
Realtime Computing

for Mechanical Engineers

Introduction and Laboratory
Rico A.R. Picone

Department of Mechanical Engineering

Saint Martin’s University

Joseph L. Garbini

Department of Mechanical Engineering

University of Washington

Thursday 7 April, 2022

Copyright © 2022 Rico A.R. Picone All Rights Reserved

Contents

Preface 8

I Orientation 12

00 Getting started 13

00.1 Introduction to embedded computing 14

00.2 Embedded control of mechanical systems 18

00.3 Computer architectures . 20

00.4 Numeral systems . 23

The myth of Niles and Pepper . 23

Positional numeral systems . 25

Decimal numeral system . 26

Hexadecimal numeral system . 26

Converting to and from decimal . 27

Converting between hex and binary 30

Signed binary numeral system . 30

00.5 Binary and hexadecimal arithmetic . 32

00.6 Exploring C building a sandbox . 33

Installing and using GCC on Windows 33

Installing and using GCC on macOS 34

00.exe Exercises for Chapter 00 . 36

Exe. 00.1 . 36

Exe. 00.2 . 36

Exe. 00.3 . 36

Exe. 00.4 . 36

Exe. 00.5 . 36

Exe. 00.6 . 36

Exe. 00.7 . 37

Exe. 00.8 . 37

Exe. 00.9 . 37

Contents Contents p. 3

Exe. 00.10 . 37

Exe. 00.11 . 37

Exe. 00.12 . 37

00.L Lab Exercise: Getting started . 39

Objective . 39

Pre-laboratory preparation . 39

Laboratory procedure . 39

Resource R1 High-level embedded system . 44

Resource R2 Embedded computer and development environment subsystem 46

Getting Started with CDT . 46

C/C++ Perspective . 47

Debug Perspective . 49

Debug view toolbar commands . 50

Debug information . 51

The system on a chip . 52

Resource R3 User interface hardware subsystem . 54

Resource R4 Motor driver subsystem . 55

Resource R5 Motor and mechanical apparatus subsystem 58

Motor . 58

Mechanical apparatus . 58

Resource R6 Sourcing and costs . 59

Resource R7 Setting up the C Development Tool for myRIO 60

Part A: Setting up the software environment 60

Part B: Define a connection to the myRIO 62

Part C: Importing C Support and Launch Configurations 63

Part D: Connect to the myRIO target 65

Part E: Running the myHelloWorld project 65

Part F: Debugging the myHelloWorld project 66

Resource R8 Suggested reading . 69

II The User Interface 70

01 Computing principles, myRIO C programming, and high-level io drivers 71

01.1 Memory . 72

Things you can store in memory . 72

Memory organization . 77

01.2 Processing . 78

01.3 A CPU programming model . 79

Core ARM registers . 79

Other ARM registers . 80

Contents Contents p. 4

Types of instructions . 80

Addressing modes . 81

01.exe Exercises for Chapter 01 . 82

01.L LabExercise: Introduction tomyRIOCprogramming andhigh-level

io drivers . 83

Objectives . 83

Introduction . 83

Pre-laboratory preparation . 84

Laboratory procedure . 90

Guidance . 91

02 Exploring C and mid-level io 102

02.1 A paper computer . 103

02.2 Exploring C operators . 104

Operator precedence . 105

Operator associativity . 105

02.3 Exploring C constants . 106

02.4 Exploring C pointers . 109

Assigning to a pointee . 109

02.exe Exercises for Chapter 02 . 110

02.L Lab Exercise: Keypad mid-level primitives 111

Objectives . 111

Introduction . 111

Pre-laboratory preparation . 113

Background . 117

Laboratory Procedure . 118

Guidance . 118

03 Digital communication and low-level io 122

03.1 Digital communication . 123

Serial and parallel communication . 123

Synchronous and asynchronous communication 124

Standards . 124

03.2 UARTs . 126

03.3 Digital signals . 127

03.4 Exploring C structures . 129

03.exe Exercises for Chapter 03 . 131

03.L Lab Exercise: Low-level character io 132

Objectives . 132

Introduction . 132

Pre-laboratory preparation . 133

Contents Contents p. 5

Laboratory Procedure . 140

III Timing, Threads, and Finite State Machines 141

04 Finite state machine control 142

04.1 Pulse-width modulation . 143

04.2 DC motor driving . 145

Digital motor drivers . 145

Analog amplification . 147

The ECL instantiation . 148

04.3 Measuring motor velocity . 150

Quadrature encoders . 150

04.4 Finite state machines . 152

04.exe Exercises for Chapter 04 . 157

Exe. 04.13 . 157

04.L Lab Exercise: Finite state machine motor control 161

Objectives . 161

Introduction . 161

Pre-laboratory preparation . 164

Laboratory Procedure . 171

A better way to PWM . 173

Resource R9 Saving myRIO C data to a Matlab file . 175

Resource R10 Copley 412 analog amplifier setup . 178

Resistor settings . 178

Capacitor settings . 178

Dip switch settings . 178

Gain adjustment . 178

05 Threads and interrupts 180

05.1 Processing threads . 181

05.2 Interrupts . 183

05.3 Boolean algebra on digital signals . 185

05.4 Debouncing switches . 187

05.exe Exercises for Chapter 05 . 189

05.L Lab Exercise: Introduction to interrupts 190

Objectives . 190

Introduction . 190

The Threads . 191

Background . 192

Laboratory procedure . 197

Resource R11 Interrupt functions documentation . 199

Contents Contents p. 6

Register DI IRQ . 199

Unregister DI IRQ . 200

Wait for Interrupt . 200

Acknowledge IRQ . 201

Create POSIX thread . 201

Join POSIX thread . 202

Exit POSIX thread . 202

IV Feedback Control of Mechanical Systems 203

06 Discrete dynamic systems 204

06.1 ADC and DAC . 206

Analog-to-digital conversion and analog outputs 206

Digital-to-analog conversion and analog outputs 207

06.2 Difference equations . 209

06.3 Discrete transfer functions . 211

Laplace transforms . 211

Continuous transfer functions . 211

z-Transforms . 212

Discrete transfer functions . 212

Discrete approximations of continuous transfer functions 213

Matlab’s c2d . 215

06.4 The biquad cascade . 216

Resource R12 Timer interrupts . 218

Main thread: background . 218

Main thread: our case . 219

The interrupt thread . 221

06.exe Exercises for Chapter 06 . 224

06.L Lab Exercise: Transfer function generator 225

Objectives . 225

Introduction . 225

Pre-laboratory preparation . 226

Laboratory Procedure . 230

Does it work? . 231

Resource R13 Discrete-time controllers . 233

Resource R14 Analog input and output . 234

Analog initialization . 234

Analog-to-digital converter . 234

Digital-to-analog converter . 235

07 Closed-loop control 236

Contents Contents p. 7

07.1 DC motor velocity control . 237

07.2 Designing a PI controller . 238

07.exe Exercises for Chapter 07 . 239

07.L Lab Exercise: DC motor PI velocity control 240

Objectives . 240

Introduction . 240

Pre-laboratory preparation . 242

Laboratory Procedure . 246

DC Motor Controller Model . 247

Resource R15 A table editor for the myRIO . 249

08 Path planning 253

08.1 Path planning . 254

08.2 Designing a PID controller . 255

08.exe Exercises for Chapter 08 . 256

08.L Lab Exercise: DC motor PID position control 257

Objectives . 257

Introduction . 257

Path planning . 258

PID control design and evaluation . 259

Program description . 260

Functions . 262

Laboratory procedure . 265

Resource R16 C function Sramps for position path planning 267

Resource R17 Matlab function sos2header for converting controllers to C 270

A The Embedded Computing Laboratory 272

B Resources 273

Bibliography 274

Preface

The instructional literature includes many

excellent texts on the subject of embedded

computing. Appropriately, most such texts, and

the courses that use them, are aimed primarily

at electrical or computer engineering students.

By contrast, this text is designed specifically for

mechanical engineering senior undergraduates

or first year graduate students. The instruction

builds on the typical background of an ME

senior, and it focuses on applications of

dynamic motion control and digital signal

processing that are of particular interest to

mechanical engineers.

This course of study is also unique in that

learning is organized around a sequence of nine

hands-on experiments. Building one upon the

other, the experiments proceed from basic

interface concepts, through discrete control

organization and timing issues, and ultimately

to multi-tasked automatic control. Practical

information (specific to the lab hardware), as

well as, general analytical concepts (applicable

to any computing environment) are introduced

as necessary to support each experiment.

For students, the text can best be thought of as a

journey during which they learn to incorporate

(embed) computers into mechanical systems as

functional components. They will

comprehensively explore issues of user

interaction, embedded program organization,

timing control, and interface hardware. Along

Preface p. 9

the way, they will learn the process of designing

and implementing embedded applications, and

become acquainted with the architecture and

resources of a modern real-time development

environment.

This book evolved during several decades of

teaching embedded computing to mechanical

engineering students as part of a senior-year

curriculum in mechatronics. The goals of the

text are first, to provide the embedded

computing component for that mechatronics

program, culminating in senior capstone design

projects. And second, to provide students with

a comprehensive foundation in modern

embedded computing that can be used and

extended throughout an engineering career.

The vehicle for the lab experiments is the

National Instruments myRIO-1900 embedded

device, programmed in C from an Eclipse

development environment on the student’s

laptop. This compact system features a two-core

Xilinx Z-7010 processor, with an appropriate

array of interfaces managed by its associated

field programmable gate array, and a real-time

linux operating system. Having taught this

material (over the years) with at least five other

microcomputers, we believe that the myRIO is

an ideal platform, both for instruction and as the

basis of prototypes in the senior capstone

course.

Why C? Of course, the myRIO is also readily

programmed in LabVIEW. Why have we chosen

C as the programming language for this text?

While we are big fans of LabVIEW, and use it in

many other courses, in this text we seek to give

the student a broad exposure to the concept of

an integrated development environment (IDE),

useful across a wide array of real-time target

microcomputers and applications. An engineer

working in this field will eventually become

familiar with a variety of languages and

Preface p. 10

development environments. But, C/C++ is the

best place for a student to begin, and remains

today the lingua franca of embedded

computing.

This text is intended for senior mechanical

engineering undergraduates. We assume that

students will have at least the usual first courses

in differential equations, newtonian dynamics,

and time/frequency domain analysis of

dynamic systems. Background in the subjects of

automatic control, instrumentation, and signal

processing is useful and will help motivate the

material, but is not essential.

Knowledge of computer programming is

assumed. However, no specific a priori

familiarity with the C programming language is

required. By degrees, the student will be

introduced to C as he progresses through the

lab exercises. We suggest that the student rely

on a companion text on C as a reference. Several

are listed in the bibliography. The text also

recommends that students use MATLAB to

evaluate experimental results.

An additional point: Although the book is

presented for the classroom, there is no reason

why a determined student couldn’t master the

text and its experiments through individual

self-study.

Some ancillary hardware is necessary for the

experiments: a keypad and LCD display, an

oscilloscope, a brushless DC motor and inertial

load with incremental encoder, an appropriate

motor amplifier, and an analog signal generator.

Although many forms of this equipment can be

used, specific suggestions are detailed in

Appendix X.

Before we begin, let’s briefly chart this journey

into embedded computing by outlining the nine

core experiments.

Lab Exercise 00 In this first lab, students set

Preface p. 11

up their development environment and

insure that it works properly with the

myRIO targets. They exercise debugging

techniques, and become familiar with

structure of an embedded C program.

Lab Exercises 01, 02, and 03 During this

sequence of labs, students learn the

elements of C, and build a user interface,

including the low level drivers for a

keypad and LCD display.

Lab Exercise 04 Students implement a finite

state machine, and explore elementary

timing elementary embedded computing

timing.

Lab Exercise 05 External interrupts are

introduced, and their potential advantages

and limitations are explored.

Lab Exercise 06 Students develop a

general-purpose linear discrete dynamic

system as the basis of digital signal

processing and control.

Lab Exercise 07 Combining elements of all

the previous labs, students implement and

analyze a multi-tasked closed-loop

velocity control.

Lab Exercise 08 In the final lab, students

design, implement, analyze a closed-loop

position control. Trajectory planning is

also examined.

In each of the final three lab exercises (06, 07,

and 08), students compare the performance of

the digital implementations with continuous

system models.

Finally, the authors wish to acknowledge the

many former students, teaching assistants, and

colleagues that have influenced this work,

including Professors Jens E. Jorgensen, Peter L.

Balise, and William R. Murray.

Part I

Orientation

00

Getting started

00 Getting started Introduction to embedded computing p. 1

00.1 Introduction to embedded computing

Embedded computers comprise the vast

majority of computers, yet are perhaps the least

familiar to the uninitiated. A computer in a

kitchen appliance, smart thermostat, or

pacemaker is embedded—that is, it has most of

the following characteristics: it

• performs a specific, limited function;

• performs its function in real-time;

• is small;

• is inexpensive;

• is low-power;

• is ruggedly packaged.

The central processing unit (CPU) of any

computer is the electronic circuitry that

performs a computer’s most basic instructions,

such as arithmetic, logic, and input/output. A

CPU is typically an integrated circuit (IC, i.e.

“microchip” or just “chip”), which is made of a

single silicon chip, the size of a human

fingernail, transformed into a circuit containing

billions of elements, such as transistors, diodes,

and capacitors, by a process in which the

semiconductor material silicon is selectively

doped with impurities, locally changing its

conductivity. An IC CPU is called a

microprocessor.

Many embedded computers are

microcontrollers (µC), which are integrated

circuits that include CPUs, memory, and

input/output peripherals—classes of

computing components that will be described in

this chapter. Images of a microprocessor and a

microcontroller are found in Figure 00.1.

The instructions carried out by a CPU are rather

basic, yet combinations of them can be vastly

more complex. This is analogous to words,

perhaps relatively simple, alone, being

combined to form complex phrases, sentences,

00 Getting started Introduction to embedded computing p. 2

Figure 00.1: (left) a Hudson HuC5260A microprocessor (Baz1521,
2018) and (right) an Intel 8742 microcontroller—including a 12MHz CPU, 128
B RAM, 2048 B EPROM, and input/output peripherals—broken open (Sameli,
2018).

and books. In fact, this is why a CPU’s

instructions are said to form a machine

language—literally just numbers with

predefined meanings, often represented in

binary. These languages are very cumbersome

for humans to write useful software with, as we

will see, so higher level languages are

developed. The first level above machine

language is called assembly language, which

typically assigns a more descriptive mnemonic

to represent each instruction (“opcodes”). A list

of languages by level is given in Table 00.1. A

program is a sequence of instructions that

performs some task.

Higher-level languages such as C, Python, and

Matlab are called programming languages.

They have the important quality of

microprocessor independence—that is, they can

be written for multiple processors, then

translated into lower-level, processor-specific

languages. There are two archetypical ways this

translation occurs for a program:

compilation When a program is compiled, it is

converted en masse into machine code

before it is processed. This is often

considered to be optimal for performance

because each high-level function of the

program is converted directly to

processor-specific instructions.

interpretation When a program is

interpreted, its high-level functions have

00 Getting started Introduction to embedded computing p. 3

Table 00.1: categories of programming languages descending from high-
level to low-level.

type examples

graphical LabVIEW, Simulink
scripting Bash, Perl, BASIC
typically interpreted MATLAB, Python, Ruby
typically compiled C, C++, Java
assembly symbolic codes
machine numerical codes

1. Previously, it was common to refer to a specific language
as “compiled” or “translated,” but this terminology is increasingly
obsolete.

been pre-translated to machine code such

that it can be directly processed “on the

fly” without compilation. This is often

considered more convenient and easier to

implement than compilation.

Most modern programming languages provide

both options.1 Due to typically stringent

performance and memory requirements,

embedded programs often use compilation.

The C programming language is the

language-of-choice for embedded computer

programming. It can be thought of as being as

close as possible to machine language without

being processor-specific. It deals with numbers

and arithmetic and memory addresses, which is

what a processor does, also. That is, it is a

low-level, general-purpose language. A

limitation of the core language is that it lacks

functions for basic operations like reading or

writing to a file. The C standard library

augments this functionality.

An advantage of its compactness is its relatively

small size, a key advantage for embedded

computing. Other key advantages of C for

embedded computing include its ubiquity (C

compilers are available for most processors),

speed (a result of a small language and good

compilers), and energy efficiency (in that

executing fewer cycles requires less power).

Although the vast majority of embedded

https://en.wikipedia.org/wiki/C_standard_library

00 Getting started Introduction to embedded computing p. 4

computer programming is in C, recently

languages such as Python (which is, itself,

written in C) have captured a small sliver of the

embedded market (Altera, 2018).

00 Getting started Embedded control of mechanical systems p. 1

00.2 Embedded control of mechanical systems

Feedback control is a powerful idea: a desired

system state is compared to a measurement of

its actual state and some actuation is applied

such that the difference between the desired and

the actual state (the error) is minimized. This

concept has been realized in many ways since

around 300 BC, when the Greeks used a float

valve to regulate the flow of water to a relatively

constant rate, allowing them to measure time.

The 20th Century, especially its latter half, saw a

mathematization and vast improvement of

control. Electronic circuits began to perform the

key “logic” function: for example, “if a is

measured, then do b.” Previously, the

mechanical organization of the system had to to

perform the logic, as in the flow-regulation

example illustrated in Figure 00.1.

As circuits have evolved into increasingly

powerful microprocessors connected to sensors

and actuators, the complexity of implementable

logic has grown drastically. But one constraint

is persistent: decisions about how the control

system should respond with its actuators, given

the system’s current state, must happen in

real-time—that is, now! (Rather, as close to

“now” as possible.) Real-time computing for

control must not only be fast, but reliably so;

that is, the programmer must be able to direct

timing. Although computing power has

improved steadily, real-time computing

remains among the greatest challenges for

control systems engineers.

