definition ssan.1 is a generalization of Ohm's law. In fact, we call the following expression generalized Ohm's law:

$$v = iZ. \tag{1}$$

Impedance of circuit elements

The impedance of each of the three passive circuit elements we've considered thus far are listed, below. Wherever it appears, ω is the angular frequency of the element's voltage and current.

resistor For a resistor with resistance R, the impedance is all real:

capacitor For a capacitor with capacitance C, the impedance is all imaginary:

inductor For an inductor with inductance L, the impedance is all imaginary:

reactance

generalized Ohm's law

These are represented in the complex plane in Fig. imp.1.

Combining the impedance of multiple elements

As with resistance, the impedance of multiple elements may be combined to find an effective impedance.

K elements with impedances Z_j connected in series have equivalent impedance Z_e given by the expression

$$Z_e = \sum_{j=1}^{K} Z_j.$$
 (2)

K elements with impedances Z_j connected in parallel have equivalent impedance Z_e given by the expression

$$Z_e = 1/\sum_{j=1}^{K} 1/Z_j.$$
 (3)

In the special case of two elements with impedances Z_1 and Z_2 ,

Figure imp.1: the impedance of a resistor Z_R , a capacitor Z_C , and an inductor Z_L in the complex plane.

imp Impedance p.1

effective impedance

Example ssan.imp-1

Given the circuit shown with voltage source $V_s(t) = Ae^{j\Phi}$, what is the total impedance at the source?.

re: combining impedance and phasors

ssan.mthd Methodology for impedance-based circuit analysis

It turns out we can follow essentially the same algorithm presented in Lec. can.mthd for analyzing circuits in steady-state with impedance. There are enough variations that we re-present it here.

Let n be the number of passive circuit elements in a circuit, which gives 2n (v and i for each element) unknowns. The method is this.

- 1. Draw a circuit diagram.
- 2. Label the circuit diagram with the sign convention by labeling each element with the "assumed" direction of current flow.
- Write generalized Ohm's law for each circuit element and define the impedance of each element.
- For every node not connected to a voltage source, write Kirchhoff's current law (KCL).
- 5. For each loop not containing a current source, write Kirchhoff's voltage law (KVL).
- 6. You probably have a linear system of 2n algebraic equations (and 2n unknowns) to be solved simultaneously. If only certain variables are of interest, these can be found by eliminating other variables such that the remaining system is smaller. The following steps can facilitate this process.
 - a) Eliminate n (half) of the unknowns by substitution into the elemental equations (generalized Ohm's law equations).
 - b) Try substition to eliminate to get down to only those variables of interest and inputs.
 - c) Solve the remaining system of linear algebraic equations for the unknowns

of interest.

Example ssan.mthd-1

Given the RL circuit shown with current input $I_s(t) = A \sin \omega t$, what are $i_L(t)$ and $v_L(t)$ in steady-state?. Note that this is very similar to Example can.exa-1, but we will use impedance methods.

re: steady-state RL circuit analysis with a sinusoidal source

ssan.div Voltage and current dividers

In Lec. fun.vdiv, we developed the useful voltage divider formula for quickly analyzing how voltage divides among series resistors. This can be considered a special

Figure div.1: the two-element voltage divider.

case of a more general voltage divider equation for any elements described by an impedance. After developing the voltage divider, we also introduce the current divider, which divides an input current among parallel elements.

Voltage dividers

First, we develop the solution for the two-element voltage divider shown in Fig. div.1. We choose the voltage across Z_2 as the output. The analysis can follow our usual methodology of six steps, solving for v_2 .

- 1. The circuit diagram is given in Fig. div.1.
- 2. The assumed directions of positive current flow are given in Fig. div.1.
- 3. The elemental equations are just generalized Ohm's law equations.
- 4. The KCL equation is
- 5. The KVL equation is
- 6. Solve.
 - a) Eliminating i_2 and v_1 from KCL and KVL, our elemental equations become the following.

b) Eliminating i_1 ,

Current dividers

By a similar process, we can analyze a circuit that divides current into n parallel impedance elements.

Example ssan.div-1

Given the circuit shown with voltage source $V_s(t) = Ae^{j\phi}$ and output v_L , what is the ratio of output over input amplitude? What is the phase shift from input to output?

re: voltage divider with impedance

Figure exe.1: Circuits for Exercise ssan..

ssan.exe Exercises for Chapter ssan

Exercise ssan.ungoopably

Convert the following to trigonametric form:

a.
$$jA(e^{-j\omega t} - e^{j\omega t})$$

b. $A(e^{(j\omega - \frac{1}{\tau})t} + e^{(-j\omega - \frac{1}{\tau})t})$

Exercise ssan.overexplication

Convert the following to phasor form:

a. $A\sin(\omega t + \phi)$

- b. $Ae^{\frac{-t}{\tau}}\sin\omega t$
- c. A $(\cos \omega t j \sin \omega t)$

Exercise ssan.empetheticism

Find the combined effective impedance of the circuits shown in Fig. exe.1. Write your answer in rectangular form.

Exercise ssan.roup

For the RC circuit diagram below, perform a circuit analysis to solve for the steady state voltage $v_o(t)$ if $V_S(t) = A \sin \omega t$, where $A \in \mathbb{R}$ is a given amplitude and $\omega \in \mathbb{R}$ is a given angular frequency. Use a sine phasor in the problem. Write your answer as a single sine phasor in polar form. Evaluate your answer for the following two sets of parameters.

$$A = 2,5 V$$

 $\omega = 10 \times 10^3, 20 \times 10^3 \text{ rad/s}$
 $R = 100, 1000 \Omega$
 $C = 100, 10 \text{ nF.}$

The first set should yield $v_o = 1.99e^{-j0.0997}$.