Most feedback control is instantiated with

embedded computers because sensors and

actuators must be nearby to increase reliability

and decrease lag. Therefore, designing

controllers (that is, embedded computers and

peripherals used for control) requires an

understanding of embedded computing

00 Getting started Embedded control of mechanical systems p. 2

hardware and its programming.

Figure 00.1: level control with (left) a mechanical and with (right) an
embedded computer.

00 Getting started Computer architectures p. 1

2. This is sometimes called the von Neumann architecture.

00.3 Computer architectures

Figure 00.1: ALU block (Lamberson, 2018).

If

we

descend

from

high-

level

programming

languages

like

Python to

low-level

languages

like C, then continue to descend, considerations

become more hardware-specific. Computer

architectures are descriptions of this down to a

fairly concrete level, stopping somewhere above

the actual physics of the whole thing.

Embedded computer programming contacts the

computer architecture much more than does

personal computer programming. In fact, the C

language gives us access to different aspects of

it.

Consider the four primary components of a

computer that follow.2

central processing unit (CPU) The CPU

consists of a control unit (brain) and a

datapath (brawn). The control unit

receives machine code instructions from

memory and controls the other

components to perform corresponding

tasks. The datapath consists of functional

units such as registers (the fastest,

smallest-capacity memory), buses

(intra-computer communication systems),

and arithmetic logic units (ALU) that can

perform very basic arithmetic or logical

operations (see Figure 00.1 for an

illustration).

00 Getting started Computer architectures p. 2

memory Memory stores data (e.g. numbers,

files, etc.) and instructions. Numerous

forms exist, but the primary variable of

interest is that of speed of access

(read/write). Faster tends to mean less

capacity and more expense. Permanence

is another consideration: some types of

memory, called volatile, lose their state

when they lose power, while others, called

non-volatile, do not. These considerations

lead to complex optimization when, as is

typically the case, different types of

memory are used within the same system.

Roughly speaking, data or instructions

that are most likely to be read soon are

moved to faster, smaller, more expensive

memory.

In addition to speed, volatility, and cost

there is another important aspect of

memory: its rewritability. This divides

memory into two categories:

read-only-memory (ROM) of which

the state “cannot” be altered, only

detected, by the CPU and

read/write memory (RAM) that can be

both read and written-to by the CPU.

There are several types of ROM, described

as follows.

ROM is masked ROM that is

programmed at manufacturing and

cannot be altered. It is for mass

production and is cheapest.

PROM is field-programmable; that is, it

can be programmed after

manufacturing, typically only once.

EPROM is erasable (usually with UV

light) and reprogrammable after

manufacturing, but has a short

number of erases: on the order of 100

times.

00 Getting started Computer architectures p. 3

datapath

i/o memory

control unit

data
data

controlinstruction

controlstatus

contr
ol

statu
s

input

output

Figure 00.2: high-level schematic of the four primary components of a
computer:

CPU (control unit and datapath), memory, input, and output.

EEPROM is electrically-erasable and

non-volatile. It is often called flash

memory.

input Inputs are data from devices other than

the computer, such as keyboards, sensors,

and remotely communicated commands

(via, say, the Internet).

output Outputs are data sent to devices other

than the computer, such as displays,

printers, and actuators (e.g. a motor).

00 Getting started Numeral systems p. 1

00.4 Numeral systems

The following is a myth in the good sense of the

term.

The myth of Niles and Pepper

Niles was an unusual boy with great hair, living

in a time before number systems. Quantities

were familiar, but symbolic representations of

them were not. Niles lived in a grove of trees. A

grove on the other side of the hill was home to

his friend Pepper, a sassy, no-nonsense girl.

One day Niles and Pepper were walking

together and, as children do, began arguing

about whose grove had more trees. If the

argument had been about who had more

skipping stones, they could have simply

matched up stone-for-stone to discover who

had more. But this was impractical with the

trees. Niles had an insight:

We can represent each tree by a

drawing and match these to

determine who has more.

It went something like this.

Niles: 🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲

Pepper: 🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲

Not to be discouraged, Niles proposed they

compare, instead, the number of trees on each’s

entire side of the hill. However, there were

many more trees, so Pepper suggested they

simply draw the symbol > to represent each
tree, to save time. The results were no

more-satisfying to Niles.

Niles: >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
Pepper: >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
Niles pushed on: let’s include the neighboring

hill on each side. With so many more trees,

Pepper suggested a shorthand notation.

00 Getting started Numeral systems p. 2

We can compactly represent the

number of trees with two symbols©
and | used in combination.

She explained it to Niles by counting up:

• � =©
• > = |

• >> = |©
• >>> = ||

• >>>> = |©©
• >>>>> = |© |

• >>>>>> = ||©
• >>>>>>> = |||.

That is, each position could take on two

symbols, but the position of each symbol

denoted its “weight.” The far-right symbol

represented either a lack© or presence | of a

single tree. The next symbol to the left was the

“overflow” from the first symbol, and therefore

represented the number of pairs of trees. The

next symbol to the left was the next overflow,

representing pairs of pairs of trees.

What fun! They started counting and Pepper

immediately recognized a process

improvement:

If we use more symbols, we can

represent numbers even

more-compactly.

Pepper suggested a symbol for each digit of

their hands:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9. (1)

Now they could count on their fingers:

• � = 0

• > = 1

• >> = 2

• >>> = 3

• >>>> = 4

00 Getting started Numeral systems p. 1

• >>>>> = 5

• >>>>>> = 6

• >>>>>>> = 7

• >>>>>>>> = 8

• >>>>>>>>> = 9

• >>>>>>>>>> = 10.

That is, the second symbol now represented a

group of ten of the group to the right: the

rightmost, the number of trees; to its left, the

number of tens of trees; to its left, the number of

tens of tens (hundreds); to its left, the number of

tens of hundreds (thousands); etc.

Pepper still had more trees.

Positional numeral systems

Niles and Pepper, when they represented a tree

by >, created a very simple numeral system: a
way of representing quantities with symbols

called numerals. Once they recognized the

value of including multiple symbols (© and |, at

first) and endowed the position of each numeral

with significance, the system became a

positional numeral system. The number of

numerals used is called the system’s base: two

for the system with© and | and ten for that with

0–9. Base-2 systems are called binary, and

typically use the symbols 0 and 1 instead of©
and |. Base-10 systems are those with ten

numerals, the most common of which is called

the Hindu-Arabic numeral system and uses the

Arabic numerals 0-9.

Let’s consider the meaning of the Arabic

number 937. It means 9 hundreds, 3 tens, and 7

ones. A corresponding arithmetic

representation is

9× 102 + 3× 101 + 7× 100.

Similarly, the binary number 1011 has the

meaning 1 pair of pairs of pairs of ones, 0 pair of

00 Getting started Numeral systems p. 1

pairs of ones, 1 pair of ones, 1 one. Let’s convert

this binary representation to base-10:

1× 23 + 0× 22 + 1× 21 + 1× 20 = 11.

This highlights an important ambiguity: how

can we tell in which numeral system 11 is

written? We cannot, so we must either rely on

context, explicitly state, or add subscripts, as in

10112 = 1110. (2)

As a convention, we restrict interpretations of

numeral system-denoting subscripts to base-10.

Now we introduce nuanced versions of the

above numeral systems.

Decimal numeral system

Representing non-integer numbers is done with

a radix point, often “.”. The decimal numeral

system is the Hindu-Arabic system extended to

include non-integer numbers. Digits (decimal

numerals) increasingly right of the radix point

(called a decimal point in the decimal system)

represent tenths, hundredths, thousands, etc.

For instance, the decimal 2.73 would be

2× 100 + 7× 10−1 + 3× 10−2.

Hexadecimal numeral system

The hexadecimal numeral system extends the

decimal system with an additional six numerals,

borrowed from the beginning of the Latin

alphabet, to have a total of sixteen numerals:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9,A,B,C,D,E,F.

As we will see, this base-16 system provides a

convenient way to represent the contents of

computer memory.

It is conventional to begin hexadecimal numbers

with the prefix “0x” as in 0x9A78 0D38.

00 Getting started Numeral systems p. 2

Converting to and from decimal

Converting from a base-b number xb with digits

xnxn−1 · · · x0.x−1x−2 · · · x−m to decimal is

straightforward. Represent each numeral in

base-10, then use the formula

x10 =

n∑
i=−m

xib
i. (3)

For instance, if x2 = 1010.01,

x10 = 1× 23 + 0× 22 + 1× 21 + 0× 20 + 0× 2−1 + 1× 2−2

= 10.25.

Similarly, if x16 = B8.F,

x10 = 11× 161 + 8× 160 + 15× 16−1

= 184.9375.

Converting from decimal into a base-b numeral

system can be accomplished by the following

procedure.

• For the integer part of the number,

successively divide by the base b10,

represented in base-10. The remainder xb,

represented in base-b, of each step is the

base-b numeral in that position, from

right-to-left.

• For the decimal part of the number,

successively multiplying by the base b10.

The overflow x−b of 110 and above, at each

step, is the corresponding base-b numeral

in that position, from left-to-right.

Note that division and multiplication in the

conversion process are the usual base-10

versions. Technically, this process can be used

for converting between other numeral systems,

but it is not recommended due to our

unfamiliarity with division and multiplication

in these numeral systems.

00 Getting started Numeral systems p. 3

Example 00.4 -1 re: decimal to binary and hex

1. Convert 1410 to binary.

2. Convert 1410 to hexadecimal.

3. Convert 421.7310 to binary.

1. The following table shows the division.

b/divisor dividend/quotient remainder

14

2 7 0

2 3 1

2 1 1

2 0 1

Therefore, 1410 = 11102.

2. There is no need to divide because

1410 6 1510, the number of hex numerals.

Therefore, 1410 = E16.

3. For the integer part, the following table

shows the division.

b/divisor dividend/quotient remainder

421

2 210 1

2 105 0

2 52 1

2 26 0

2 13 0

2 6 1

2 3 0

2 1 1

2 0 1

Therefore, 42110 = 1101001012. Now for

the number right of the decimal point.

00 Getting started Numeral systems p. 1

b/factor factor/product overflow

0.73

2 .46 1

2 .92 0

2 .84 1

2 .68 1

2 .36 1

2 .72 0

2 .44 1

2 .88 0

2 .76 1

2 .52 1

2 .04 1

2 .08 0

2 .16 0

2 .32 0

2 .64 0

2 .28 1

2 .56 0

2 .12 1

2 .24 0

2 .48 0

2 .96 0

2 .92

This last row is identical to the

second row. Therefore, an infinite

loop will occur and 421.7310 =

110100101.1011101011100001010002. This

has profound implications: an exact

decimal value of 421.73 must be rounded

to be stored as binary. This introduces

rounding error even when it might

appear we know the number, exactly.

(Note that this is for floating point

representations of the decimal number,

which is common. Alternatively, five

integers could represent the decimal,

exactly.) See Lecture 01.1 for exactly this

(BCD).

00 Getting started Numeral systems p. 1

Converting between hex and binary

Binary numbers can be easily converted

hexadecimal and vice-versa. In Lecture 01.1

these conversions will be motivated. There are

24 = 16 unique four-numeral binary numbers

and 16 hex characters (which is no coincidence).

This allows us to write each grouping of four

binary numerals, called a nibble, as a single hex

character. It is often easiest to convert each

nibble to base-10, then (trivially) to hex. For

instance, 11012 is

1× 23 + 1× 22 + 0× 21 + 1× 20 = 1310.

The thirteenth hex numeral is D.

Similarly, one can convert a hex numeral to a

nibble by converting it first to decimal, then to

binary.

Signed binary numeral system

The signed binary numeral system, often called

the two’s complement numeral system, is used

to represent both positive and negative numbers

in binary form. When encountering a signed

binary number, first consider the leftmost

numeral: if it is 0, the number it represents is

positive or zero and the usual binary-to-decimal

conversion holds; if it is 1, the number it

represents is negative and must undergo the

two’s complement operation before the usual

binary-to-decimal conversion holds for its

negation.

The two’s complement operation can be

performed by flipping all the bits (0→ 1 and

1→ 0) and adding 1. For instance,

1101 0110
flip bits
−−−−→ 0010 1001

add one−−−−−→ 0010 1010.

This result can be converted to decimal in the

usual way: 0010 10102 = 4210. Therefore

1101 01102 = −4210.

00 Getting started Numeral systems p. 2

Of course, this means that an n-numeral in

two’s complement binary stores not (as would

unsigned binary)

0, 1, · · · 2n − 1

but

−2n−1 + 1,−2n−1 + 2, · · ·− 1, 0, 1 · · · 2n−1.

In both unsigned and (two’s complement)

signed binary, however, a total of 2n numbers

are represented by n binary numerals.

00 Getting started Binary and hexadecimal arithmetic p. 1

00.5 Binary and hexadecimal arithmetic

In order to perform arithmetic operations on

binary and hexadecimal numbers, a

straightforward method is to convert the

numbers to decimal, operate arithmetically in

the usual way, then convert the result back to

binary or hex.

However, arithmetic with all numbers

represented by positional numeral systems can

be performed in a familiar manner. We

demonstrate this, by example, with binary, but

this method also applies for hexadecimal

arithmetic.

Example 00.5 -1 re: binary summation

Sum 11102 and 11002.

1

0
1

1110

+ 0 1100

1 1010

Example 00.5 -2 re: binary subtraction

Subtract 10102 from 11002.

1���
0

100

− 1010

0010

Example 00.5 -3 re: binary multiplication

Multiply 11002 and 10102.

1100

× 1010

0000

1 100

00 00

110 0

111 1000

00 Getting started Exploring C building a sandbox p. 1

00.6 Exploring C—building a sandbox

When beginning with any programming

language, it helps to have a sort of “sandbox” in

which one can play. If one follows the

instructions in Resource 7 to set up the same

environment used in the lab to compile for the

myRIO, one can develop C programs in Eclipse

at home. Even without connecting to a myRIO,

one can compile (Eclipse calls this build) a

myRIO program to check for syntax and other

errors.

Taking it one step further, one can install

another C compiler made for the development

computer. This compiler may differ in certain

aspects, but typically these differences are

insignificant.

A good compiler to use for this purpose is the

free GNU C compiler GCC. It is available on

most platforms.

It is important to note that the compiler used in

the class is provided by C/C++ Development

Tools for NI Linux Real-Time. It is based on

GCC, but may have different functionality.

Installing and using GCC on Windows

Download minGW from this link. Run the

installer and include the GUI interface. Open

the interface and, under the Basic Setup tab,
check the boxes for mingw32-base and
mingw-gcc-g++. Then select menu item Installation

Update Catalog .

Probably, there is no need to, but if the

following step fails, try adding the minGW

installation directory’s bin to the system PATH
environment variable.

Restart Eclipse. Select menu item File New C Project .

Select from the left Project Type menu Executable

Hello World ANSI C Project . From the right Toolchains menu

choose minGW GCC . Name the project (say)

https://gcc.gnu.org/install/index.html
http://www.ni.com/download/labview-real-time-module-2017/6731/en/
http://www.ni.com/download/labview-real-time-module-2017/6731/en/
http://www.mingw.org/
https://sourceforge.net/projects/mingw/files/Installer/mingw-get-setup.exe/download

00 Getting started Exploring C building a sandbox p. 1

my_project and select Finish .

In the C/C++ Perspective, under the Project
Explorer, select
my_project. Build it by selecting menu item
Project Build Project . Run it by selecting menu item Run

Run As 1 Local C/C++ Application .

If everything is working, you should see the

“hello world” message display in the console.

You can now edit the project, build, and run at

will!

Of course, device driver functions like

fgets_keypad still won’t work in this
environment because our system isn’t connected

to this hardware. However, many analogous

functions can be substituted, like fgets.

Installing and using GCC on macOS

For those using macOS, the following

instructions will help installing and using GCC.

The following instructions assume you are

using a terminal (e.g. Terminal.app) to execute

the commands.

First, install the package manager Homebrew.

Homebrew is great for getting and maintaining

other software, too! It will install GCC with the

following command.

brew install gcc

Now, just write a C program! Let’s say you

have hi.c in the current directory with contents
as follows.

#include "stdio.h"

int main()
{

printf("Hello World\n");
}

Compile this with GCC using the following

command.

https://brew.sh/

00 Getting started Exploring C building a sandbox p. 2

gcc -o hi hi.c

This compiles hi.c to the output executable file
hi in the working directory. Now, try it out!

./hi # => prints Hello World to terminal

Alternatively, the Eclipse IDE can be used to

write and debug GCC-compiled programs. The

configuration is analogous to that for a

Windows machine, described above.

00 Getting started exe Exercises for Chapter 00 p. 1

00.exe Exercises for Chapter 00

Consider the binary numbers of Fig. exe.1.

0100 1011

1001 1000

0001 0001

1111 0110

Figure exe.1: four 8-bit binary numbers.

Unsigned binary

In Exercise 00., interpret these values as

unsigned binary numbers.

Exercise 00.1

Convert the binary numbers of Fig. exe.1 to

octal.

Exercise 00.2

Convert the binary numbers of Fig. exe.1 to

hexadecimal.

Exercise 00.3

Convert the binary numbers of Fig. exe.1 to

decimal.

Exercise 00.4

As a check on your calculations, convert the

octal numbers from Exercise 00. to decimal.

Exercise 00.5

As a check on your calculations, convert the

hexadecimal numbers from Exercise 00. to

decimal.