Exercise ssan.vestmental

For the circuit diagram below, perform a complete circuit analysis to solve for the steady state voltage $v_o(t)$ if $V_s(t) = A \sin \omega t$, where $A \in \mathbb{R}$ is a given amplitude and $\omega \in \mathbb{R}$ is a given angular frequency. Use a sine phasor in the problem. Write your answer as a single sine phasor in polar form. Evaluate your answer for the following two sets of parameters.

A = 3,8 V

$$\omega = 30 \times 10^3, 60 \times 10^3 \text{ rad/s}$$

R₁ = 100, 1000 Ω
R₂ = 1000, 100 Ω
L = 10, 100 mH.

The first set should yield $v_o = 2.61e^{j0.294}$.

Exercise ssan.beluga

For the circuit diagram below, solve for the steady state voltage $v_o(t)$ if $V_s(t) = Ae^{j\phi}$, where $A \in \mathbb{R}$ is a given input amplitude and $\phi \in \mathbb{R}$ is a given input phase. Write your answer as a single phasor in polar form (you may use intermediate variables in this final form as long as they're clearly stated).

Exercise ssan.overparticular

For the circuit diagram below, solve for the steady state output voltage $v_o(t)$ if $V_S(t) = A \cos(\omega t)$. Do write V_S and the impedance of each element in phasor/polar form. Do not substitute V_S or the impedance of each element into your expression for $v_o(t)$. Recommendation: use a divider rule.

Exercise ssan.radiomicrometer

For the circuit diagram below, solve for the steady state output voltage $v_o(t)$ if $V_s(t) = 3 \sin(10t)$. Use a sine phasor in the problem. Write your answer as a single sine phasor in polar form. Evaluate your answer for the following two sets of parameters.

$$\begin{split} R &= 10, 10^6 \ \Omega \\ L &= 500, 50 \ mH \\ C &= 100, 10 \ \mu F. \end{split}$$

The first set should yield $v_o = 3.01e^{-j0.0100}$.

Exercise ssan.melodic

For the circuit diagram below, solve for $v_o(t)$ if $V_s(t) = A \sin \omega t$, where A = 2 V is the given amplitude and $\omega \in \mathbb{R}$ is a given angular frequency. Let $R = 50 \Omega$, L = 50 mH, and C = 200 nF. Find the steady-state ratio of the output amplitude to the input amplitude A for $\omega = \{5000, 10000, 50000\}$ rad/s. Plot the steady-state ratio as a function of ω in MATLAB, Python, or Mathematica. This circuit is called a low-pass filter—explain why this makes sense. Note that using impedance methods for steady state analysis makes this problem much easier than the transient analysis of this circuit in Exercise can..

low-pass filter

Exercise ssan.entitatively

For the circuit diagram below, perform a circuit -/20 p. analysis to solve for the steady state voltage $v_o(t)$ if $I_s = Ae^{j0}$, where A > 0 is a given amplitude. Identify all impedance values in the circuit, but express your answer in terms of impedances (i.e. don't substitute for them in your final expression).

nInmul

Nonlinear and multiport circuit elements

Thus far, we have considered only one-port, linear circuit elements. One-port elements have two terminals. Linear elements have voltage-current relationships that can be described by linear algebraic or differential equations. multi-port Multi-port elements are those that have more than one port. In this chapter, we will consider several multi-port elements: transformers (two-port), transistors (two-port), and opamps (four-port). nonlinear element Nonlinear elements have voltage-current relationships that cannot be described by a linear algebraic or differential equations. The convenient impedance methods of Chapter ssan apply only to linear circuits, so we must return to the differential equation-based analysis of Chapter can. In this chapter, we will consider several nonlinear circuits containing three different classes of nonlinear elements: diodes, transistors, and opamps. A great number of the most useful circuits today include multi-port and nonlinear elements. Tasks such as ac-dc conversion, switching, amplification, and isolation require these elements. We explore only the fundamentals of each element considered and present basic analytic techniques, but further exploration in Horowitz and Hill,¹ Agarwal and Lang,² and Ulaby, Maharbiz and Furse³ is encouraged. 2018.

1. Horowitz and Hill, The Art of Electronics.

2. A. Agarwal and J. Lang. Foundations of Analog and Digital Electronic Circuits. The Morgan Kaufmann Series in Computer Architecture and Design. Elsevier Science, 2005. ISBN: 9780080506814.

3. Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse. Circuit Analysis and Design. ISBN 978-1-60785-484-5. Michigan Publishing,

nInmul.tx Transformers

Electrical transformers are two-port linear elements that consist of two tightly coupled coils of wire. Due to the coils' magnetic field interaction, time-varying current through one side induces a current in the other (and vice-versa).

Let the terminals

on the primary (source) side have label "1" and those on the secondary (load) side have label "2," as shown in Fig. tx.1. These devices are very efficient, so we often assume no power loss. With

this assumption, the power

Figure tx.1: circuit symbol for a transformer with a core. Those with "air cores" are denoted with a lack of vertical lines.

into the transformer must sum to zero, giving us one voltage-current relationship:

Note that with two ports, we need two elemental equations to fully describe the voltage-current relationships. Another equation can be found from the magnetic field interaction. Let N₁ and N₂ be the number of turns per coil on each side and $N \equiv N_2/N_1$. Then

These two equations can be combined to form the following elemental equations.

Definition nlnmul.1: transformer elemental equations

$$v_2 = Nv_1 \qquad \qquad i_2 = -\frac{1}{N}i_1$$

So we can step-down voltage if N < 1. This is better, in some cases, than the voltage divider because it does not dissipate much energy. However, transformers can be bulkier and somewhat nonlinear; moreover, they only work for ac signals. Note that when we step-down voltage, we step-up current due to our power conservation assumption. If N > 1 we can step-up voltage. Voltage

dividers cannot do this! It is not amplification, however, because power is conserved—we simultaneously step-down current. So with a transformer, we can freely trade ac voltage and current.

Example ninmul.tx-1

step-down

step-up

re: transformers and impedance

dio Diodes p.1

nlnmul.dio Diodes

Diodes are single-port nonlinear elements that, approximately, conduct current in only one direction. We will consider the ubiquitous semiconductor diode, varieties of which include the light-emitting diode (LED), photodiode (for light sensing), Schottky diode (for fast switching), and Zener diode (for voltage regulation). See Fig. dio.1 for corresponding circuit symbols.

In most cases, we use the diode to conduct current in one direction and block reverse current.⁴ When conducting current in its forward direction, it is said to have forward-bias; when blocking current flow in its reverse direction, it is said to have reverse-bias. If the reverse breakdown voltage is reached, current will flow in the reverse direction. It is important to check that a circuit design does not subject a diode to its breakdown voltage, except in special cases (e.g. when using a Zener diode). We begin with a nonlinear model of the voltage-current v_D -i_D relationship. Let

- I_s be the saturation current (typically $^{10^{-12}}$ A) and
- V_{TH} = k_bT/e be the thermal voltage (at room temperature ~25 mV) with⁵
 - k_b the Boltzmann constant,
 - *e* the fundamental charge, and
 - T the diode temperature.

Figure dio.1: diode symbols. From left to right, the generic symbol, LED, photodiode, Schottky, Zener.

semiconductor diode

light–emitting diode (LED) photodiode Schottky diode Zener diode

4. The paradigmatic exception is the Zener diode, which is typically used in reverse bias in order to take advantage of its highly stable reverse bias voltage over a large range of reverse current. We will not consider this application here.

forward–bias reverse–bias breakdown voltage

5. Unless otherwise specified, it is usually reasonable to assume room-temperature operation.

Figure dio.2: the voltage-current relationship in the nonlinear and piecewise linear models. In the figure, $R_d = 0.1 \ \Omega$.

Equation 1 nonlinear diode model

See Fig. dio.2 for a plot of this function. One can analyze circuits with diodes using the methods of Chapter can and Eq. 1 as the diode's elemental equation. A nonlinear set of equations results, which typically require numerical solution techniques.

A piecewise linear model

An

ideal diode is one that is a perfect insulator (open circuit, $i_D = 0$) for $v_D < 0$ conductor for $v_D > 0$. We use the symbol shown

that this is a nonstandard use of that this is a nonstandard use of this symbol.

Figure dio.3:

symbol for an ideal diode. Note

diode. At times, the ideal diode is sufficient to

model a diode; often, however, we prefer a

more accurate model that is piecewise linear.

The piecewise linear model is shown in Fig. dio.4. It includes an ideal diode in series with

a fixed voltage drop of

0.6 V and a resistor with

circuit

Figure dio.4: piecewise linear model.

resistance R_d . This approximates the nonlinear model with two linear approximations.

piecewise linear model

ideal diode

Equation 2 piecewise linear diode model

See Fig. dio.2 for a plot of this function and a comparison to the nonlinear model. The slope in forward-bias is $1/R_d$. This model's effectiveness is highly dependant on R_d , so an operating point must be chosen and R_d chosen to match most closely with the nonlinear model near that operating point.

operating point

Method of assumed states

The method of assumed states is a method for using linear circuit analysis to analyze circuits with nonlinear components. The method is summarized in the following steps.

- 1. Begin at the initial time t = 0.
- 2. Replace each diode in the circuit diagram with the piecewise linear diode model.
- Proceed with the circuit analysis of Chapter can, ignoring the elemental equations for the ideal diodes D_i. Your system of equations will have unknown ideal diode current i_{Di} and voltage v_{Di}. Simplify it to the extent possible.
- Guess the current state of each ideal diode: ON or OFF. For each ideal diode D_i guessed to be ON,

set $v_{D_i} = 0$ and assume that $i_{D_i} > 0$.

For each ideal diode assumed to be OFF,

set $i_{D_i} = 0$ and assume that $v_{D_i} < 0$.

method of assumed states

For n diodes in the circuit, there are 2ⁿ possibilities at each moment in time. Guess just one to start.

- 5. If even one diode violates its assumption from above, dismiss the results and return to step 4 and choose a different combination of assumed states (consider flipping the assumptions on those diodes that violated the old assumptions).
- If not even one diode violates its assumptions, this is the correct solution for this moment in time.
- 7. This solution is valid for as long as its assumptions are valid. Once they fail, go back to step 4.

Since impedance methods are valid only for linear circuits, steady-state analyses should proceed with the same process outlined above. With a periodic input, a periodic (steady) solution may emerge.

Example nlnmul.dio-1

Given the circuit shown with voltage source $V_s(t) = 3\cos 2\pi t$, what is the output v_R ? Explain why this might be called a "halfwave rectifier." Let $R = 10 \Omega$.

re: half wave rectifier

An algorithm for determining $R_{\rm d}$

The piecewise linear approximation of the exponential diode current will never be great, but we can at least try to choose R_d in a somewhat optimal way, recognizing that when highly accurate results are required, there's no substitute for the nonlinear model. Consider the algorithm of Fig. dio.6. Initially set

Figure dio.5: the input and output voltage of the half-wave rectifier circuit of Example nlnmul.dio-1. Note that the "on" diode subcircuit is valid for $i_D > 0$ and the "off" diode circuit is valid for $i_D < 0$.