00 Getting started exe Exercises for Chapter 00 p. 1

Exercise 00.6

As a check on your calculations, convert the

decimal numbers from Exercise 00. to octal.

Exercise 00.7

As a check on your calculations, convert the

decimal numbers from Exercise 00. to

hexadecimal.

Exercise 00.8

Add the first and second binary numbers of

Fig. exe.1. Convert the sum to decimal, and

compare to the sum of the decimal numbers

obtained in Exercise 00..

Exercise 00.9

Add the third and fourth binary numbers of

Fig. exe.1. Convert the sum to decimal, and

compare to the sum of the decimal numbers

obtained in Exercise 00..

Signed binary

In Exercise 00. interpret the same four bytes

from Fig. exe.1 as signed binary numbers

expressed in 8-bit, two’s complement.

Exercise 00.10

Determine the decimal equivalents of each

(signed) binary number of Fig. exe.1.

Exercise 00.11

Add the first and second (signed) binary

numbers of Fig. exe.1. Convert the sum to

decimal, and compare to the sum of the decimal

numbers obtained in Exercise 00..

00 Getting started L Exercises for Chapter 00 p. 1

Exercise 00.12

Add the third and fourth (signed) binary

numbers of Fig. exe.1. Convert the sum to

decimal, and compare to the sum of the decimal

numbers obtained in Exercise 00..

00 Getting started L Lab Exercise: Getting started p. 1

00.L Lab Exercise: Getting started

Objective

The objective of this exercise is to get acquainted

with the following.

1. The Eclipse IDE and debugger.

2. Editing, building, loading, and running a

program on the target computer.

3. Setting break points and single-stepping

through a running program.

4. Displaying register and memory contents.

Pre-laboratory preparation

Read Resource 2 and Resource 7, following the

instructions on your personal computer,

preferably a laptop your can bring to lab. Pay

particular attention to procedures for editing,

building, and debugging. The following

laboratory procedure is a tutorial that will allow

you to become familiar with the Eclipse IDE.

Laboratory procedure

Perform this procedure in the lab, either on your

laptop or a lab computer, connected to a

myRIO. Launch Eclipse, Open the main.c file of
your myLab0 project. Edit the file to include the

C code in Figure L.1. Substitute your name for

<your name> (12 characters max). Note the use
of <tab>s and indenting.
Look carefully at this program. The main
program loops four times, calling sumsq each
time. What values do you expect in the x array
after the program has executed?

Use the build command to compile and link

your program. Errors and Warnings are shown

in the Console pane. Correct any errors and

re-build.

00 Getting started L Lab Exercise: Getting started p. 1

Run→Run Configurations the program. Select
your myLab0 project. Click Run. The results will
be printed on the LCD display.

Using the debugger

In the following, you may find it useful to refer

to the outline of important debugger commands

in the Eclipse IDE for myRIO Notes. No

program may be running on the target myRIO

when you start the debugger.

Select Run→Debug Configurations. Select your
myLab0 project. Click Debug. The Debug
perspective opens, showing the source code for

the function main.
At this point, the execution has been suspended

at the line highlighted in the source code.

Notice that the values of the program variables

are displayed in the Variables pane anytime that

execution is suspended. What are the current

values of i and the array x? Notice also that the
values of the processor registers are shown in

the Registers pane.

/* Lab #0 - <your name> */

/* includes */
#include "stdio.h"
#include "MyRio.h"
#include "me477.h"

/* prototypes */
int sumsq(int x); /* sum of squares */

/* definitions */
#define N 4 /* number of loops */

int main(int argc, char **argv) {
NiFpga_Status status;
static int x[10]; /* total */
static int i; /* index */

status = MyRio_Open(); /* Open NiFpga.*/
if (MyRio_IsNotSuccess(status)) return status;

printf_lcd("\fHello, <your name>\n\n");
for (i=0; i<N; i++) {

x[i] = sumsq(i);

00 Getting started L Lab Exercise: Getting started p. 2

printf_lcd("%d, ",x[i]);
}
status = MyRio_Close(); /* Close NiFpga. */
return status;

}
int sumsq(int x) {

static int y=4;

y = y + x*x;
return y;

}

Figure L.1: C code for Lab 00

Executing the Program—You are about to

execute your program from the debugger. Use

the icon to resume execution of your

program. The only indication that your

program has executed will be that your name

and the values of the x-array should be
displayed on the LCD display attached to the

myRIO. Are the results consistent with your

understanding of the program? Explain.

Running to a Breakpoint—A “breakpoint” is an

address in memory where we would like the

processor to stop while we examine or modify

the state of the myRIO and/or memory. The

target processor runs continuously unless it is

stopped at a breakpoint.

Now let’s re-execute the program until the

execution arrives at a specified breakpoint. Start

the debugger again from Debug

Configurations….

Suppose that we want to continue execution

(from the beginning) and determine the values

of x and i just before the first C statement inside

the “for” loop executes for the first time. Set a
breakpoint at the “x[i]=sumsq(i);” statement
by double-clicking on the marker bar next to

that source code line.

A new breakpoint marker appears on the

marker bar, directly to the left of the line where

00 Getting started L Lab Exercise: Getting started p. 3

you added the breakpoint. Also, the new

breakpoint appears in the Breakpoints pane.

Run to the breakpoint using the icon.

The text window should now show execution

suspended at that line. The Variables pane

should now display the new values of x and i.
The window marks in yellow values that have

changed. Are they what you expected?

Finally, (assuming that execution has stopped at

the first “for” loop iteration), cause the
debugger to execute the loop one more time

using the icon. The values of x and i should
be updated in the Variables pane. Are they

what you expected? Try it again. …And again.

…And again! Watch the progress of the

program on the LCD display.

Single-Stepping—The debugger can also step

through the execution of the program in three

ways:

1. “Step Over” Execute the current line,

including any routines, and proceed to the

next statement.

2. “Step Into” Execute the current line,

following execution inside a routine.

3. “Step Return” Execute to the end of the

current routine, then follow execution to

the routine’s caller.

“Step Over” single steps to the next sequential C

statement, but executes through functions, and

out of branches and loops before pausing. For

example, if the next line of code is a call to a

function, pressing will cause the entire

function to be executed and debugger will pause

at the line of code following the function call.

To begin the stepping process the target must be

suspended.

Terminate execution , and then restart the

debugging. Execution will be suspended at the

beginning of the program.

00 Getting started L Lab Exercise: Getting started p. 4

Now, single step from this point using ‘Step

Over” repeatedly. Notice that step

corresponds to a single line of C code. Notice

also that the current values in the Variables

pane change as you step. Watch the progress of

the program on the LCD display. Eventually,

execution exits through the return statement.
Restart the debugging again. This time run to

your breakpoint at “x[i]=sumsq(i);”. Now,
use “Step Into” to follow the execution into

sumsq. Continue stepping using until

execution exits back to main.
Quitting—You may terminate the debugging at

anytime using terminate .

Feel free to repeat these procedures and to try

other commands.

00 Getting started Lab Exercise: Getting started p. 1

Resource R1 High-level embedded system

The Embedded Computing Laboratory (ECL) at

Saint Martin’s University is a space dedicated to

teaching embedded computing in

electromechanical systems. It is hosted by the

Robotics Laboratory and developed in

collaboration with Prof. Joe Garbini of the

Department of Mechanical Engineering at the

University of Washington (UW), to whom credit

for much of the design is owed.

The following description is of the apparatuses

at ECL, which are similar to those at the UW.

The primary differences are that each lab has a

different set of motors and the UW uses a

custom analog amplifier to drive the motor

whereas the ECL uses pulse-width modulation.

The developers of the following content

distribute it in the hopes that others will find it

educational and perhaps useful as a template

for similar laboratories. Furthermore, we hope

students will be able to reference it when they

want to design their own embedded systems.

ECL has four identical systems for student use.

Each system consists of four subsystems:

1. an embedded computer and development

environment subsystem consisting of a

National Instruments myRIO

microcontroller, a personal computer, and

the Eclipse IDE;

2. a user interface hardware subsystem

consisting of a keypad, LCD display, and

associated circuit boards;

3. a motor driver subsystem consisting of a

dc power supply and a pulse-width

modulation motor driver circuit board and

4. a motor and mechanical apparatus

subsystem consisting of a flywheel

supported by bearings and coupled to the

shaft of a dc servomotor (with encoder for

https://www.me.washington.edu/research/faculty/garbini/index.html

00 Getting started Lab Exercise: Getting started p. 2

feedback).

myRIO

term board

proto board

LCD

keypad

driver

motor

flywheel

coupler

bearings

Figure 00.2: top view of most of the ECL apparatus.

Each of these is described in detail in the

following sections. Together, they allow a

student to program the microcontroller (in the C

programming language) to instantiate

completely embedded control of the motor

speed and position, which are set by the user

through the keypad and LCD display.

Figure 00.3: front view of most of the ECL apparatus.

00 Getting started Lab Exercise: Getting started p. 1

Resource R2 Embedded computer and development

environment subsystem

The development system is a powerful and

convenient tool for embedded computing

applications. As shown below, the development

system consists of a personal computer,

connected via a USB cable to target computer.

LCD Display

External
Devices

myRIO
Target
Computer

dual-core ARM
Cortex-A9 processor,
with Xilinx FPGA

Keypad

ApplicationDevelopment System

Figure 00.4:

During the development of an embedded

computing application, the development system

communicates with the real-time Linux

operating system of the myRIO target computer.

The development environment includes an

integrated set of hardware and software tools

that help to debug a microcomputer design by

allowing you to watch your program execute, as

well as to stop it and inspect system variables.

As you will see, it allows you to monitor and

control the target computer, without interfering

with its timing.

Once hardware and software development is

completed, the development system is

disconnected from the target system. In the final

application, the target program resides in ROM

on the target computer.

Getting Started with CDT

Eclipse is an integrated development

environment (IDE). We will use Eclipse through

00 Getting started Lab Exercise: Getting started p. 1

Final Application ...

LCD Display

External
Devices

myRIO
Target
Computer

dual-core ARM
Cortex-A9 processor,
with Xilinx FPGA

Keypad

Figure 00.5:

its C Development Tool (CDT) to create, edit,

build, deploy, and debug C language projects

for the myRIO target computer. Within Eclipse

all of your projects are organized into a single

workspace on your computer. Each project,

along with all of its necessary resources, are

stored in a named project folder.

The outline below describes the basic functions

of the IDE in preparing a C program for

subsequent loading and execution on the

myRIO remote system. Additional features are

described in the Help menu.

Box 00.1 is CDT set up?

If the development PC has not yet been set

up on the development computer, follow

the procedure of Resource 7 to do so,

before continuing.

Begin by starting the Eclipse IDE application.

C/C++ Perspective

Enter the C/C++ Perspective by selecting that

button in the upper right.

The Project The ME 477 C Support for myRIO

archive that you imported into your

Eclipse workspace when you set up the

CDT contains a template project for each

of the nine laboratory exercises this

quarter. They are listed in the right pane

of the C/C++ perspective. Open a project

by double clicking on its folder.

00 Getting started Lab Exercise: Getting started p. 2

Each C program consists of a collection of

functions, one of which must be called

main{}, and is executed first. For large
projects, additional functions are often in

separate files. However, the organization

of the assignments in this class is such that

all of the functions for a single assignment

can be conveniently stored in main.c
along with main{}.

Run and Debug Configurations Among

other things, Run and Debug

Configurations specify how the project

will be stored on the remote target.

Configurations for all ME 477 laboratory

exercises were loaded into your

workspace in steps 4 and 5 of Part 1 of the

C Development Tool Setup

documentation—see Resource 7.

Building the Project Building the project

consists of compiling your C source code

into object modules, and linking them

with other resources. Many coding errors

can be found during the building process.

Since building does not require that the

development system be connected to the

target, time spent in the lab is minimized.

Before building, save any edit changes in

the source code (ctrl-s). Either right click
the project and use Build Project, or select

and use Build Project from the Project pull

down menu. Errors and warnings are

displayed in the console menu in the

bottom pane.

During each build, the CDT automatically

re-compiles any file that has been edited

(and saved). The build operation creates

an output file in project’s Debug folder.

Running the Project The project must build

without errors before it can be run. The

first time a project is run, pull down the

Run menu and select Run

00 Getting started Lab Exercise: Getting started p. 1

Configurations…. In the Run

Configurations window, select the Run

Configuration of your project. Then click

Run.

The first run after a connection, you may

be asked to login. Use User ID: admin and
Password: me477.
Recently run projects may be conveniently

run from the pull down menu under the

run icon .

A project will not run if a project is already

running.

Barring execution problems, the project

runs until main{} terminates.

Debug Perspective

Enter the Debug Perspective by selecting that

button in the upper right. The Debug

perspective lets you manage the debugging or

running of a program. You can control the

execution of your program by setting

breakpoints, suspending launched programs,

stepping through your code, and examining the

contents of variables.

Debugging the Project The project must

build without errors before it can be

debugged. The first time a project is

debugged, pull down the Run menu and

select Debug Configurations…. In the

Debug Configurations window, select the

configuration of your project. Then click

Debug.

After the first debug, the project may be

conveniently selected for debugging by

pulling down menu under the debug icon

.

A project may not be debugged if a project

is already running.

Breakpoints A breakpoint suspends the

execution of a program at the location

00 Getting started Lab Exercise: Getting started p. 1

where the breakpoint is set. To set a line

breakpoint, right-click in the marker bar

area on the left side of an editor beside the

line where you want the program to be

suspended, then choose Toggle

Breakpoint. You can also double-click on

the marker bar next to the source code line.

A new breakpoint marker appears on the

marker bar, directly to the left of the line

where you added the breakpoint. Also,

the new breakpoint appears in the

Breakpoints view list.

Once set, a breakpoint can be enabled and

disabled by right-clicking on its icon or by

right-clicking on its description in the

Breakpoints view.

• When a breakpoint is enabled, it

causes the program to suspend

whenever it is hit. Enabled

breakpoints are indicated with a blue

enabled breakpoint circle.

• Enabled breakpoints that are

successfully installed are indicated

with a checkmark overlay.

• When a breakpoint is disabled, it will

not affect the execution of the

program. Disabled breakpoints are

indicated with a white disabled

breakpoint circle.

Debug view toolbar commands

The Debug perspective also drives the C/C++

Editor. As you step through your program, the

C/C++ Editor highlights the location of the

execution pointer.

Resume Select the Resume command to

resume execution of the currently

suspended debug target.

00 Getting started Lab Exercise: Getting started p. 1

Suspend Select the Suspend command to

halt execution of the currently selected

thread in a debug target.

Terminate Ends the selected debug session

and/or process. The impact of this action

depends on the type of the item selected in

the Debug view.

Step Over Select to execute the current

line, including any routines, and proceed

to the next statement.

Step Into Select to execute the current line,

following execution inside a routine.

Step Return Select to continue execution to

the end of the current routine, then follow

execution to the routine’s caller.

Debug information

Variables You can view information about the

variables in a selected stack frame in the

Variables view. When execution stops, the

changed values are by default highlighted

in red. Like the other debug-related views,

the Variables view does not refresh as you

run your executable. A refresh occurs

when execution stops.

Expressions An expression is a snippet of code

that can be evaluated to produce a result.

The context for an expression depends on

the particular debug model. Some

expressions may need to be evaluated at a

specific location in the program so that the

variables can be referenced. You can view

information about expressions in the

Expressions view.

Registers You can view information about the

registers in a selected stack frame. Values

that have changed are highlighted in the

Registers view when the program stops.

Memory You can inspect and change memory.

Disassembly You can view disassembled code

00 Getting started Lab Exercise: Getting started p. 1

mixed with source information.

Figure 00.6: myRIO-1900 Hardware Block Diagram (source: Instruments
(2013))

The system on a chip

The NI myRIO is centered around a Xilinx

Z-7010 system on a chip (SoC): a dual-core

Coretex A-9 CPU, memory, I/O inerfaces, and

00 Getting started Lab Exercise: Getting started p. 2

3. � Xilinx, 2017.

an Artix-7 fully programmable gate array

(FPGA). The Z-7010 datasheet3 is available here.

These are powerful SoCs. The Coretex A-9

CPUs have 667MHz clocks, have single- and

double-precision vector float point units, and

include NEON extensions (Xilinx, 2017). These

processors use the ARMv7-A instruction set

architecture (ISA) (ARM, 2012, 2014). The

Coretex-A9 Reference Manual and

Programmer’s Guide are available here.

https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://developer.arm.com/products/processors/cortex-a/cortex-a9

00 Getting started Lab Exercise: Getting started p. 1

Resource R3 User interface hardware subsystem

00 Getting started Lab Exercise: Getting started p. 1

Resource R4 Motor driver subsystem

Lorem ipsum dolor sit amet, consectetuer

adipiscing elit. Ut purus elit, vestibulum ut,

placerat ac, adipiscing vitae, felis. Curabitur

dictum gravida mauris. Nam arcu libero,

nonummy eget, consectetuer id, vulputate a,

magna. Donec vehicula augue eu neque.

Pellentesque habitant morbi tristique senectus et

netus et malesuada fames ac turpis egestas.

Mauris ut leo. Cras viverra metus rhoncus sem.

Nulla et lectus vestibulum urna fringilla ultrices.

Phasellus eu tellus sit amet tortor gravida

placerat. Integer sapien est, iaculis in, pretium

quis, viverra ac, nunc. Praesent eget sem vel leo

ultrices bibendum. Aenean faucibus. Morbi

dolor nulla, malesuada eu, pulvinar at, mollis

ac, nulla. Curabitur auctor semper nulla. Donec

varius orci eget risus. Duis nibh mi, congue eu,

accumsan eleifend, sagittis quis, diam. Duis

eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales,

sollicitudin vel, wisi. Morbi auctor lorem non

justo. Nam lacus libero, pretium at, lobortis

vitae, ultricies et, tellus. Donec aliquet, tortor

sed accumsan bibendum, erat ligula aliquet

magna, vitae ornare odio metus a mi. Morbi ac

orci et nisl hendrerit mollis. Suspendisse ut

massa. Cras nec ante. Pellentesque a nulla.

Cum sociis natoque penatibus et magnis dis

parturient montes, nascetur ridiculus mus.

Aliquam tincidunt urna. Nulla ullamcorper

vestibulum turpis. Pellentesque cursus luctus

mauris.

Nulla malesuada porttitor diam. Donec felis

erat, congue non, volutpat at, tincidunt tristique,

libero. Vivamus viverra fermentum felis. Donec

nonummy pellentesque ante. Phasellus

adipiscing semper elit. Proin fermentum massa

ac quam. Sed diam turpis, molestie vitae,

placerat a, molestie nec, leo. Maecenas lacinia.

00 Getting started Lab Exercise: Getting started p. 2

Nam ipsum ligula, eleifend at, accumsan nec,

suscipit a, ipsum. Morbi blandit ligula feugiat

magna. Nunc eleifend consequat lorem. Sed

lacinia nulla vitae enim. Pellentesque tincidunt

purus vel magna. Integer non enim. Praesent

euismod nunc eu purus. Donec bibendum

quam in tellus. Nullam cursus pulvinar lectus.

Donec et mi. Nam vulputate metus eu enim.

Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh.

Morbi vel justo vitae lacus tincidunt ultrices.

Lorem ipsum dolor sit amet, consectetuer

adipiscing elit. In hac habitasse platea dictumst.

Integer tempus convallis augue. Etiam facilisis.

Nunc elementum fermentum wisi. Aenean

placerat. Ut imperdiet, enim sed gravida

sollicitudin, felis odio placerat quam, ac

pulvinar elit purus eget enim. Nunc vitae tortor.

Proin tempus nibh sit amet nisl. Vivamus quis

tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus.

Sed bibendum, nulla a faucibus semper, leo

velit ultricies tellus, ac venenatis arcu wisi vel

nisl. Vestibulum diam. Aliquam pellentesque,

augue quis sagittis posuere, turpis lacus congue

quam, in hendrerit risus eros eget felis.

Maecenas eget erat in sapien mattis porttitor.

Vestibulum porttitor. Nulla facilisi. Sed a turpis

eu lacus commodo facilisis. Morbi fringilla, wisi

in dignissim interdum, justo lectus sagittis dui,

et vehicula libero dui cursus dui. Mauris

tempor ligula sed lacus. Duis cursus enim ut

augue. Cras ac magna. Cras nulla. Nulla

egestas. Curabitur a leo. Quisque egestas wisi

eget nunc. Nam feugiat lacus vel est. Curabitur

consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum

eu, tincidunt sit amet, laoreet vitae, arcu.

Aenean faucibus pede eu ante. Praesent enim

elit, rutrum at, molestie non, nonummy vel, nisl.

Ut lectus eros, malesuada sit amet, fermentum

00 Getting started Lab Exercise: Getting started p. 3

eu, sodales cursus, magna. Donec eu purus.

Quisque vehicula, urna sed ultricies auctor,

pede lorem egestas dui, et convallis elit erat sed

nulla. Donec luctus. Curabitur et nunc.

Aliquam dolor odio, commodo pretium,

ultricies non, pharetra in, velit. Integer arcu est,

nonummy in, fermentum faucibus, egestas vel,

odio.

Sed commodo posuere pede. Mauris ut est. Ut

quis purus. Sed ac odio. Sed vehicula hendrerit

sem. Duis non odio. Morbi ut dui. Sed

accumsan risus eget odio. In hac habitasse

platea dictumst. Pellentesque non elit. Fusce

sed justo eu urna porta tincidunt. Mauris felis

odio, sollicitudin sed, volutpat a, ornare ac, erat.

Morbi quis dolor. Donec pellentesque, erat ac

sagittis semper, nunc dui lobortis purus, quis

congue purus metus ultricies tellus. Proin et

quam. Class aptent taciti sociosqu ad litora

torquent per conubia nostra, per inceptos

hymenaeos. Praesent sapien turpis, fermentum

vel, eleifend faucibus, vehicula eu, lacus.

00 Getting started Lab Exercise: Getting started p. 1

Resource R5 Motor and mechanical apparatus subsystem

Motor

Mechanical apparatus

The motor hanger, shaft, shaft hanger, ball

bearings, and retainer rings are best purchased

from a single mechanical supplier (for tolerance

matching); we have chosen the following WM

Berg parts (catalog pages linked):

1. motor hanger (blank): BC7-1C (needs

holes drilled),

2. shaft (1/4 in diameter, 4 in length): s4-40,

3. shaft hanger (supports shaft through

bearings): BC17-12C,

4. ball bearings (2): B1-9,

5. retainer rings (2): Q4-62, and

6. split cylinder shaft coupler: CO41S-2.

The split cylinder shaft coupler is a flexible

coupler that helps with inevitable shaft

misalignment.

The flywheel is the only custom-machined

mechanical part. It is 304 stainless steel, one

inch thick and 2.5 in diameter with a 0.25 in hole

in the center for the shaft.

The Association of Electrical Equipment and

Medical Imaging Manufacturers NEMA defines

standards that many motor manufacturers use

for mounting geometry.

http://www.wmberg.com/
http://www.wmberg.com/
https://www.nema.org

00 Getting started Lab Exercise: Getting started p. 1

Resource R6 Sourcing and costs

00 Getting started Lab Exercise: Getting started p. 1

Resource R7 Setting up the C Development Tool for

myRIO

Box 00.2 setting up a lab PC or one’s

own laptop?

For configuring your own laptop,

complete all the steps, below.

For configuring a lab PC, complete steps

4 and 5 of Part A, then complete all

remaining parts (Part B – Part F).

Box 00.3 myRIO connected?

Parts A, B, and C can be performed

without connecting your laptop to one of

the lab myRIOs. For Parts D, E, and F, a

myRIO connection is required.

Do Parts A, B, and C just once, in the order

shown.

Part A: Setting up the software environment

Follow these instructions to set up the C

Development Tool for myRIO. Clicking on

hyperlinks opens the appropriate websites in

your browser.

1. Download and install LabVIEW 2015

myRIO Toolkit. (2700 Mb)

For Native Windows 8 or 10:

Download myRIOToolkit2015.

Mount disk image. Then run

setup.exe.
For Native Windows 7: Download

from myRIOToolkit2015. You may

need a means of mounting the .iso
disk image. For example, use Virtual

CloneDrive to mount the .iso disk
image files as a virtual CD-ROM

drive. Then run setup.exe.

https://drive.google.com/uc?export=download&id=0BxOxVaK0rJzucmlQX1RoaU9wTEk
https://drive.google.com/uc?export=download&id=0BxOxVaK0rJzucmlQX1RoaU9wTEk
https://drive.google.com/file/d/0B_FhC5ZoEdWLTzh0dnNNdFFJeFE/view
https://drive.google.com/file/d/0B_FhC5ZoEdWLTzh0dnNNdFFJeFE/view

00 Getting started Lab Exercise: Getting started p. 2

For Virtual Windows 7, 8, or 10 under Parallels:

Download

myRIOToolkit2015 under OS X. From

Parallels, Devices CD/DVD Connect Image... and

mount the disk image.

Then run setup.exe.

2. Install Java. Visit the Java website GetJava

to download Java. (17 Mb) Use Internet

Explorer, not Microsoft Edge.

3. Install the C/C++ Development Tools for

NI Linux Real-Time 2014, Eclipse Edition.

Visit this link Eclipse2014 to download

and install Eclipse. (260 Mb)

4. Project templates have been prepared for

each of the ME 477 laboratory exercises.

Visit the ME 477 website Resources Page

to download the

ME477 myRIO support 2018 archive.
Remember where you put this archive, but

do not unzip. (2 Mb)

5. Eclipse uses Launch Configurations to

specify how the project will be deployed

and run on the myRIO.

Visit the ME 477 website Resources Page

to download the

ME 477 Launch Configurations archive.
Unzip into folder LaunchConfig477 (40
kb). Remember where you put the folder.

6. Add the compiler path to the system

environment variables.

a. Visit the ME 477 website Resources

Page.

64-bit compiler path file, select
and copy with ctrl + C the contents.

b. In the Windows Control Panel, select

System and Security System Advanced system settings to

display the System Properties
dialog box.

c. Click Environment Variables to display the

Environment Variables dialog box.

https://drive.google.com/uc?export=download&id=0BxOxVaK0rJzucmlQX1RoaU9wTEk
http://www.java.com/getjava
https://drive.google.com/uc?export=download&id=0BxOxVaK0rJzuR0RlVDNmV1A4Q3c
http://courses.washington.edu/mengr477/resources.html
http://courses.washington.edu/mengr477/resources.html
http://courses.washington.edu/mengr477/resources.html
http://courses.washington.edu/mengr477/resources.html

00 Getting started Lab Exercise: Getting started p. 1

d. Select PATH in the User variables
group box and click Edit .

If PATH does not exist, click New to

create it.

e. Click New and paste with ctrl + V the

compiler path to the end of

Variable value (separated by the ;
character). Be certain that there are

no extra spaces in the path.

7. Click OK to close the dialog box and save

changes.

Part B: Define a connection to the myRIO

Complete the following steps to define a

connection in Eclipse from your laptop to the

myRIO target.

1. Launch Eclipse, specify a workspace, and

click OK to display the C/C++ perspective

(default).

Two other perspective views, Remote

Systems Explorer and Debug, will also be

useful. To make these available, select

Window Open Perspective Other to display the

Open Perspective dialog box.
Then select Remote Systems Explorer
and click OK to display the Remote

Systems Explorer perspective. Repeat this

process to display the Debug perspective.

Buttons for all three perspectives should

appear and can be used at any time to

switch perspectives.

2. Open the Remote Systems Explorer

perspective to display the

Remote Systems pane at left.
3. Click the

Define a connection to remote system

icon to display the New Connection
dialog box.

4. Select General SSH Only .

00 Getting started Lab Exercise: Getting started p. 1

Figure 00.7: Remote Systems Explorer with myRIO
connection successfully defined.

5. Enter the IP address 172.22.11.2 in the
Host name textbox and click Finish . Your

target displays in the Remote Systems tab
in the Remote System Explorer pane, as
shown in Figure 00.7.

Part C: Importing C Support and Launch Configurations

Complete the following steps to import C

Support and Launch Configurations to Eclipse.

1. From the C/C++ perspective, select File

Import to display the Import dialog box.
2. Select General Existing Projects into Workspace and click Next

to display the Import Projects page.
3. Select Select archive file , click Browse and select the

ME 477 C Support for myRIO zip file
downloaded in step 4 of Part A.

4. Ensure that all items are checked and click

Finish to import

ME 477 C Support for myRIO. See
Figure 00.8.

5. Build (compile) all projects with menu

selection Project Build All .

00 Getting started Lab Exercise: Getting started p. 2

Figure 00.8: ME 477 Project Templates.

Figure 00.9: Launch Configurations.

6. Again, from the C/C++ perspective, select

File Import to display the Import dialog box.
7. Select menu item Run/Debug Launch Configurations and

click Next to display the Import Launch
Configurations page.

8. Click Browse and select the LaunchConfig477
folder that you downloaded in step 5 of

Part A.

9. Ensure that all items are checked and click

Finish . To check that the import of the

Launch Configurations was successful,

select menu item Run Run Configurations... and

compare the dialog with Figure 00.9.

00 Getting started Lab Exercise: Getting started p. 1

Figure 00.10: the Remote Systems tab should appear like this
once a connection is established successfully.

Box 00.4 myRIO connected?

Your laptop must be connected through

a USB cable to one of the myRIOs to

perform Parts 4, 5, and 6. Each time you

connect, a myRIO USB Monitor dialog box
will appear indicating myRIO IP Address

172.22.11.2. Always select Do Nothing .

Part D: Connect to the myRIO target

Complete the following steps to establish a

connection between Eclipse and the myRIO

target.

1. In the Remote Systems pane, right-click
the target and select Connect from the

shortcut menu to display the Enter
Password dialog box.

2. Enter the user ID: admin and password:
<UW: me477 | SMU: leave blank> and

click OK .

3. Click OK in the Info dialog box.
4. If the Keyboard Interactive

authentication dialog box appears, leave
the password blank, and click OK . As

shown in Figure 00.10, green arrow

appears on the target icon when the

myRIO is connected.

Part E: Running the myHelloWorld project

In Parts 5 and 6 you will run and debug a

project. Here, the myHelloWorld project is used

00 Getting started Lab Exercise: Getting started p. 1

as example.

Eclipse uses a “Run Configuration” to specify

how the project will be deployed and run on the

myRIO. Run Configurations for ME 477 projects

were downloaded in step 5 of Part A.

Complete the following steps to run the

myHelloWorld example project.

1. In Eclipse, switch to the C/C++

perspective.

2. You can view and edit the C source code

by double clicking on the myHelloWorld
project in the left pane, and then double

clicking on main.c.
3. In the Project Explorer pane, right-click

the myHelloWorld project, and select
Build Project from the shortcut menu to build

the project. Any build errors will be noted

in the Problems pane.
4. Right-click the myHelloWorld project and

select Run As Run Configurations to display the Run
Configurations dialog box.

5. Select the myHelloWorld project in the left
pane.

6. Click Run . The project runs on the myRIO

target. You can find the result in the

Console pane, and on the LCD screen.

Part F: Debugging the myHelloWorld project

Similarly, Eclipse uses a “Debug Configuration”

to specify how the program will be debugged

on the myRIO. Once the Debug Configuration

for a project is set up, debugging the program

requires just a single click.

Complete the following steps to set up the

Debug Configuration for the myHelloWorld
project. These include building, deploying, and

debugging the project.

1. In Eclipse, switch to the C/C++

perspective.

00 Getting started Lab Exercise: Getting started p. 2

2. In the Project Explorer pane, right-click
the myHelloWorld project and select Debug As

Debug Configurations to display the Debug
Configurations dialog box.

3. Select the myHelloWorld project in the left
pane.

4. Click Debug . The project runs on the myRIO

target within the debugger. Some

warnings may appear in the Console pane.

Under normal circumstances, these

warnings are not a problem. You can find

the debug tools on the toolbar of Eclipse.

There will be more about this in the first

laboratory exercise.

5. For now, try setting a breakpoint at the

printf() statement by double-clicking in
the margin at left of that statement. A blue

dot with a small checkmark should

appear in the margin. The blue dot

indicates that the breakpoint is enabled,

and the checkmark indicates that the

breakpoint is installed.

If you resume (green arrow) from the

beginning of the program, execution

should pause at the breakpoint, as shown

in Figure 00.11.

00 Getting started Lab Exercise: Getting started p. 3

Figure 00.11: debugging and stopped at a breakpoint.

00 Getting started Lab Exercise: Getting started p. 1

Resource R8 Suggested reading

The classic C programming language

text Kernighan and Ritchie (1988), co-authored

by Dennis Ritchie, who developed the language

at AT&T Bell Laboratories between 1969 and

1973.

For computer hardware and software concepts,

Patterson and Hennessy (2016) is a good

introduction.

Part II

The User Interface

01

Computing principles, myRIO C programming,
and high-level io drivers

01 Computing principles, myRIO C programming, and high-level io drivers Memory p. 1

01.1 Memory

Computer memory is a collection of bistable

devices—so they can represent only, say 0 or a 1

in each bit—organized as bytes: collections of 8

binary digits or bits. There are 28 = 256 unique

bytes. In more modern systems, each byte (n.b.

not bit) of memory has a unique address—an

identifying code. An important aspect of the C

programming language is that it can deal

directly with these memory addresses, a

relatively low-level functionality.

Memory is not content-specific. It can be used to

represent numbers (integers, floating point,

signed numbers, etc.), codes (character codes,

numeral codes, etc.), and instructions. We must

keep track of the meaning of its contents. For

instance, a single bit could represent the state of

the union: 1 could mean “covfefe” and 0,

“dumpsterfire.” A less exciting example with

two bits representing four directions:

11⇒ north

00⇒ south

01⇒ east

10⇒ west

Things you can store in memory

Pure binary numbers

Non-negative integers of different magnitudes

can be stored as pure binary in memory. Here is

an example using one byte or two nibbles:

0000 00002 = 010

0000 00012 = 110

...

1111 11102 = 25410

1111 11112 = 25510.

01 Computing principles, myRIO C programming, and high-level io drivers Memory p. 1

1. The first borrow might seem strange, but it’s simply 102 − 012 =

210 − 110 = 110 = 012.

So the non-negative integers we can store in one

byte are 0–255, of which there are 28 = 256.

But we can use more than one byte to store a

non-negative integer in pure binary. If multiple

bytes are representing a number, the byte that

occurs first (in terms of address) in memory is

called the most significant byte (MSB), and the

byte that occurs last is called the least significant

byte (LSB). The MSB is usually represented as

being to the left of the other bytes, and the LSB

is typically represented as being to the right.

Here is a list of the total number of possible

non-negative integers that can be stored in n

bits (formula: 2n) for typical values of n:

28 = 256

216 = 65, 536

224 = 16, 777, 216

232 = 4, 294, 967, 296.

8-bit two’s complement signed binary

How can a negative number be stored in

memory? A single byte can store 256 unique

pieces of information. For decimal numbers,

this can range 0 to 255 or (say) −128 to 127.