Figure dio.6: an algorithm for determining R_{d_i} .

to zero the diode resistances R_{d_i} of each resistor. Solve for each diode current $i_{D_i}(t)$, then use this to find $v_{D_i}(t)$ from the nonlinear model of Eq. 1:

$$v_{D_i}(t) = V_{TH} \ln(i_{D_i}(t)/I_s + 1).$$
 (5)

Now take the means of these signals (assuming steady state oscillation) over a period T, excluding the time T_0 during which the diode voltage was in reverse-bias:⁶

$$\bar{i}_{D_{i}} = \frac{1}{T - T_{0}} \int_{t_{0}}^{t_{0} + T} i_{D_{i}}(\tau) d\tau \qquad (6a)$$
$$\bar{\nu}_{D_{i}} = \frac{1}{T - T_{0}} \int_{t_{0}}^{t_{0} + T} \nu_{D_{i}}(\tau) d\tau. \qquad (6b)$$

Now us the piecewise linear model of $\ref{eq:result}$ to estimate R_{d_i} :

$$R_{d_i} = \frac{\overline{\nu}_{D_i} - 0.6V}{\overline{i}_{D_i}}.$$
 (7)

We can use this estimate of R_{d_i} to re-analyze the circuit and repeat the same process of deriving a new estimate of R_{d_i} . This process should converge on an estimate of R_{d_i} that is in some sense optimal.

6. Note that if T_0 is ignored, our estimate of R_d will include the effects of time during which no current is flowing and the diode is in reverse-bias, during which time R_d is not applicable.

Note that if, during this iterative process, one finds $\bar{\nu}_{D_i} < 0.6 \text{ V}$, a negative R_d will result. At this point, a couple different reasonable approaches can be taken:

- 1. just use $R_{d_i} = 0$ or
- 2. use some reasonably central value of $\overline{\nu}_{D_i} > 0.6$ V.

The second case is preferred if $v_{D_i}(t)$ spends much time above 0.6 V. But usually, if it spends much time, the mean \overline{v}_{D_i} should be great enough to avoid this situation. Circuits that tend to express this behavior are those with high impedance and correspondingly low currents.

nInmul.fet MOSFETs

A metal–oxide–semiconductor field-effect transistor (MOSFET) is a two-port, nonlinear circuit element that lies at the heart of digital electronics, with sometimes millions integrated into a single microprocessor. They are the dominant type of transistor, a class of elements that includes the bipolar junction transistor (BJT).

MOSFETs are not just common in integrated circuits made of silicon, they are also available as discrete elements, which is the form most often encountered by the mechatronicist. There are two primary types of MOSFET: the n-channel and the p-channel, determined by the type of semiconductor doping (negative or positive) used in the manufacturing process. These types are "opposites," so we choose to focus on n-channel, here.

Fig. fet.1 displays the circuit diagram symbol for the MOSFET. There are three⁷ terminals: the gate G, drain D, and source S. The current flowing from one terminal to another is labeled with

consecutive subscripts; for instance, the current flowing from drain to source is i_{DS} . Similarly, the voltage drop across two terminals is labeled with concurrent subscripts; for instance, the voltage drop from gate to source is v_{GS} . The input-output characteristics of the MOSFET are quite complex, but we may, in the first approximation, consider it to be like a switch. In this model, called the S-model, if the gate voltage v_{GS} is less than the threshold voltage V_T (typically around 0.7 V), the D and S terminals are disconnected (open) from each other (OFF mode). But when $v_{GS} > V_T$, D and S are connected via a short and current i_{DS} can flow

transistor

bipolar junction transistor (BJT)

n-channel MOSFET p-channel MOSFET

7. Note that if we consider the gate-side to be the input with $i_{GS} = 0$ and ν_{GS} and the drain-source-side to be the output with i_{DS} and ν_{DS} , the MOSFET can be seen to be two-port.

gate G drain D source S

switch S–model threshold voltage

circuit symbol for a n-channel

MOSFEŤ.

(ON mode).

The input-output characteristics of a MOSFET are actually much more complex than the S-model captures. The S-model can build intuition and suffice for digital logic circuit analysis. However, we are here mostly concerned with analog circuit models. Specifically, we mechatronicists use MOSFETs to drive power-hungry loads (e.g. motors) with high-power sources controlled by low-power microcontrollers. We now turn to a general model, after which we consider a method of analyzing MOSFET circuits.

The switch unified (SU) model

The switch unified (SU) model is reasonably accurate at describing actual MOSFET input-output characteristics. However, it is quite nonlinear, and therefore can give us headaches during analysis. As usual, we are concerned with the element's voltage-current relationships.

Definition nlnmul.2: switch unified model

Let K be a constant parameter of the MOSFET with units A/V^2 . K can be found from parameters of a given MOSFET. The current into the gate is zero: $i_G = 0$. The current from drain to source is controlled by the two voltage variables v_{GS} and v_{DS} , as shown.

$$i_{DS} = \begin{cases} 0 & \text{for } \nu_{GS} < V_T \\ K\left((\nu_{GS} - V_T)\nu_{DS} - \nu_{DS}^2/2\right) & \text{for } \nu_{GS} \geqslant V_T \text{ and } \nu_{DS} < \nu_{GS} - V_T \\ \frac{K}{2}(\nu_{GS} - V_T)^2 & \text{for } \nu_{GS} \geqslant V_T \text{ and } \nu_{DS} \geqslant \nu_{GS} - V_T \end{cases}$$