A very convenient binary representation is

called two’s complement. A number x has two’s

complement in n bits of (2n − x)2; that is, the

number of unique numbers representable minus

the number, represented in binary. For instance,

the 8-bit two’s complement of 0110 1000 is1

1 0000 0000
− 0110 1000

Below are listed some 8-bit two’s complement

01 Computing principles, myRIO C programming, and high-level io drivers Memory p. 1

decimal interpretations of binary numbers.

0000 00002 = 0

0000 00012 = 1

...

0111 11112 = 127

1000 00002 = −128

1000 00012 = −127

...

1111 11102 = −2

1111 11112 = −1

As if in Pac-Man, starting from the middle and

exiting screen-right, only to appear

screen-left—counting “up” loops one back

down to negative numbers. Note that positive

two’s complements are the same as their pure

binary counterparts.

There are two more-convenient ways to find the

two’s complement:

1. switching all bits (0 7→ 1 and 1 7→ 0), then
adding 1 or

2. starting from the right, copying all bits

through the first 1 encountered, then
switching all thereafter.

Both methods can be seen to always hold from

the subtraction definition.

The two’s complement of the two’s complement

of x is x; that is, it is its own inverse.

Example 01.1 -1 re: two’s complement

Find the two’s complement of 0000 0101.

If a binary number is interpreted as a two’s

complement binary number, it is negative if its

most significant bit (msbit) is 1.

01 Computing principles, myRIO C programming, and high-level io drivers Memory p. 1

2. The mantissa is also called the significand or coefficient.

Binary coded decimal (BCD)

A binary coded decimal (BCD) represents each

decimal digit with a nibble, so a series of nibbles

can represent a decimal number. This leads to

slightly less-dense storage, but is still useful for

high-precision computation.

Example 01.1 -2 re: BCD for rounding error

Recall that the number 421.73 had an infinitely

long binary representation in Example 00.4 -

1. Represent this number in BCD. Let there be

an “implied” decimal point, as some encodings

define, between the third and fourth nibbles.

Floating point

Floating point numbers can represent very large

or very small numbers with limited space. It is

for computer memory what scientific notation is

for a small piece of paper: that is, it represents a

number as a mantissa2 x and an exponent n;

that is, x2n, where we have used the

conventional base of 2.

Consider the following illustration of a 32-bit

(four-byte) floating point representation.

︸ ︷︷ ︸
8-bit signed binary exponent

︸ ︷︷ ︸
24-bit fractional signed binary mantissa

We would interpret this as, for instance,

·1011 · · ·︸ ︷︷ ︸
24-bit mantissa

× 2 1011 0110︸ ︷︷ ︸
8-bit exponent

. (1)

01 Computing principles, myRIO C programming, and high-level io drivers Memory p. 1

Character codes

In addition to numbers, memory can store

character codes: encoded alphabetic, special

symbols, emojis, etc.

The most common character code is the

American Standard Code for Information

Interchange (ASCII). It’s a 7-bit code, so there

are 128 unique character codes.

It leaves the eighth bit of a byte, “bit seven,” the

parity bit, to be checked for transmission errors.

It works as follows. Set (1) or reset (0) before
transmission such that the total number of set

(1) bits is either even or odd. If the system is

using even parity, an even number of bits are

set; or if it’s using odd parity, an odd number of

bits are set.

For instance, under odd parity, if the byte 1100
1101 is sent and the byte 1100 0101 is received,
with its even number of set bits, the receiving

system knows there has been a transmission

error.

Instructions

Instructions are codes that direct the operation

of a microprocessor. The myRIO has an ARM

Cortex-A9 processor with 32-bit instructions.

Example 01.1 -3 re: memory interpretation

Suppose the following is stored in a byte of

memory: 1101 0101 or D5. How might this be

interpreted?

01 Computing principles, myRIO C programming, and high-level io drivers Memory p. 2

Memory organization

In memory, bits are grouped into bytes of eight

bits. Each byte is often considered as two

nibbles, the contents of each represented by a

hexadecimal numeral. For instance, a byte

might be represented as follows.

1101 0100

D 4

Each byte is given a unique positive integer

address distinct from its contents.

address contents

0

1

2

3

4
...

When storing a multi-byte number, we use the

bigendian convention: the MSB is stored at the

lower address. The littleendian convention

stores the MSB at the higher address.

01 Computing principles, myRIO C programming, and high-level io drivers Processing p. 1

3. Another popular embedded architecture is the MIPS architecture.

01.2 Processing

A CPU has an abstract model, called an

instruction set architecture (ISA), that typically

describes how the processor interacts with

memory, input, output, and instructions. A

popular architecture for personal computers is

the x86 ISA. For mobile and embedded

computers, however, the ARM ISA is

ubiquitous.3

The ARM ISA is a reduced instruction set

computing architecture (RISC architecture),

which means its instructions are less complex

than those of a complex instruction set

computing architecture (CISC architecture),

such as x86. RISC architectures are often used in

embedded computers.

The Embedded Computing Lab’s embedded

computers (on NI myRIO 1900 boards—see

Resource 1) use the ARM architecture.

Specifically, the system on a chip (SoC) Xilinx

Z-7010’s Coretex-A9 (dual) CPUs use the

ARMv7-A ISA (see Resource 2).

Although the focus of this chapter is this

architecture, many of the concepts apply more

broadly, to CPUs with different ISAs.

01 Computing principles, myRIO C programming, and high-level io drivers A CPU programming model p. 1

4. For an interesting discussion of “why the offset,” see this informative
SO answer.

01.3 A CPU programming model

A central processing unit (CPU) has three

functions that are repeated endlessly:

1. fetch an instruction from memory,

2. translate the instruction, and

3. execute it.

Typically, the control unit of a CPU fetches

instructions from memory and translates them.

It then sends to the datapath of the CPU to be

processed. It does this by means of registers,

which are small, special purpose units of

memory in the datapath.

Core ARM registers

A developer of an embedded system with a

given CPU must understand it at the

“application-level,” which is distinguished from

the “system-level” of the operating system. An

application-level “view” of the ARM processor

registers has thirteen general-purpose 32-bit

registers named R0–R12 and three

special-purpose registers named SP, LR, and PC

(also called R13–R15) (ARM, 2014, p. A2-45).

The stack pointer SP (R13) register contains the

memory address of, and therefore points to, the

top of the active stack. A stack holds data, such

as “automatic variables,” temporarily. We’ll

talk more about stacks, later.

The return link LR (R14) register is used, for

instance, to store the current memory address of

the calling program during a subroutine call.

The program counter PC (R15) register contains

the memory address of the current instruction

plus eight (bytes)—that is, of two

instructions-from-now.4

The general-purpose registers typically hold

data, such as ints, doubles, and chars.

https://stackoverflow.com/a/24092329/2691113
https://stackoverflow.com/a/24092329/2691113

01 Computing principles, myRIO C programming, and high-level io drivers A CPU programming model p. 1

Other ARM registers

The 32-bit application status register (APSR)

stores the program’s last-executed instruction

return status in flags:

• N: negative condition (e.g. two’s

complement negative MSbit),

• Z: zero condition (e.g. equal from

comparison),

• C: carry condition (e.g. unsigned overflow

from addition),

• V: overflow condition (e.g. signed

overflow from addition), and

• Q: overflow or saturation condition (e.g.

from DSP)

encoded as single bits. These flags can be tested

by the next instruction for conditional

execution. A nibble of the APSR stores the GE:

greater-than or equal flag.

The execution state registers allows special

instruction sets, such as Thumb, to be executed;

contains special Thumb instructions; and sets

the register endianness mapping (big-endian or

little-endian).

The Xilinx Z-7010 Coretex-A9 has the optional

ARMv7-A vector floating-point unit VFPv3 ISA

extension, which enables high-performance and

efficiency of floating-point arithmetic. The

extension has its own, dedicated extension

registers.

Types of instructions

Below are some examples of the types of

instructions a CPU might encounter:

• load or store (to/from CPU registers),

• transfers (between registers),

• move (memory→memory),
• set/reset bits,

• shift/rotate,

01 Computing principles, myRIO C programming, and high-level io driversexe A CPU programming model p. 1

• arithmetic (add, subtract, multiply, divide,

negate),

• logic (ands, ors, etc.),

• conditional branches and jumps,

• unconditional branches and jumps, and

• subroutines.

Addressing modes

Addressing modes specify how the CPU is to

calculate the memory address for a load or a

store operation. For the ARMv7-A ISA, the

address is composed of two parts: a base

register value and an offset (ARM, 2014,

p. A4-176). The base register can be any core

ARM register. The offset must have one of the

following three formats.

Immediate An unsigned number, it can be

summed with (or subtracted from) the

value of the base register.

Register A value from a core ARM register

other than PC.

Scaled register A shifted value from a core

ARM register other than PC summed with

(or subtracted from) the value of the base

register.

These lead to the following three addressing

modes:

Offset The offset is summed with (or

subtracted from) the base register, forming

the memory address.

Pre-indexed Same as “Offset,” followed by

the new address is then assigned to the

base register.

Post-indexed The memory address is the

value of the base register. Then the base

register is offset.

01 Computing principles, myRIO C programming, and high-level io drivers L Exercises for Chapter 01 p. 1

01.exe Exercises for Chapter 01

01 Computing principles, myRIO C programming, and high-level io driversL Lab Exercise: Introduction to myRIO C programming and high-level io drivers p. 1

01.L Lab Exercise: Introduction to myRIO C

programming and high-level io drivers

Objectives

In this exercise you will gain experience with:

1. C programming for myRIO.

2. The beginning of a device driver for the

keypad/LCD.

3. On-line debugging techniques.

Introduction

In Lab Exercises 01, 02 and 03, we will write

several functions that will allow a user to

interact with the program through the keypad

and LCD screen. Below is an outline of the

functional dependencies and corresponding Lab

Exercises. Functions provided by the me477
library, core C, or the standard C library will be

overwritten by those we write, which are shown

in green.

01 Computing principles, myRIO C programming, and high-level io driversL Lab Exercise: Introduction to myRIO C programming and high-level io drivers p. 1

double_in (Lab 01) prompts LCD and returns keypad double← this lab!

fgets_keypad (Lab 02) gets string from keypad

getchar_keypad (Lab 02) gets char from keypad

getkey (Lab 03) gets char from keypad

putchar_lcd (Lab 03) prints char to LCD

printf_lcd (Lab 01) prints string to LCD← this lab!

putchar_lcd (Lab 03) prints char to LCD

vsnprintf (Lab 01) assigns to formatted string

sscanf (Lab 01) converts ASCII to binary

strstr (Lab 01) find string in string

strpbrk (Lab 01) find member in string

It is important to note that these functions are

already available in me477 library, so when we
write our own version of a function, it

supersedes the library version. This allows us to

depend on the lower-level functions without

writing them, first.

In this Lab Exercise, in addition to the main
program, you will write double_in and
printf_lcd. At this point, you are expected to
have only an elementary knowledge of C, but

you should become familiar with the

procedures, such as debugging, that you will

need in the future.

Pre-laboratory preparation

Complete the following and make sure your

functions compile before running them while

connected to the lab hardware.

01 Computing principles, myRIO C programming, and high-level io driversL Lab Exercise: Introduction to myRIO C programming and high-level io drivers p. 2

Part #1 User input: writing the function

double_in

Very often in an interaction between a computer

and a user, a message or “prompt” is written on

the LCD display and the user is expected to

respond by entering an appropriate decimal

number through the keypad. In this laboratory

exercise you will write a C function, called

double_in, to perform the complete

keypad/LCD procedure.

This function will be used here, and in later

exercises, to obtain numerical information

through interaction with the terminal. It should

execute the following steps each time it is called.

1. A user prompt (a string of ASCII

characters) is written on Line-1 of the LCD

display. A pointer to the string

corresponding to this prompt is the only

argument of the double_in function.
2. A floating point number is accepted from

the keypad in response to the prompt. If

an error occurs in the input string, the

display is cleared, an error message is

written on Line-2 of the display, and the

prompt is issued again on the first line.

The number is entered as a string of ASCII

characters that may include the decimal

digits 0 - 9, a decimal point, and a minus

sign, and is terminated by ENTR .

3. The entered string is interpreted as a

floating point number.

4. The floating point number (C data type

double) is returned from double_in
function to the calling program.

The prototype of the double_in function is

double double_in(char *prompt);

For example, a call to double_inmight be:

01 Computing principles, myRIO C programming, and high-level io driversL Lab Exercise: Introduction to myRIO C programming and high-level io drivers p. 3

vel = double_in("Enter Velocity: ");

The variable velwould be assigned the value
entered.

The LCD interaction would look like:

Enter Velocity: -50.75

Or, if an error occurs: (e.g. user enters: -50..75)

Enter Velocity: _
Bad Key. Try Again.

Allow for four possible user errors:

Error Type Error Message

Displayed on Line-2

No digits are entered Short. Try Again.

(e.g. ENTR only)

↑ or ↓ Bad Key. Try Again.

“−” other than first Bad Key. Try Again.

character (e.g.“−−”)

“..” Bad Key. Try Again.

double decimal point

Our goal here is that the user must enter a valid

number before the double_in function can exit.
Notice that the errors are detected in the string

that the user enters.

Here is a possible strategy for double_in:
Begin by using the printf_lcd function (which
we will also write in this exercise) to display the

prompt on the LCD screen. Then,

1. Use fgets_keypad (get string) to obtain
the string from the keypad. Its prototype

is:

char * fgets_keypad(char *buf, int buflen);

When fgets_keypad is called, as in
fgets_keypad(string, 40), it assigns the

01 Computing principles, myRIO C programming, and high-level io driversL Lab Exercise: Introduction to myRIO C programming and high-level io drivers p. 1

characters from the keypad to the string
variable, which should have been declared

to be a character array, like

static char string[40]. However, if
ENTR is pressed,

fgets_keypad(string, 40) returns NULL
(instead of writing to string). So if you
defined

flag = fgets_keypad(string, 40), if
ENTR is pressed flag == NULL should be
true.

2. Use strpbrk (string pointer break) to
detect ↑ or ↓. Note: ↑ is returned by
fgets_keypad as the ASCII character [
and ↓ as].

3. Use strpbrk to detect minus signs -
beyond the first character.

4. Use strstr to detect double decimal
points (i.e. ..).

5. Use sscanf (scan formatted from string) to

perform the ASCII-string-to-double

conversion. Hint: because sscanf is
converting to a variable of type double,
you need to use the format %lf (long float).

Note: printf_lcd and fgets_keypadwork like
the standard C functions printf and fgets, and
are linked to your program from

me477 library.
Write a main program that tests your double_in
function by calling it twice from the main
program, assigning each result to a different

variable. Then, as a check, print the values of

both variables on the console using printf. See
Algorithm L.1 for main pseudocode and
Algorithm L.2 for double_in pseudocode.

Part #2 Display on LCD: writing the function

printf_lcd

Our second task is to write the printf_lcd
function used by double_in. The C function

01 Computing principles, myRIO C programming, and high-level io driversL Lab Exercise: Introduction to myRIO C programming and high-level io drivers p. 2

Algorithm L.1 main pseudocode
function main

declare double variable vel for velocity
open connection to myRIO and check for

success
call double_in and assign output to vel
print vel to LCD with printf_lcd
close myRIO connection and return its

status
end function

Algorithm L.2 double_in pseudocode
function double_in(p) . p is prompt pointer

declare variables
clear LCD display . use printf_lcd
c← 1 . initialize stop check
while c == 1 do

print p to LCD . use printf_lcd
f← fgets_keypad(s,) . get string s

and out flag f

if f == NULL then
print “Short. Try again.” to LCD

. use printf_lcd
else if s does not pass bad key checks

then
print “Bad key. Try again.” .

use printf_lcd
else

c← 0 . set stop condition
sscanf(s,"%lf",&v) . convert s to

double and assign to v

end if
end while
return v

end function

01 Computing principles, myRIO C programming, and high-level io driversL Lab Exercise: Introduction to myRIO C programming and high-level io drivers p. 3

printf prints to the standard output device, in
our case the Console pane of the Eclipse IDE.

We want printf_lcd to operate exactly as
printf, except that it will print to the LCD
screen. Refer to your C text. To do this, we want

printf_lcd to accept a format string with a
variable number of arguments. Therefore, the

prototype for printf_lcd is

int printf_lcd(const char *format, ...);

where format is a string specifying how to

interpret the data, and the ellipsis (...)
represents the variable list of arguments

specifying data to print. The return value is an

int equal to the number of characters written if
successful or a negative value if an error

occurred.

For example,

n = printf_lcd("\fa = %f, b = %f", a, b);

Here is a suggested strategy for printf_lcd:

• Use the C function vsnprintf to write the
data to a C string.

• Then use the LCD driver function

putchar_lcd to successively write each
character in the string to the LCD display.

Note: It is strongly suggested that you use

an incremented pointer to access the

string, rather than an array index. See

Lec. 01.L for more guidance on

putchar_lcd.

The C function vsnprintfwrites formatted data
from the variable argument list to a buffer (the

string) of a specified size.

The tricky part is passing the variable argument

list of printf_lcd to vsnprintf. Here is an
example fragment of code. From your C text,

study the data type va_list, and the C macros

va_start and va_end to see how this works.

01 Computing principles, myRIO C programming, and high-level io driversL Lab Exercise: Introduction to myRIO C programming and high-level io drivers p. 1

int printf_lcd(char *format, ...) {
va_list args;
va_start(args, format);
n = vsnprintf(string, 80, format, args);
va_end(args);

}

As usual, you must allocate storage for the C

string of length 80.
The main program, the double_in function, and
the printf_lcd function should all be in the
same file: main.c. Be sure to #include the
header files me477.h, <stdio.h>, <stdarg.h>,
and <string.h> in the code.
Once you have defined printf_lcdwithin your
main.c, your code will supersede the version in
the me477 library. See Algorithm L.3 for

pseudocode for printf_lcd.