So, as in the S-model, the gate voltage v_{GS} must exceed the threshold voltage V_T for current to flow. The interval below the threshold is called the cutoff region (OFF). Note, however, that current doesn't just flow freely, as it would with the short of the S-model. In fact, two distinct

cutoff region

colon reg

switch unified (SU) model

ON ($v_{GS} > V_T$) intervals emerge. In both, the current i_{DS} depends on v_{GS} . In the triode region, $v_{DS} < v_{GS} - V_T$, i_{DS} also depends on v_{DS} . However, in the saturation region, $v_{DS} > v_{GS} - V_T$, i_{DS} is independent of v_{DS} and can be controlled by v_{GS} , alone. Note that in saturation, the MOSFET behaves like a current source controlled by v_{GS} . A source controlled by a variable in the circuit is called a dependent source. This behavior as a dependent current source (that can also be turned off) is the most valuable for us. The switch current source (SCS) model is actually just a recognition of this behavior and an elimination of the triode region from consideration. This is a reasonable assumption if we can guarantee operation in cutoff or saturation only. Given the piecewise MOSFET models, we can

again use the method of assumed states for MOSFET circuit analysis. Note however that only the S-model is piecewise linear and that the SU- and SCS-models are piecewise nonlinear. We can handle some relatively simple nonlinear cases analytically, but require either linearization or numerical assistance for more complex circuit analyses.

triode region

saturation region

dependent source

switch current source (SCS) model

method of assumed states

Example nlnmul.fet-1

Given the circuit shown, solve for the voltage across the load R_L for varying V_g given the following conditions: saturation of the MOSFET, $R_L = 1$ $k\Omega$, $K = 0.5 \text{ mA/V}^2$, $V_T = 0.7 \text{ V}$, $V_s = 10$ V.

re: transformers and impedance

Figure fet.2: the load voltage as a function of gate voltage for Example nInmul.fet-1.

Operational amplifiers nlnmul.op

The operational amplifier (opamp) is the queen of analog electronic components. The opamp is a four-port nonlinear voltage-controlled voltage source, but it's so much more. Here are a few applications from the opamp highlight reel: summing two signals, subtracting two signals, amplifying a signal, integrating a signal, differentiating a signal, filtering a signal, isolating two subcircuits, generating periodic functions (e.g. sinusoids and square waves), and analog feedback control. Although they are nonlinear, in most applications a linear approximation is sufficiently accurate. Fig. op.1 shows the circuit symbol for the opamp. Three v_0 terminals are displayed: inverting input (-) inverting input (-) The inverting Figure op.1: input is labeled circuit symbol for an opamp.

with the "-" symbol.

non-inverting input (+)

The non-inverting input is labeled with the "+" symbol.

output The output extends from the tip of the symbol, opposite the inputs.

These comprise an input and an output port. However, there are two power supply ports that are typically suppressed in the circuit diagram. These two power supply ports are from a differential power supply differential supply, which has a positive terminal (e.g. +12 V), symmetrically negative terminal (e.g. -12 V), and a common ground. The supply provides the opamp with external power, making it an active element. When an opamp is operating in its linear mode, it outputs a voltage v_0 that is A times the

operational amplifier

non-inverting input (+)

output

active element

difference between its inputs v_+ and v_- . The open-loop gain A is different for every opamp, but is usually greater than 10⁵. Let's formalize this model.

Definition nlnmul.3: opamp model

An opamp's input terminals + and - draw zero current (i.e. have infinite input impedance). Let A be a positive real number. The output voltage v_o is given by

$$\mathbf{v}_{\mathbf{o}} = \mathbf{A}(\mathbf{v}_{+} - \mathbf{v}_{-}).$$

The output terminal has zero impedance.

Note that this model is equivalent to a dependent voltage source controlled by the input voltage difference. In fact, it is also linearly dependent, so linear circuit analysis techniques can be applied.⁸ The model is fairly accurate as long as $|v_o|$ is less than the maximum power source voltage. Due to the high open-loop gain, the difference in input gain is highly restrictive for linear operation. This turns out not to be difficult to achieve, but does lead to a convenient approximation during analysis that applies most of the time:

$$v_+ \approx v_-$$
 (1)

because other voltages in the circuit are typically much larger than the input voltage difference. We cannot, however, make this assumption unless (1) the opamp is operating in linear mode and (2) the opamp is part of a circuit that connects its output—via a wire or circuit elements—back to its inverting input (–). This second condition is called negative feedback and is used in most opamp circuits for several reasons, the most important of which is that Eq. 1 holds due to the virtual guarantee of linear operation in this case.

open-loop gain A

dependent voltage source

8. Note that, while the transistor can be considered a nonlinear dependent current source, the opamp can be considered a linear dependent voltage source. However, we can easily adapt an opamp circuit to behave as a linear dependent current source, so typically the opamp is still preferred.

negative feedback

op Operational amplifiers p.1

Negative feedback

We can think of negative feedback as continuously adjusting the output such that Eq. 1 is approximately true.⁹ Consider the feedback of v_0 to the inverting input (called unity feedback), as shown in Fig. op.2(a), such that the output equation can be transformed as follows:

9. Negative feedback is considered in detail in courses on control theory. The opamp was used extensively for feedback control until low-cost, high-performance digital microcontrollers became available. Opampbased feedback control is now called analog feedback control, which still has certain applications.

unity feedback

Since $A \gg 1$, $v_o \approx v_i$. In other words, for negative unity feedback, v_o follows v_i . For this reason, this particular opamp circuit is called a voltage follower. Let's consider negative feedback's effect on the difference in input voltage:

This is equivalent to Eq. 1. That is, for negative feedback, the input voltages are nearly equal: $v_+ \approx v_-$. This is control theory—this is how we make a system behave the way we want! In this instance, the loop gain—the effective gain from v_i to v_o —is one. This same principle applies when elements such as resistors and capacitors are placed in the feedback path. The resulting loop gain can be nonunity and respond dynamically to the signal.

Non-inverting opamp circuit

The non-inverting opamp circuit is shown in Fig. op.2(b). Let's analyze the circuit to find

voltage follower

.

loop gain

non-inverting opamp circuit

(a) negative unity feedback controlling the voltage across an element ${\sf Z}.$

Figure op.2: two opamp circuits.

 $\nu_o(\nu_i).$ We begin with the KVL expression for ν_o in terms of ν_{R_1} and $\nu_{R_2}:$

Let's use Ohm's law to write:

The KCL equation for the node between R_1 and $R_2\ {\rm gives}$

We can write another equation for v_0 from the opamp:

We have an expression for i_{R_2} that can eliminate v_{R_2} with a little Ohm's law action:

If $A \gg (R_1 + R_2)/R_2$, the denominator of this expression goes to 1 and we have the loop gain approximately

This gives the following input-output equation for the circuit.

Equation 2 non-inverting opamp circuit i/o equation

It is highly significant that Eq. 2 doesn't depend on A, which can be quite variable. Rather, it depends on the resistances R_1 and R_2 , only—and these are very reliable. As long as the condition

$$A \gg \frac{R_1 + R_2}{R_2} \tag{3}$$

is satisfied, Eq. 2 is valid.

This independence of the input-output relationship on the open-loop gain A is very common for opamp circuits. We have essentially traded gain for better linearity and gain invariance. It can be shown that this is equivalent to the assumption that $v_+ \approx v_-$. Making this assumption earlier in the analysis can simplify the process. Note that we do not use the assumption for the opamp equation $v_0 = A(v_+ - v_-)$, for this would imply $v_0 = 0$. Instead, in the previous analysis, we could immediately assume that $v_{R_2} = v_i$ and proceed in a similar fashion.

nInmul.exe Exercises for Chapter nInmul

Exercise nInmul.rhinoceros

Write a one- or two-sentence response to each of the following questions and imperatives. The use of equations is acceptable when they appear in a sentence. Don't quote me (use your own words, other than technical terminology).

- (a) Write the equivalent impedance of a resistor R and an inductor L in series.Express the result in rectangular and polar (phasor) form.
- (b) How do you find the Norton equivalent resistance?
- (c) Explain how a diode operates in forward-bias.
- (d) In a MOSFET, how much current will flow from the drain D to the source S when the gate-source voltage is 0.3 V? Succinctly explain/justify.

Exercise nInmul.flamingo

Write a one- or two-sentence response to each of the following questions and imperatives. The use of equations is acceptable when they appear in a sentence. Don't quote me (use your own words, other than technical terminology).

- (a) Describe a couple differences between MOSFETs and opamps.
- (b) If a DC source is connected to a circuit in steady state, describe how an inductor in the circuit will be operating.
- (c) If a transformer increases an AC signal's voltage by a factor of 119, what happens to the signal's current?
- (d) How do we determine the diode resistance for the piecewise linear model of a diode?

Figure exe.1: circuit diagram for Exercise nlnmul. and Exercise nlnmul..

Exercise nInmul.astringent

Write a one- or two-sentence response to each of the following questions and imperatives. The use of equations is acceptable when they appear in a sentence. Don't quote me (use your own words, other than technical terminology).

- (a) If the current through an inductor is suddenly switched off, what happens?
- (b) Let the output voltage of a resistor circuit be 5 V and the equivalent resistance 500 Ω. What is the Thevenin equivalent circuit?
- (c) In the preceding part of this question, what is the Norton equivalent?
- (d) When can we use impedance analysis?

Exercise nInmul.prolongate

For the circuit diagram of Fig. exe.1, solve for $v_o(t)$ if $V_s(t) = A \cos \omega t$. Let $N = n_2/n_1$, where n_1 and n_2 are the number of turns in each coil, 1 and 2, respectively. Also let $i_L(0) = 0$ be the initial condition.

Exercise nlnmul.synopses

Re-do Exercise nlnmul., but only consider the steady-state response. Use impedance methods!

Exercise nlnmul.horklump

Calculate the current through a diode using the ideal model under the following conditions,

 $v_{\rm D} = 5, 8, -3 \text{ V}$ T = 38, 21, 28 °C.

The diode can be assumed to have a saturation current of $I_s = 10^{-12}$ A. You may find the following helpful,

- Boltzmann constant: $1.381 \times 10^{-23} \ \frac{\mathrm{m^2 kg}}{\mathrm{s^2 K}}$, and
- fundamental charge: 1.602×10^{-19} C.

Exercise nlnmul.spartanism

When considering the steady state of circuits with only DC sources, all voltages and currents are constant and all diodes are in constant states (each is ON or OFF). The methods of Lec. nlnmul.dio still apply, of course, but we needn't be concerned with a time evolution. Consider the circuits of Fig. exe.2. For each circuit, solve for the voltage across the 5 k Ω resistor. Treat each diode as an ideal diode.

Exercise nInmul.outsmart

Repeat Exercise nlnmul., but use the piecewise linear model of each diode.

Exercise nlnmul.combmaker

A diode clipping circuit is one that "clips" the tops and or bottoms of a signal. These circuits can be used to set a maximum or minimum voltage for a signal. Consider the diode clipping circuit of Fig. exe.3. Source V₁ effectively adjusts the maximum possible load voltage v_{R_L} , and V₂ the minimum. Let V_S(t) = 10 cos 4 π t, V₁ = 5 V, V₂ = -3 V, and R_s = R_L = 50 Ω . Solve for v_{R_L} (t). Use the ideal diode model.

diode clipping circuit

Figure exe.2: diode circuits for Exercise nlnmul..