Algorithm L.3 printf_lcd pseudocode
function printf_lcd(f, v) . f is string format, v
is variable data to print

declare variables
start parse args with va_list, va_start
n← vsnprintf(S,80,f,args) . S is the string

char length 80

finish parse args with va_end
if n < 0 then . test for conversion error

return n

end if
initialize s . s points to start of s
while dereferenced s is not 0 do . check if

S is done
putchar_lcd(dereferenced s with

postfix increment)
end while
return n

end function

Laboratory procedure

Debug and test your C program. As necessary,

use breakpoints and single-stepping to find

errors.

01 Computing principles, myRIO C programming, and high-level io driversL Lab Exercise: Introduction to myRIO C programming and high-level io drivers p. 1

Guidance

This section provides guidance on several

aspects of the Lab Exercise, above.

Background on putchar_lcd

The C function putchar_lcd places the single
character corresponding to its argument on the

LCD screen. Its prototype is

int putchar_lcd(int c);

where both the input parameter and the

returned value are the character to be sent to the

display. A character constant is an integer,

written as one character within single quotes,

such as 'x'.
For example, calls to putcharmight be:

ch = putchar('m');
putchar('\n');

To write both parts of your program you also

need to know how the escape sequences used in

the putchar_lcd function affect the LCD screen.

This concerns the important matter of I/O

(input/output), which we will consider in detail

later. For now the following table explains the

escape sequences:

Escape

Sequence Function

\f Clear Display

\b Move cursor left one space

\v Move cursor to the start of line-1

\n Move cursor to the start of the next line

Dissecting a C program

This lab requires the use of several aspects of

the C programming language. In this section,

some of that is outlined, but a C textbook such

as Kernighan and Ritchie (1988) is required for

sufficient understanding.

01 Computing principles, myRIO C programming, and high-level io driversL Lab Exercise: Introduction to myRIO C programming and high-level io drivers p. 2

We begin by writing a simple C program that

sums loop indices and proceed unpack its

meaning.

1 /* include libraries */
2 #include "stdio.h"
3

4 /* declare function prototypes */
5 int sum(int x); /* sum */
6

7 /* define external/global variables */
8 #define N 5 /* number of loops */
9

10 /* define functions */
11 int main(int argc, char *argv[]) {
12 static int x[10]; /* total */
13 static int i; /* index */
14 for (i=0; i < N; i++) {
15 x[i] = sum(i);
16 printf("%d",x[i]);
17 if (i < N-1) {
18 printf(",");
19 }
20 else {
21 printf(".");
22 }
23 }
24 return 0;
25 }
26

27 int sum(int x) {
28 static int y=0; /* initialize y */
29 y = y + x;
30 return y;
31 }

1 0,1,3,6,10.

C programs consist of variables and functions.

Variables are defined via an assignment

statement, the most common operator is = as
when our program assigns the first value of the

variable i in the expression i = 0, which could
also be written i=0—spaces are added for

clarity.

Our program has two functions: main and sum.
Whenever a C program is executed, it begins

with a function named main. Every program
must have one. If we don’t need to pass any

01 Computing principles, myRIO C programming, and high-level io driversL Lab Exercise: Introduction to myRIO C programming and high-level io drivers p. 3

arguments to our program, in its definition, the

argument can be empty, as in:

int main() { /* statements */ }

If we need to pass arguments—say, from the

command-line—there is a specific method

described in detail by Kernighan and Ritchie

(1988, p. 114) that would have as its definiton:

int main(int argc, char *argv[]) { /* statements */ }

For our program, we don’t use the arguments,

so either is valid.

The ints before the definitions of main and sum
declare that these functions return data type int
for integer. Although it is not strictly required

in every instance, it is considered best practice

to always precede a definition with its return

data type.

Most C programs load external libraries with

pre-compiled functions. The most popular

libraries are from the C standard library. For i/o

functions like the printfwe use here to print to
the console, the stdio.h header file must be
#included, as shown at the top of our program.
We’ll include the header file me477.h, which
includes compiled versions of the functions

we’ll be writing over the next few Lab Exercises.

Best practice is to declare prototypes for each

function (we often skip main, which always has
the same prototype), which, for our sum, looks
like:

int sum(int x);

Here we’re declaring that sum is a function with
a single integer argument, which we’ll call x
inside the function, that returns an integer to the

calling function. These declarations should be

before main. The function definition can occur

01 Computing principles, myRIO C programming, and high-level io driversL Lab Exercise: Introduction to myRIO C programming and high-level io drivers p. 4

either before or after main, but we adopt the
convention of defining functions after main.
External or global variables are those defined

above main. These variables are defined once
and can be accessed by every function that

declares it with extern. A similar, but distinct

object is the symbolic constant, defined by

#define, as with N in our program. A difference

is that symbolic constants need not be declared

within a function. We conventionally capitalize

symbolic constants.

Line 12 shows the declaration of variable x to be
an array with 10 elements. This preallocates a
block of memory for x. Most variables inside a

function are automatic: they are not retained

between function calls. However, often in

embedded computing we will be using pointers

to specific addresses in memory at which a

variable can be found. The safest way to use

pointers is to declare the variable to be static,
as in Lines 12, 13, and 28. A very important

consequence of this declaration is that the

variable’s value is retained between function

calls. For instance, in sum, we initialize y to be a
static integer (0), then add the argument x to it
are return the sum, which has overwritten y.
Each successive call, the old value of y is
retained, so on the second call, third call, for

which x is 2 and the old y is 1, the returned y is
3.
Line 14 is the beginning of a for loop. We

highlight two syntactical nuances. First, there

are the three flow control components in the

statement (initialize;condition;increment).
The initialize statement is executed first and

only once. The condition statement returns a

boolean (actually just an integer) of 1 for true
and 0 for false. If the condition is true, the
statements between the following braces are

executed. Afterwards, the increment statement

is evaluated and the loop returns to evaluate the

01 Computing principles, myRIO C programming, and high-level io driversL Lab Exercise: Introduction to myRIO C programming and high-level io drivers p. 1

condition ….

The second syntactical consideration is that the

braces {} should enclose the looped block.
Although a single statement need not be

enclosed, multiple statements must, and

therefore we adopt the convention of always

enclosing loop statements in braces.

The if/else execution control keywords are
straightforward and are not expanded upon,

here.

Finally, main, like any function, should return to
the calling function (for main, calling program)
some value, which, for most functions, can be of

any data type, but for main is a status code as an
integer. The return keyword defines the
return status, in our program, simply 0.
Conventionally, this signifies to the calling

program that our program has run successfully.

Nonzero main return values are used to signify
different error codes, which should be

documented for your program.

Execution control

As we saw in the example above, C has the

usual execution control statements, which

include while, for, if, else, and else if. This
Lab Exercise should familiarize you with

several of these.

C data types

C has only a few core data types:

• chars are single byte characters;
• ints are integers, the size of which is
machine-dependent;

• floats are single-precision floating-point
numbers, the size of which is

machine-dependent; and

• doubles are double-precision
floating-point numbers, the size of which

is machine-dependent.

01 Computing principles, myRIO C programming, and high-level io driversL Lab Exercise: Introduction to myRIO C programming and high-level io drivers p. 1

Typically, a float is 32-bit and a double is
64-bit. There are also qualifiers such as short
and long, which compilers typically take to
mean “fewer” bytes for the specified

representation or “greater,” respectively.

Arrays are just lists of values. When declaring

an array, one specifies the data type of each

element and the number of elements, as in

double x[10];, which is an array of ten
doubles. Accessing element n of an array x is
done with the syntax x[n]. It is important to
note that the first index of an array is 0 in C.

Pointers

Pointers are a key concept in C. A pointer is

variable that is assigned not a value, but a

memory address. To get some variable x’s value
address, one uses the address operator &, like
&x. In order to assign this to a pointer variable,
the variable must be declared as a pointer to a

specific data type. For x an integer, a pointer to
it can be declared with int *p; and assigned
with p = &x. To access the value to which a
pointer p points, the dereferencing operator *
can be used, as in *p.
Consider the following example.

1 #include "stdio.h"
2

3 int main() {
4 static int x = 1;
5 static int *p = &x;
6 printf("%d\n",x); /* value */
7 printf("%p\n",&x); /* address */
8 printf("%p\n",p); /* pointer */
9 printf("%d\n",*p); /* deref'd pointer */
10 return 0;
11 }

1 1
2 0x100693018
3 0x100693018
4 1

01 Computing principles, myRIO C programming, and high-level io driversL Lab Exercise: Introduction to myRIO C programming and high-level io drivers p. 1

An array variable, say an integer array of length

10 declared by int z[10];, is just a pointer to
the first value in the array. An array name is a

constant pointer, so it cannot be reassigned (e.g.

if p_a is an array, this is invalid: p_b = p_a;).

Cast operator

A cast operator on an expression to type type is

(type) expression. It represents the expression

in the new type in accordance with certain rules.

It does not affect any definitions in the original

expression; rather, it returns a new expression.

Suppose you have the following:

static int a; // 2-byte
static long int b; // 4-byte
b = 3;
a = (int) b; // cast and assign to a

The casting of a four-byte long int to a
two-byte int means there is a potential for
truncation because four bytes can represent

more integers.

When casting to an int from a float or double,
beware that truncation does not round in the

usual sense: it simply drops the fractional part.

It is preferable to use the function round
provided by the standard library header file

math.h.

Incrementing and decrementing

For int x = 0, instead of writing x = x + 1 to
increment x, we can write either ++x or x++. The
former is called a prefix operator and the latter

postfix, both of which increment x, but they are
interpreted differently in an expression:

• ++x increments x, then uses it in the
expression in which it appears (e.g.

n = ++x assigns 1 to x, then 1 to n) and

01 Computing principles, myRIO C programming, and high-level io driversL Lab Exercise: Introduction to myRIO C programming and high-level io drivers p. 1

• x++ uses x in the expression in which it
appears, then increments it (e.g. n = x++
assigns 0 to n, then 1 to x).

The decrement operator -- also has pre- and
postfix versions, but subtracts one instead of

adding.

The next example shows how pointers—not just

ints—can be incremented. They can also be

decremented. Incrementing a pointer moves it

not to the next address, but to the next piece of

data in memory, skipping the necessary number

of bytes.

Operator precedence and associativity

See Lec. 02.2 for a table of operator precedence

and associativity. The following example shows

some interesting precedence and associativity

interactions among operators * and ++ and
parentheses ().

1 #include "stdio.h"
2

3 int main() {
4 static int x = 5;
5 static int *p = &x;
6 printf("(int) p => %d\n",(int) p);
7 printf("(int) p++ => %d\n",(int) p++);
8 x = 5; p = &x;
9 printf("(int) ++p => %d\n",(int) ++p);
10 x = 5; p = &x;
11 printf("++*p => %d\n",++*p);
12 x = 5; p = &x;
13 printf("++(*p) => %d\n",++(*p));
14 x = 5; p = &x;
15 printf("++*(p) => %d\n",++*(p));
16 x = 5; p = &x;
17 printf("*p++ => %d\n",*p++);
18 x = 5; p = &x;
19 printf("(*p)++ => %d\n",(*p)++);
20 x = 5; p = &x;
21 printf("*(p)++ => %d\n",*(p)++);
22 x = 5; p = &x;
23 printf("*++p => %d\n",*++p);
24 x = 5; p = &x;
25 printf("*(++p) => %d\n",*(++p));
26 return 0;
27 }

01 Computing principles, myRIO C programming, and high-level io driversL Lab Exercise: Introduction to myRIO C programming and high-level io drivers p. 1

1 (int) p => 81195032
2 (int) p++ => 81195032
3 (int) ++p => 81195036
4 ++*p => 6
5 ++(*p) => 6
6 ++*(p) => 6
7 *p++ => 5
8 (*p)++ => 5
9 *(p)++ => 5
10 *++p => 0
11 *(++p) => 0

Strings

Strings are arrays of chars, terminated by a NULL
(which is a pointer that casts to 0). For instance,
the string "HELLO" could be represented in
memory (with corresponding ASCII codes) as

follows.

"H"
"E"
"L"
"L"
"O"
NULL

Function argument passing

All function arguments in C are passed “by

value”: the function receives its arguments

through temporary local variables called

automatic variables (see Lec. 01.L for more

about automatic and global variables). When

it’s necessary to pass back an argument with a

changed value, the caller can provide the

function with the argument address via a

pointer, and the function must access the value

through the pointer. A potential alternative is a

global extern variable.

Literal of a long

For the compiler to recognize a literal number as

a long, it must have an L suffix. For instance, if

01 Computing principles, myRIO C programming, and high-level io driversL Lab Exercise: Introduction to myRIO C programming and high-level io drivers p. 1

val is a long variable and you want to compare
it to 32767:

if(val > 32767L) { /* validated! */ }

NULL detection

The following program gives some insight into

detecting a returned NULL.

1 #include "stdio.h"
2

3 int main() {
4 printf("%p\n",NULL); /* print as pointer */
5 printf("%d\n",(int) NULL); /* cast to int */
6 if (NULL == 0) {
7 printf("this works\n");
8 }
9 if (NULL == 0x0) {
10 printf("this works, too!\n");
11 }
12 if (NULL == NULL) {
13 printf("so does this!");
14 }
15 return 0;
16 }

1 0x0
2 0
3 this works
4 this works, too!
5 so does this!

Hex numbers—signed

In addition to the specifically C-related topics,

above, the following is useful for the first

assignment.

We can change the sign of a signed binary by

taking the two’s complement.

To put a negative hexadecimal number into a

signed hexadecimal form, take the sixteen’s

complement. Steps:

• take fifteen’s complement and

• add 1.

02 Computing principles, myRIO C programming, and high-level io driversLab Exercise: Introduction to myRIO C programming and high-level io drivers p. 2

Example Lab 01-1 re: Signed hexadecimal

Convert 3A to -3A.

02

Exploring C and mid-level io

02 Exploring C and mid-level io A paper computer p. 1

02.1 A paper computer

Consider the following graphic. It is an example

of how a program running on a Motorola

68HC12 microcontroller might proceed at the

memory/register/assembly language level. The

HC12 registers are different than the ARM

registers discussed in Lec. 01.3 , but there are

some differences. For instance, the HC12’s

condition code register (CCR) is akin to the

ARM application status register (APSR). Begin

with the program counter (PC) at memory

address 3007 and follow the corresonding

instructions, annotating the registers as

appropriate.

Memory
Address

Memory
Contents

Instruction Mnemonics

Comment

2080 05 LOCATION OF
AUGEND

2081 FB LOCATION OF
ADDEND

2082 LOCATION OF SUM
•
•
•

•
•
•

 •
•
•

3007 B6 BEGIN: LDAA AUGEND PUT AUGEND IN A
3008 20
3009 80
300A BB ADDA ADDEND ADD THE ADDEND
300B 20
300C 81
300D 7A STAA SUM STORE THE RESULT
300E 20
300F 82
3010 20 HERE: BRA HERE ENDLESS LOOP HERE
3011 FE

A B
D

X

Y

SP

PC

 S X H I N Z V C

CCR

 
Instruction Queue (Pipeline)

02 Exploring C and mid-level io Exploring C operators p. 1

Table 02.1: C operator precedence and associativity.

Operator Description Associativity

() Parentheses (grouping) left-to-right
[] Brackets (array subscript)
. Member selection via object name
-> Member selection via pointer

++ -- Postfix increment/decrement (see Note 1)

++ -- Prefix increment/decrement right-to-left
+ - Unary plus/minus
! ~ Logical negation/bitwise complement
(type) Cast (change type)

* Dereference
& Address

sizeof Determine size in bytes

* / % Multiplication/division/modulus left-to-right

+ - Addition/subtraction left-to-right

<< >> Bitwise shift left, Bitwise shift right left-to-right

< <= Relational less than/less than or equal to left-to-right
> >= Relational greater than/greater than or equal to

== != Relational is equal to/is not equal to left-to-right

& Bitwise AND left-to-right

^ Bitwise exclusive OR left-to-right

| Bitwise inclusive OR left-to-right

&& Logical AND left-to-right

|| Logical OR left-to-right

?: Ternary conditional right-to-left

= Assignment right-to-left
+= -= Addition/subtraction assignment
*= /= Multiplication/division assignment
%= &= Modulus/bitwise AND assignment
^= |= Bitwise exclusive/inclusive OR assignment

<<= >>= Bitwise shift left/right assignment

, Comma (separate expressions) left-to-right

02.2 Exploring C—operator precedence and associativity

Table 02.1 lists all C operators in order of their

precedence (highest to lowest). Operators

within the same box have equal precedence.

Note 1—Postfix increment/decrement have

high precedence, but the actual increment or

decrement of the operand is delayed (to be

accomplished sometime before the statement

completes execution). So in the statement

02 Exploring C and mid-level io Exploring C operators p. 1

y = x * z++; the current value of z is used to
evaluate the expression (i.e., z++ evaluates to z)
and z only incremented after all else is done.

Operator precedence

When an expression contains two or more

operators, normal operator precedence rules are

applied to determine the order of evaluation. If

two operators have different levels of

precedence, the operator with the highest

precedence is evaluated first. For example,

multiplication is of higher precedence than

addition, so the expression 2+3*4 is evaluated as

3 * 4 // = 12
2 + 12 // = 14

The evaluation order can be explicitly controlled

using parentheses; e.g., (2+3)*4 is evaluated as

2 + 3 // = 5
5 * 4 // = 20

Operators in Table 02.1 are grouped from

highest to lowest precedence.

Operator associativity

If two operators in an expression have the same

precedence level, they are evaluated from left to

right or right to left depending on their

associativity. For example, addition’s

associativity is left-to-right, so the expression

2+3+4 is evaluated as (2+3)+4. In contrast, the
assign operator’s associativity is right-to-left; so

the expression x=y=z is evaluated as x=(y=z).

02 Exploring C and mid-level io Exploring C constants p. 1

02.3 Exploring C—compile-time integral constants

Often, we want to define a symbol that has a

single integral value—an integer—throughout

our program. Fortunately, C lets us do that

many ways. Unfortunately, it can be hard to

choose among them.

The primary ways are #defines (macros), enums
(enumerations), and const ints. When

choosing among them, our primary concerns

are code readability, debuggability, and

compile-time optimization.

Box 02.1 static is not constant

Several times thus far, including in the

listing of Fig. L.1, we have declared

static ints. These are variables not

constants, as their name might suggest.

Rather, they retain their value between

function calls—but that value can be

changed within the function (and the new

value retained).

The last of these means a compiler (or

preprocessor before the compiler) can replace

each instance of the symbol with its constant

value (since it never chances). There are subtle

differences in how each compiler works, but

most of the time all three of our options yield

replaced compile-time constants. However,

#defines are the best guarantee (because it
actually happens before compilation, via

preprocessing), enums a close second, and
const ints a respectable third.
In terms of debuggability, the rankings are

probably best reversed; that is, in decreasing

debuggability: const ints, enums, and
#defines. Macros (#defines) are most difficult
because the compiler can’t usually give useful

error codes related to them (since the compiler

typically knows nothing of them due to

02 Exploring C and mid-level io Exploring C constants p. 2

preprocessing).

Readability is rather subjective, but enums are
typically considered strong in this regard,

especially with its automatic enumeration of

symbols.

A way to demonstrate this is to show the same

example, written these three ways. Let’s define

an integral value to each day of the week, then

write a script that prints a value.

#include <stdio.h>
enum day {

sunday, monday, tuesday, wednesday,
thursday, friday, saturday

};
enum day today = monday;
enum day checkout = friday;

int main() {
printf("Checkout in %d days.", checkout-today);
return 0;

}

Checkout in 4 days.

#include <stdio.h>
#define sunday 0
#define monday 1
#define tuesday 2
#define wednesday 3
#define thursday 4
#define friday 5
#define saturday 6
#define today monday
#define checkout friday

int main() {
printf("Checkout in %d days.", checkout-today);
return 0;

}

Checkout in 4 days.

#include <stdio.h>
const int sunday = 0;
const int monday = 1;
const int tuesday = 2;
const int wednesday = 3;
const int thursday = 4;
const int friday = 5;

02 Exploring C and mid-level io Exploring C constants p. 3

const int saturday = 6;
const int today = monday;
const int checkout = friday;

int main() {
printf("Checkout in %d days.", checkout-today);
return 0;

}

Checkout in 4 days.

Preference among these three options is hotly

debated, but it seems enums are the most
readable and the “just right” option in terms of

reliable compile-time integral constant

replacement and debuggability.

It is important to remember that #defines can
be used for much more than integer

replacement: function-like macros, for instance,

are very useful.

02 Exploring C and mid-level io exe Exploring C pointers p. 1

02.4 Exploring C—pointers

Assigning to a pointee

The function fgets_keypad, the source for
which is shown in the introduction to Lab

Exercise 02, was used in Lab Exercise 01. Recall

that in double_inwe supplied as arguments to
fgets_keypad a character array (pointer) and its
length. Instead of returning the string, the

function wrote to the character array it was

supplied—but remember: inside a C function

arguments are assigned automatic variables.

How does fgets_keypad assign to the array
when it knows only a pointer to its first element?

The secret sauce is to assign through a

dereferenced pointer. Examine the source for

fgets_keypad or consider the following
example.

#include <stdio.h>
void foo(int * p);

int main() {
static int x = 0;
static int * p = &x;
printf("before: %d\n",*p);
foo(p);
printf("after: %d",*p);
return 0;

}

void foo(int * p) {
*p = 3;

}

before: 0
after: 3

Note that, while this sort of structure is rare

among higher-level programming languages, it

is quite common in C. For instance, fgets and
gets have this same feature.

02 Exploring C and mid-level io L Exercises for Chapter 02 p. 1

02.exe Exercises for Chapter 02

02 Exploring C and mid-level io L Lab Exercise: Keypad mid-level primitives p. 1

02.L Lab Exercise: Keypad mid-level primitives

Objectives

In this exercise you will gain experience with:

1. Code requirements for character I/O of a

custom embedded computing application.

2. On-line debugging techniques.

Introduction

In Lab Exercise 01, we implemented a

general-purpose function double_in that
prompts the user to enter a floating-point value

on the keypad, and returns the result to the

calling program. That function calls the C

functions printf_lcd and fgets_keypad. These
functions, in turn, call other lower-level C

library functions according to the following

hierarchy. Functions provided by the me477
library, core C, or the standard C library will be

overwritten by those we write, which are shown

in green.

02 Exploring C and mid-level io L Lab Exercise: Keypad mid-level primitives p. 2

double_in (Lab 01) prompts LCD and returns keypad double

fgets_keypad (Lab 02) gets string from keypad← this lab!

getchar_keypad (Lab 02) gets char from keypad← this lab!

getkey (Lab 03) gets char from keypad

putchar_lcd (Lab 03) prints char to LCD

printf_lcd (Lab 01) prints string to LCD

putchar_lcd (Lab 03) prints char to LCD

vsnprintf (Lab 01) assigns to formatted string

sscanf (Lab 01) converts ASCII to binary

strstr (Lab 01) find string in string

strpbrk (Lab 01) find member in string

Continuing down the hierarchy, fgets_keypad
gets a string from the keypad. Due to time

constraints, we will not write it ourselves;

instead, we will use the me477 library version.
For reference and understanding, its source

code is displayed in the following listing.

char *fgets_keypad(char *buf, int buflen) {
char *bufend;
char *p;
int c;

p = buf; // buffer pointer
bufend = buf + buflen - 1; // last address in buffer
while (p < bufend) { // one exit condition
c = getchar_keypad(); // get char from char array
if (c == EOF) // another exit condition

break; // break while loop
*p++ = c; // write to buffer, increment pointer

}
if(p == buf) return NULL; // just ENTR
*p = '\0'; // write last character (NULL)
return buf;

}

This function gets one keypad character at a

02 Exploring C and mid-level io L Lab Exercise: Keypad mid-level primitives p. 1

time from the buffered getchar_keypad and
writes them to the character array buf via the
pointer provided as an argument of the

function. In this lab exercise, you will write the

lower-level getchar_keypad function. This
function acquires a single character from the

keypad. It must function identically to the

standard C function getchar that performs the
same operations for the standard I/O device

(the console). You should review the getchar
function in your C textbook.

In Lab Exercise 03, you will write the

lowest-level I/O functions getkey and
putchar_lcd.

Pre-laboratory preparation

Write the following functions and compile (and

debug) them before running them while

connected to lab hardware.

Writing the buffered function getchar_keypad

The prototype of the getchar_keypad function
should be as follows.

int getchar_keypad(void) // void means no args

Each time getchar_keypad is called it returns a
single character from the keypad; and it returns

EOF (defined in stdio.h) when it encounters its
representation of ENTR . In the example below

getchar_keypad is used to obtain a string of
characters until EOF is reached. The characters
are stored sequentially in a buffer pointed to by

point.

while ((ch=getchar_keypad()) != EOF) {
*point++ = ch;

}

There are two types of getchar functions in C.
The first type, called an unbuffered getchar,
simply returns the character to the calling

02 Exploring C and mid-level io L Lab Exercise: Keypad mid-level primitives p. 2

program immediately after each keystroke. The

second type, called a buffered getchar, collects
the characters entered by the user in a

temporary buffer. Pressing ENTR causes the block

of characters to be made available to the calling

program. You will write a buffered

getchar_keypad for the keypad.
The advantage of the buffered getchar is that
the user can edit the characters in the buffer

using the key in the usual manner, before

they are sent to the calling program. There is no

possibility of editing with the unbuffered

getchar.
You might wonder how a function designed to

return only a single character could edit the

whole buffer. This is accomplished by a simple

and elegant means inside getchar_keypad. The
key idea is to use a statically declared character

buffer. In this way, the characters remain in the

buffer in between calls to getchar_keypad. You
will also need to statically declare a pointer to

the buffer, and a variable (e.g. n) to keep count
of the number of characters in the buffer. A

schematic of the buffer, pointer, and count

variable is shown, below.

0 1 2 3 4 5 6 7 8 9 …

buffer C0 C1 C2 — — — — — — — …

↑
pointer n = 3

Here’s how the buffering scheme should work.

Whenever getchar_keypad is called either the
buffer is empty or the buffer contains one or

more characters.

The first time getchar_keypad is called, the
buffer is empty, the count is zero (n==0), and the
pointer is at the beginning of the buffer. The

function enters a loop, filling the buffer and

02 Exploring C and mid-level io L Lab Exercise: Keypad mid-level primitives p. 3

displaying the characters, one keystroke at a

time, until the ENTR key is pressed.

Each time through the loop, it checks if the

buffer is full. If it’s not, it completes the

following tasks:

1. enter the current character into the buffer

at the pointer’s pointee,

2. increment the pointer,

3. increment the character count, and

4. print the character to the LCD.

After ENTR is pressed, the buffer pointer is set

back to the beginning of the buffer, and the first

character (alone) is returned to the calling

program.

On subsequent calls to getchar_keypad the
buffer is not empty. For each call, the pointer is

incremented, the count is decremented, and the

character pointed to is returned to the calling

program. This continues until the last character

in the buffer is returned, and the pointer is

returned to the beginning of the buffer. Once

the buffer is empty, the next call to

getchar_keypad begins the filling process
again. Note: getchar_keypad should return EOF
to represent the ENTR key.

Putting these ideas together, algorithm

pseudocode (so far) for a buffered

getchar_keypadmight look like that of
Algorithm L.1, with

• n is the number of characters in the buffer,
• buf is a character array, of length buf_len

+ 2,
• p is a pointer that points to the location in
the buffer where the next character will be

put or taken, and

• chg is the current character from getkey.

Now, suppose that the is pressed while

characters are being entered. The deleted

character is effectively “removed” from the

02 Exploring C and mid-level io L Lab Exercise: Keypad mid-level primitives p. 1

Algorithm L.1 buffered getchar_keypad
pseudocode

function getchar_keypad
if n is 0 then . empty buffer!

point p to start of buf
while the chg is not ENTR do

if n < buf_len then
assign what getkey returns to

chg
assign chg to buf at p
increment p
increment n
print chg to LCD with

putchar_lcd
end if

end while
point p to start of buf

end if
if n > 1 then .more than one character in

buffer
decrement n
return *p++ . return the pointee then

increment
else if n is 1 then . one character in buffer

decrement n
return EOF

end if
end function

buffer by decrementing both the buffer pointer

p and the counter n. The deleted character is
removed from the display by moving the cursor

left one space, printing a space, and moving the

cursor left one space again. What should

happen if is pressed before any characters

have been entered (n==0)? Modify the pseudo

code above (and your program) to include this

“delete” functionality.

Writing the main function

Write a main function that tests your

getchar_keypad. It should collect at least two
separate strings using fgets_keypad (which
calls getchar_keypad).

02 Exploring C and mid-level io L Lab Exercise: Keypad mid-level primitives p. 2

Table L.1: (left) keypad key codes and (right) putchar_lcd escape
sequences.

key decimal code symbol

8 DEL
ENTR 10 ENT
- 45
. 46

0 – 9 48 – 57
UP 91 UP
DWN 93 DN

esc seq function

\f clear display
\b cursor left, 1 space
\v cursor to start of Line-1
\n cursor to start of Line-2

Background

To accomplish its task getchar_keypadmust
read characters from the keypad. The getkey
function returns a single key code for each

keystroke. Its prototype is as follows.

char getkey(void);

A call to getkeymight be: key = getkey();
Corresponding to each of the 16 keys of the

keypad, the key code is shown in Table L.1. The

symbols are #defined in the header file
me477.h.
In addition to getting keys, getchar_keypad
must be able to print characters -, ., and
decimal digits to the LCD screen. The me477
library function putchar_lcd should be used.
Its prototype is as follows.

int putchar_lcd(int c);

Both the input parameter and the returned

value are the character to be sent to the display.

The following are some examples of calls to

putchar_lcd.

ch = putchar_lcd('m');
putchar_lcd('\n');

It prints the character corresponding to its

argument on the LCD screen.

02 Exploring C and mid-level io L Lab Exercise: Keypad mid-level primitives p. 1

The putchar_lcd function uses the same escape
sequences, as shown in Table L.1, as

printf_lcd, which we wrote in Lab Exercise 01.

Laboratory Procedure

Test and debug your program.

Guidance

The following guidance is provided for this

week’s lab exercise.

Compile-time integral constants

Often, we want to define a symbol that has a

single integral value—an integer—throughout

our program. Fortunately, C lets us do that

many ways. Unfortunately, it can be hard to

choose among them.

The primary ways are #defines (macros), enums
(enumerations), and const ints. When

choosing among them, our primary concerns

are code readability, debuggability, and

compile-time optimization.

The last of these means a compiler (or

preprocessor before the compiler) can replace

each instance of the symbol with its constant

value (since it never chances). There are subtle

differences in how each compiler works, but

most of the time all three of our options yield

replaced compile-time constants. However,

#defines are the best guarantee (because it
actually happens before compilation, via

preprocessing), enums a close second, and
const ints a respectable third.
In terms of debuggability, the rankings are

probably best reversed; that is, in decreasing

debuggability: const ints, enums, and
#defines. Macros (#defines) are most difficult
because the compiler can’t usually give useful

error codes related to them (since the compiler

02 Exploring C and mid-level io L Lab Exercise: Keypad mid-level primitives p. 2

typically knows nothing of them due to

preprocessing).

Readability is rather subjective, but enums are
typically considered strong in this regard,

especially with its automatic enumeration of

symbols.

A way to demonstrate this is to show the same

example, written these three ways. Let’s define

an integral value to each day of the week, then

write a script that prints a value.

#include <stdio.h>
enum day {

sunday, monday, tuesday, wednesday,
thursday, friday, saturday

};
enum day today = monday;
enum day checkout = friday;

int main() {
printf("Checkout in %d days.", checkout-today);
return 0;

}

Checkout in 4 days.

#include <stdio.h>
#define sunday 0
#define monday 1
#define tuesday 2
#define wednesday 3
#define thursday 4
#define friday 5
#define saturday 6
#define today monday
#define checkout friday

int main() {
printf("Checkout in %d days.", checkout-today);
return 0;

}

Checkout in 4 days.

#include <stdio.h>
const int sunday = 0;
const int monday = 1;
const int tuesday = 2;
const int wednesday = 3;
const int thursday = 4;

02 Exploring C and mid-level io L Lab Exercise: Keypad mid-level primitives p. 1

const int friday = 5;
const int saturday = 6;
const int today = monday;
const int checkout = friday;

int main() {
printf("Checkout in %d days.", checkout-today);
return 0;

}

Checkout in 4 days.

Preference among these three options is hotly

debated, but it seems enums are the most
readable and the “just right” option in terms of

reliable compile-time integral constant

replacement and debuggability.

It is important to remember that #defines can
be used for much more than integer

replacement: function-like macros, for instance,

are very useful.

Assigning to a pointee

The function fgets_keypad, the source for
which is shown in the introduction to this lab,

was used in Lab Exercise 01. Recall that in

double_inwe supplied as arguments to
fgets_keypad a character array (pointer) and its
length. Instead of returning the string, the

function wrote to the character array it was

supplied—but remember: inside a C function

arguments are assigned automatic variables.

How does fgets_keypad assign to the array
when it knows only a pointer to its first element?

The secret sauce is to assign through a

dereferenced pointer. Examine the source for

fgets_keypad or consider the following
example.

#include <stdio.h>
void foo(int * p);

int main() {
static int x = 0;

03 Exploring C and mid-level io Lab Exercise: Keypad mid-level primitives p. 2

static int * p = &x;
printf("before: %d\n",*p);
foo(p);
printf("after: %d",*p);
return 0;

}

void foo(int * p) {
*p = 3;

}

before: 0
after: 3

Note that, while this sort of structure is rare

among higher-level programming languages, it

is quite common in C. For instance, fgets and
gets have this same feature.

03

Digital communication and low-level io

03 Digital communication and low-level io Digital communication p. 1

03.1 Digital communication

Digital signals convey information via a

communication channel: a wired or wireless

means of transmitting and receiving

electromagnetic signals over some distance. In

embedded computing, most digital

communication channels are wires and buses.

An example of a bus is the familiar “slot” on a

PC motherboard, as shown in Fig. 03.1.

Figure 03.1: a 32-bit PCI bus (Jonathan Zander).

There are two primary divisions of digital

communication: serial/parallel and

synchronous/asynchronous. These divisions

are explored in the following sections.

Afterward, common communication protocols

are described.

Serial and parallel communication

Communication can be in serial or parallel, with

the former taking place sequentially over a

single channel and the latter over multiple

channels, as shown in Fig. 03.2. Serial

communication transfers each bit of information

at a time and has significant advantages for

“long-haul” communication, since only a single

channel is required to span the distance. Parallel

communication transfers several bits in parallel,

which can be faster than serial communication,

but has the disadvantages of clock skew (in

synchronous parallel communication, arrival of

supposedly simultaneous bits can be “skewed”

in time) and serialization/deserialization

(converting parallel-to-series and vice versa).

https://commons.wikimedia.org/wiki/File:PCI_Slots_Digon3.JPG

03 Digital communication and low-level io Digital communication p. 1

However, recently improved serial

communication speed has given it the

advantage, even over short distances; for

instance, the parallel PCI bus of Fig. 03.1 has

been largely replaced by the serial PCI Express

bus.