Figure exe.3: a diode clipping circuit for Exercise nlnmul..

Exercise nInmul.cloisteral

Repeat Exercise nlnmul., but use the piecewise linear model of each diode.

Figure exe.4: circuit diagram for Exercise nlnmul...

Exercise nInmul.diaspora

For the circuit diagram of Fig. exe.4, solve for $v_o(t)$ if $V_s(t) = A$ for some given A > 0.6 V. Let $v_C(t)|_{t=0} = 0$ V be the initial condition. Use a piecewise linear model for the diode with some $R_d \in \mathbb{R}_{\geq 0}$. Do not estimate R_d .

Exercise nlnmul.porosity

For the circuit shown in Fig. exe.5, determine the voltage across the load v_{R_L} in terms of parameters and the gate voltage source voltage V_g and V_s . The parameters of the MOSFET are K and V_T . Assume MOSFET saturation operation.

Figure exe.5: circuit for Exercise nlnmul..

Exercise nInmul.overbroil

The opamp circuit of Fig. exe.6 is used as a voltage-controlled current source for the load R_L. Show that it behaves as a current source with current i_{R_L} controlled by voltage source v_i . Use two separate methods: (a) assuming $v_+ \approx v_-$ and (b) not assuming $v_+ \approx v_-$, rather, assuming the open loop gain of the opamp A is

large. Comment on the differences between the methods of (a) and (b).

Figure exe.6: circuit for Exercise nInmul..

Exercise nInmul.polynucleate

Use the circuit diagram of Fig. exe.7 to answer the questions below. Use the sign convention from the diagram. Let $v_i = A \cos \omega t$ be an ac input voltage. The load Z_L impedance is not given.

- (a) Write the elemental equations in terms of Z_{R_1} , Z_{R_2} , Z_{R_s} and Z_L (the impedances of the components).
- (b) Write the KCL and KVL equations.
- (c) Solve for the steady-state $v_o(t)$ without inserting the values of the impedances (that is, leave it in terms of Z_{R_1} , Z_{R_2} , Z_{R_s} and Z_L).

Figure exe.7: circuit for Exercise nlnmul..

Exercise nInmul.lush

Consider the circuit in Fig. exe.8. Solve for $v_o(t)$ for input voltage $v_i(t) = 5$ V, a sine wave of $v_i(t) = 5 \sin 25t$, and a sine wave of $v_i(t) = 5 \sin 2525t$. Let $R_1 = 50 \Omega$, $R_2 = 10 k\Omega$, $C = 10 \mu$ F, and the opamp open-loop gain be $A = 10^5$. Let the initial condition be $v_C(t) = 0$ V. In each case, plot the solution to show the transient response until it reaches steady-state.

Figure exe.8: opamp circuit for Exercise nlnmul.

Exercise nlnmul.hogwash

Consider the circuit in Fig. exe.9. Solve for $v_o(t)$ for a known input voltage $v_i(t)$.

Figure exe.9: opamp circuit for Exercise nlnmul.

Exercise nInmul.virtue

In each of the figures of Fig. exe.10, solve for the voltage v_{100} across the 100 Ω resistor. Use the assumptions in the associated caption. Clearly justify each response.

Figure exe.10: circuits for Exercise nlnmul..

Exercise nlnmul.nonabstract

Consider the circuit below with input voltage sources V_S and V_g. Determine V_g such that the load voltage $v_{R_L} = 10$ V. Let $R_L = 2$ k Ω , K = 0.5 mA/V², $V_T = 0.7$ V, $V_s = 20$ V.

_/20 p.

Exercise nInmul.ear

Consider the circuit below with input voltage source $V_S(t) = A$ where A > 0 is a known (but unspecified) constant. Perform a circuit analysis to solve for $v_o(t)$ for the initial condition $v_C(0) = 0$. Hint: it is easier if you realize the opamp output voltage is effectively an ideal voltage source (so it does not depend on v_{R_3} and v_C) and you can therefore treat the two parts of the circuit separately.

Algebra and trigonometry reference

algtri.quad Quadratic forms

The solution to equations of the form $ax^2 + bx + c = 0$ is

$$\mathbf{x} = \frac{-\mathbf{b} \pm \sqrt{\mathbf{b}^2 - 4\mathbf{a}\mathbf{c}}}{2\mathbf{a}}.$$
 (1)

Completing the square

This is accomplished by re-writing the quadratic formula in the form of the left-hand-side (LHS) of this equality, which describes factorization

$$x^{2} + 2xh + h^{2} = (x + h)^{2}.$$
 (2)

algtri.trig Trigonometry

Triangle identities

With reference to the below figure, the law of sines is

$$\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c} \tag{1}$$

and the law of cosines is

$$c^2 = a^2 + b^2 - 2ab\cos\gamma \qquad (2a)$$

$$b^2 = a^2 + c^2 - 2ac \cos \beta \tag{2b}$$

$$a^2 = c^2 + b^2 - 2cb\cos\alpha \qquad (2c)$$

Reciprocal identities

$$\csc u = \frac{1}{\sin u} \tag{3a}$$

$$\sec u = \frac{1}{\cos u}$$
 (3b)

$$\cot u = \frac{1}{\tan u} \tag{3c}$$

Pythagorean identities

$$1 = \sin^2 u + \cos^2 u \tag{4a}$$

$$\sec^2 \mathfrak{u} = 1 + \tan^2 \mathfrak{u} \tag{4b}$$

$$\csc^2 \mathfrak{u} = 1 + \cot^2 \mathfrak{u} \tag{4c}$$

Co-function identities

$$\sin\left(\frac{\pi}{2} - \mathbf{u}\right) = \cos \mathbf{u} \tag{5a}$$

$$\cos\left(\frac{\pi}{2} - \mathbf{u}\right) = \sin \mathbf{u} \tag{5b}$$

$$\tan\left(\frac{\pi}{2} - u\right) = \cot u \tag{5c}$$
$$\csc\left(\frac{\pi}{2} - u\right) = \sec u \tag{5d}$$

$$\sec\left(\frac{\pi}{2} - \mathbf{u}\right) = \csc \mathbf{u}$$
 (5e)

$$\cot\left(\frac{\pi}{2} - \mathbf{u}\right) = \tan\mathbf{u} \tag{5f}$$

Even-odd identities

$$\sin(-\mathfrak{u}) = -\sin\mathfrak{u} \tag{6a}$$

$$\cos(-\mathfrak{u}) = \cos\mathfrak{u} \tag{6b}$$

$$\tan(-\mathbf{u}) = -\tan\mathbf{u} \tag{6c}$$

Sum-difference formulas (AM or lock-in)

$$\sin(\mathbf{u} \pm \mathbf{v}) = \sin \mathbf{u} \cos \mathbf{v} \pm \cos \mathbf{u} \sin \mathbf{v} \tag{7a}$$

$$\cos(u \pm v) = \cos u \cos v \mp \sin u \sin v \tag{7b}$$

$$\tan(u \pm v) = \frac{\tan u \pm \tan v}{1 \mp \tan u \tan v}$$
(7c)

Double angle formulas

$$\sin(2u) = 2\sin u \cos u \tag{8a}$$

$$\cos(2\mathfrak{u}) = \cos^2\mathfrak{u} - \sin^2\mathfrak{u} \tag{8b}$$

$$= 2\cos^2 u - 1 \tag{8c}$$

$$= 1 - 2\sin^2 u \tag{8d}$$

$$\tan(2\mathfrak{u}) = \frac{2\tan\mathfrak{u}}{1-\tan^2\mathfrak{u}} \tag{8e}$$

Power-reducing or half-angle formulas

$$\sin^2 \mathfrak{u} = \frac{1 - \cos(2\mathfrak{u})}{2} \tag{9a}$$

$$\cos^2 u = \frac{1 + \cos(2u)}{2}$$
 (9b)

$$\tan^{2} u = \frac{1 - \cos(2u)}{1 + \cos(2u)}$$
(9c)

Sum-to-product formulas

$$\sin u + \sin v = 2\sin \frac{u+v}{2}\cos \frac{u-v}{2} \qquad (10a)$$

$$\sin u - \sin v = 2\cos \frac{u+v}{2}\sin \frac{u-v}{2} \qquad (10b)$$

$$\cos u + \cos v = 2\cos \frac{u+v}{2}\cos \frac{u-v}{2}$$
(10c)
$$\cos u - \cos v = -2\sin \frac{u+v}{2}\sin \frac{u-v}{2}$$
(10d)

$$\cos u - \cos v = -2\sin \frac{1}{2}\sin \frac{1}{2}$$
 (10)

Product-to-sum formulas

$$\sin u \sin v = \frac{1}{2} \left[\cos(u - v) - \cos(u + v) \right] \quad (11a)$$

$$\cos u \cos v = \frac{1}{2} \left[\cos(u - v) + \cos(u + v) \right] \quad (11b)$$

$$\sin u \cos v = \frac{1}{2} [\sin(u + v) + \sin(u - v)]$$
 (11c)

$$\cos u \sin v = \frac{1}{2} \left[\sin(u+v) - \sin(u-v) \right] \quad (11d)$$

Two-to-one formulas

$$A \sin u + B \cos u = C \sin(u + \phi)$$
(12a)
$$= C \cos(u + \psi) \text{ where } (12b)$$
$$C = \sqrt{A^2 + B^2}$$
(12c)
$$\phi = \arctan \frac{B}{A}$$
(12d)
$$\psi = -\arctan \frac{A}{B}$$
(12e)

algtri.matrix Matrix inverses

This is a guide to inverting $1\times 1, 2\times 2,$ and $n\times n$ matrices.

Let A be the 1×1 matrix

$$A = \left[\mathfrak{a} \right].$$

The inverse is simply the reciprocal:

$$A^{-1} = \left[1/\alpha\right].$$

Let B be the 2×2 matrix

$$B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}.$$

It can be shown that the inverse follows a simple pattern:

$$B^{-1} = \frac{1}{\det B} \begin{bmatrix} b_{22} & -b_{12} \\ -b_{21} & b_{11} \end{bmatrix}$$
$$= \frac{1}{b_{11}b_{22} - b_{12}b_{21}} \begin{bmatrix} b_{22} & -b_{12} \\ -b_{21} & b_{11} \end{bmatrix}$$

Let C be an $n \times n$ matrix. It can be shown that its inverse is

$$C^{-1} = \frac{1}{\det C} \operatorname{adj} C,$$

where adj is the adjoint of C.

adjoint

Bibliography

- A. Agarwal and J. Lang. Foundations of Analog and Digital Electronic Circuits. The Morgan Kaufmann Series in Computer Architecture and Design. Elsevier Science, 2005. ISBN: 9780080506814.
- [2] P Horowitz and W Hill. The Art of Electronics. Cambridge University Press, 2015. ISBN: 9780521809269.
- [3] Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse. Circuit Analysis and Design. ISBN 978-1-60785-484-5. Michigan Publishing, 2018.