TX RX TX RX

Figure 03.2: (left) serial communication and (right) parallel
communication.

Synchronous and asynchronous communication

Synchronos communication is that for which a

common, external “clock” times both TX output

and RX input. The clock (usually a digital signal

itself) signifies when the signal at the RX is valid

and should therefore be read.

Asynchronous communication encodes the

starting and stopping information in the

bitstream itself: the RX detects a “start bit”;

waits a predetermined amount of time; reads

the next (often seven or eight) bits as “data” at a

predetermined constant rate called the bitrate or

baud rate; often reads the parity bit; and finally

the “stop bit.”

The parity bit is used for error checking, for

which there are two general forms: even and

odd parity. In even parity, the TX sends a parity

bit of 0 if the number of ones in the data is even,
and a 1when it is odd. Even parity takes the
opposite approach, with evens getting 1 and
odds getting 0. This lets the RX check the parity

of the received data. Of course, if an even

number of bits are incorrect, checking the parity

bit will not be sufficient for error detection.

Standards

Communication standards define signal,

electrical, connector, cable, and other

03 Digital communication and low-level io Digital communication p. 2

characteristics that can be adopted across an

entire industry. For instance, USB, Ethernet

(IEEE 802.3), and RS-232 are such standards for

serial communications. The Institute of

Electrical and Electronics Engineers (IEEE)

defines communication protocols for many

wired communications and the International

Organization for Standardization (ISO) defines

several others.

03 Digital communication and low-level io UARTs p. 1

03.2 Universal asynchronous receivers-transmitters

Universal asynchronous receivers-transmitters

(UARTs) are hardware devices that allow

microcontroller CPUs to asynchronously,

serially communicate with other devices of the

microcontroller or peripheral devices.

Often, the data input to a TX UART arrives in

parallel but must transmitted in serial. This is

achieved via a shift register operating in

parallel-in, serial-out (PISO) mode. Consider

the byte 1101 0001 into a four-bit shift register.
Table 03.1 shows the register contents at each

step of transmission.

Table 03.1: a four-bit shift register operating in PISO mode transmitting
the byte 1101 0001 in serial.

registers output

0 0 0 1 →
1 0 0 0 → 1
0 1 0 0 → 0
1 0 1 0 → 0
1 1 0 1 → 0
0 1 1 0 → 1
0 0 1 1 → 0
0 0 0 1 → 1
0 0 0 0 → 1

In the corresponding RX UART, the opposite

process called serial-in, parallel-out (SIPO) is

also performed with a shift register in SIPO

mode.

A UART can transmit and receive data with

different rates, parity bits, stop bits, etc., and

therefore must be properly configured. If a

peripheral device requires a certain serial

communication configuration, the UART

transmitter controlled by a microcontroller’s

CPU must match this configuration.

The myRIO microcontroller has a configurable

UART interface that will be used in Lab

Exercise 03 to transmit data to the LCD display.

03 Digital communication and low-level io Digital signals p. 1

1. For a thorough description and history of standards, see (� Horowitz
and Hill, 2015).

03.3 Digital signals

A digital signal is a continuous signal

transmitted with the assumption that the

receiver will interpret it as representing a finite

number of values. Typically, only two values

are represented: binary 1 or 0, also called
Boolean true (>) and false (⊥). Digital signals
are the signals of digital circuits, of which CPUs,

memory reading/writing devices, and I/O

devices are made.

Why would one want to discard the potentially

infinite amount of information resolution in a

continuous signal? Primarily because (1) often

our transmission (TX) has a limited number of

potential values, especially when dealing with

data stored as computer memory bits, and (2)

noise: offsets (biases) and random signals added

to the transmitted signal through a number of

mechanisms. With noise, we lose significant

resolution, and a tradeoff emerges between

voltage resolution and fidelity. Throughout the

history of digital electronics, the tendency has

been to sacrifice voltage resolution—settling for

binary encoding—for time resolution: digital

electronics can send and receive digital signals

that switch between 0 and 1 at blazing speeds.
A number of digital signal standards have been

developed,1 with the complementary

metal-oxide-semiconductor (CMOS) standard

being the most popular, but several others

remain in use, including the transistor-transistor

logic (TTL) standard, which is now described.

All these standards are similar, so describing

one is sufficient for our purposes.

With reference to Figure 03.1, the TTL standard

defines interpretations for voltage level ranges

for both transmission output and reception

input. Note that the output ranges are stricter

than the input ranges. This accounts for noise

added to a signal between transmission and

03 Digital communication and low-level io Digital signals p. 2

0
0.4

2.4

5

0
0.8

2.0

5

in
p
u
t
ra
n
g
es
(V
)

time

o
u
tp
u
t
ra
n
g
es
(V
)

1 output 1 input forbidden
0 output 0 input signal

TX RX

Figure 03.1: standard TTL signal transmission (TX) and reception (RX)
voltage levels. Note the 0.4 V noise margin. Typically, values greater than 5 V
can be received as 1 and values less than 0 V as 0.

reception, and is called the noise margin. From

the figure, what is the noise margin for a TTL

signal?

Most digital circuits can function properly with

signals greater than their maximum defined

voltage and those less than their minimum

(typically 0 V). Most TTL circuits will

“interpret” signals greater than 5 V as 1 and
those less than 0 V as 0.
In addition to voltage specifications, the TTL

standard includes current output and input

ranges. Furthermore, it specifies the maximum

time for a TTL-compliant device to switch

between 0 and 1.
In Lecture 05.3 , some building blocks of digital

circuits are described. How analog signals are

converted to digital and vice versa are explored

in Lecture 06.1 .

03 Digital communication and low-level io Exploring C structures p. 1

2. We follow Kernighan and Ritchie (1988, p. 129), where structures are
introduced via a double (2-tuple).

03.4 Exploring C—structures

C structures are used to group information that

belongs together. The quintessential example is

the tuple: coordinates that define a point.2 The

following example shows some of the syntax.

#include <stdio.h>

int main() {
struct point { // declare point

double x;
double y;

};
struct point pt1 = {1.2,4.5}; // declare instance
struct point pt2; // another instance
pt2.x = 2*pt1.x; // assign to second instance x
pt2.y = 3*pt1.y; // assign to second instance y
printf("pt2 = {%f,%f}",pt2.x,pt2.y);

}

pt2 = {2.400000,13.500000}

The first declaration struct point { ... }
shows that two double types of members that
are grouped into a structure with structure tag
point. The structure tag allows us to re-use this
template for further structure declarations, as
with pt1 and pt2—two instances of point.
Although, in this case, the two members are of

the same type (double), they need not be.
An instance of a structure can be assigned at
declaration, as with pt1, or it can be assigned
after declaration, as with pt2. The members of
an instance are accessed and written-to via the

name defined in the initial declaration, as in

pt2.x and pt2.y.
C structures can also be nested. For instance, a
line segment can be defined by two points, as

shown in the following snippet, which could be

interpolated into the previous main function.

struct segment { // declare segment
struct point pt1;
struct point pt2;

} seg1;

03 Digital communication and low-level io exe Exploring C structures p. 2

seg1.pt1 = pt1;
seg1.pt2 = pt2;
printf("seg1 is from {%f,%f} to {%f,%f}",

seg1.pt1.x,seg1.pt1.y,
seg1.pt2.x,seg1.pt2.y

);

Note that we can overload the names of

structure members such as pt1 and xwithout
conflict. Furthermore, the syntax that declares

seg1 can be used to declare further segments.
A function can be passed as an argument a

structure, or a pointer to it, or each of its
members, separately. Similarly, a function can

return structures in any of these ways. Note
that structure tags declared in main are
available to other functions.

03 Digital communication and low-level io L Exercises for Chapter 03 p. 1

03.exe Exercises for Chapter 03

03 Digital communication and low-level io L Lab Exercise: Low-level character io p. 1

03.L Lab Exercise: Low-level character io

Objectives

In this exercise you will gain experience with:

1. The keypad and LCD display.

2. Code requirements for character I/O of a

custom embedded computing application.

3. On-line debugging techniques.

Introduction

In this lab you will write the lowest-level

routines for character I/O for our keypad and

LCD display. They are the putchar_lcd
function and the getkey function called from
getchar_keypad in Lab Exercise 02, as shown in
the following function structure.

double_in (Lab 01) prompts LCD and returns keypad double

fgets_keypad (Lab 02) gets string from keypad

getchar_keypad (Lab 02) gets char from keypad

getkey (Lab 03) gets char from keypad← this lab!

putchar_lcd (Lab 03) prints char to LCD← this lab!

printf_lcd (Lab 01) prints string to LCD

putchar_lcd (Lab 03) prints char to LCD← this lab!

vsnprintf (Lab 01) assigns to formatted string

sscanf (Lab 01) converts ASCII to binary

strstr (Lab 01) find string in string

strpbrk (Lab 01) find member in string

03 Digital communication and low-level io L Lab Exercise: Low-level character io p. 1

Pre-laboratory preparation

Two functions, in addition to main, must be
written in the exercise.

Part #1: character output: writing putchar_lcd

The function putchar_lcd puts a single
character on the LCD display. The character

may be any in the ASCII code or any of the

escape sequences described in Lab Exercise 01

(\f, \v, \n, \b). The prototype of the
putchar_lcd function is

int putchar_lcd(int value);

where the argument (value) is the character to
be sent to the display. If the input value is in the

range [0, 255] then the returned value is also

equal to the input value. If the input value is

outside that range then an error is indicated by

returning EOF.
Your version of putchar_lcdwill replace that in
the me477 library. Calls to putchar_lcdmight
be

ch = putchar_lcd('m'); // or
putchar_lcd('\n');

Serial data is sent to the LCD display through a

Universal Asynchronous Receiver/Transmitter

(UART). Write the putchar_lcd to perform four

functions:

1. Initialize the UART the first time that

putchar_lcd is called.
2. Send a character to the display or send a

decimal code to the display to implement

an escape sequence.

3. Check for the success of the UART write.

4. Return the EOF error code, if appropriate.
Otherwise, return the character to the

calling program.

03 Digital communication and low-level io L Lab Exercise: Low-level character io p. 2

uart.name = "ASRL2::INSTR"; // UART on Connector B
uart.defaultRM = 0; // def. resource manager
uart.session = 0; // session reference
status = Uart_Open(&uart, // port information

19200, // baud rate
8, // no. of data bits
Uart_StopBits1_0, // 1 stop bit
Uart_ParityNone); // No parity

Listing 03.1: initializing the UART.

The UART must be initialized once before any

data is passed to the display. It is initialized

through the Uart_Open function that sets
appropriate myRIO control registers to define

the operation of the UART. The initialization

may be accomplished as shown in Listing 03.1,

where uart (type: static MyRio_Uart) is a port
information structure, and the returned value is

assigned to status (type: NiFpga_Status). The
macros Uart_StopBits1_0 and
Uart_ParityNone are defined in UART.h. You
must #include UART.h in your code.
Perform this UART initialization just once, and

immediately return EOF from putchar_lcd if
status is less than the VI_SUCCESSmacro.
Escape sequences, received as the argument of

putchar_lcd, control the cursor position and
the function of the LCD display. They are

implemented by sending the escape sequences

of Table L.1.

Arguments of putchar_lcd, in the range of 0 to
127, are sent to the display where they are

interpreted as the corresponding ASCII

characters. Other arguments, in the range 128 to

255 are used for special control functions of this

display.

Both escape sequences and ASCII characters are

sent to the display using the Uart_Write
function. A typical call would be as shown in

Listing 03.2, where uart is the port information
structure defined during the initialization,

writeS (type: uint8_t) is an array containing

03 Digital communication and low-level io L Lab Exercise: Low-level character io p. 1

status = Uart_Write(&uart, // port information
writeS, // data array
nData); // no. of data codes

Listing 03.2: writing to the UART.

the data to be written, and nData (type: size_t)
indicates the number of elements in writeS.
Again, return EOF if status is less than the
VI_SUCCESS. Under normal operation (no
errors), return the input character to the calling

program.

See Algorithm L.1 for putchar_lcd pseudocode.

Part #2: keypad input: writing getkey

You will write the getkey function, which waits
for a key to be depressed on the keypad, and

returns the character code corresponding to that

key. The prototype of the getkey function is

char getkey(void);

Your version of getkeywill replace that in the C
library. A call to getkeymight be:

key = getkey();

The keypad is a matrix of switches. When

pressed, each switch uniquely connects a row

conductor to a column conductor. The row and

column conductors are connected to eight

digital I/O channels of connector-B

(DIO-0–DIO-7) of the myRio as shown in
Fig. L.1.

Each channel may be programmed to operate as

either a digital input or an output. As an output,

the channel operates with low output

impedance as it asserts either a high or a low

voltage at its terminal. Programmed as an

input, the channel has high input impedance

(“Hi-Zmode”) as it detects either a high or a

low voltage.

03 Digital communication and low-level io L Lab Exercise: Low-level character io p. 2

Algorithm L.1 buffered putchar_lcd
pseudocode

function putchar_lcd(c) . c is ASCII character
code

initialize variables . include
static int iFirst=1

if iFirst==1 then . first call!
initialize UART (Listing 03.1) . status

← Uart_open(...)
if status < VI_SUCCESS then

return EOF
end if
iFirst=0

end if
n← 1 . assume n (data points) is 1
if c == '\f ' then . clear display,

backlight on
S[0]← 17 . S is uint8_t array
S[1]← 12

n← 2 . n actually 2 in this case
else if c == '\b ' then . cursor backspace

S[0]← 8

else if c == '\v ' then . cursor line-0
S[0]← 128

else if c == '\1' then . cursor line-1
S[0]← 148

else if c == '\2' then . cursor line-2
S[0]← 168

else if c == '\3' then . cursor line-3
S[0]← 188

else if c == '\n ' then . cursor to next
line

S[0]← 13

else if c > 255 then . outside range
return EOF

else . send ascii code
S[0]← c cast as uint8_t . cast syntax

(uint8_t) c
end if
write S to UART (Listing 03.2) . status←

Uart_Write(...)
if status < VI_SUCCESS then

return EOF
else

return c
end if

end function

03 Digital communication and low-level io L Lab Exercise: Low-level character io p. 1

DIO-4

DIO-5

DIO-6

DIO-7

D
IO
-2

D
IO
-3

D
IO
-1

D
IO
-0

1 2 3 UP

4 5 6 DWN

7 8 9 ENTR

0 . –

Figure L.1: keypad circuit.

3. The NI myRIO-1900 User Guide and Specifications describes the DIO
as having built-in 40 KΩ pull-up resistors to 3.3 V (Instruments, 2013,
p. 11).

How will we detect if a key is depressed?

Briefly, this is accomplished by driving (as

output) one column to low voltage (digital

false), with the other columns channels in Hi-Z

mode. Then, all of the rows are scanned

(detected). If a row is found to be low, the key

connecting that row to the driven column must

be depressed. This procedure is repeated for

each column. The entire process is repeated

until a key is found.

Essential to this scheme is that a pull-up resistor

is connected between each channel and the high

voltage.3 So, unless a row is connected (through

a key) to a low-impedance, low-voltage column,

it will always read high.

Strategy A strategy for getkey is shown in the
pseudocode Algorithm L.2.

Channel initialization The MyRio_Dio
structure, defined in DIO.h, identifies the
control registers and the bit to read or write for

a channel.

typedef struct { uint32_t dir; // direction register
uint32_t out; // output value register
uint32_t in; // input value register

03 Digital communication and low-level io L Lab Exercise: Low-level character io p. 1

Algorithm L.2 getkey pseudocode
function getkey

initialize the 8 digital channels
while a low bit not detected do

for each column do
for each column do

set column to Hi-Z
end for
set one column low
for each row do

read bit
if bit is low then

break row loop
end if

end for
if bit is low then

break out of column loop
end if

end for
wait for some msec

end while
while row is still down do

wait for some msec
end while
identify key from row, column in table
return key

end function

uint8_t bit; // Bit to modify
} MyRio_Dio;

Declare an array of MyRio_Dio structures, one
element for each of the 8 necessary channels. In

a loop initialize the channels as follows.

MyRio_Dio Ch[8];
for (i=0; i<8; i++) {

Ch[i].dir = DIOB_70DIR;
Ch[i].out = DIOB_70OUT;
Ch[i].in = DIOB_70IN;
Ch[i].bit = i;

}

Again, the symbols shown are defined in DIO.h.

Channel I/O

Input—Digital channel read function prototype:

03 Digital communication and low-level io L Lab Exercise: Low-level character io p. 1

NiFpga_Bool Dio_ReadBit(MyRio_Dio* channel);

For example, a typical call might be:

bit = Dio_ReadBit(&Ch[row+4]);

Note: In addition to reading the bit,

Dio_ReadBit sets the channel to Hi-Zmode.

Output—Digital channel write function

prototype:

void Dio_WriteBit(MyRio_Dio* channel, NiFpga_Bool value);

For example, a typical call might be:

Dio_WriteBit(&Ch[col], NiFpga_False);

The data type NiFpga_Boolmay take values of
either NiFpga_True (high), or NiFpga_False
(low).

Key code The key code returned by getkey is
determined by the indices of a key code table.

The key code table can be stored in a statically

declared 4× 4 array of characters.

char table[4][4] = { {'1','2','3', UP},
{'4','5','6', DN},
{'7','8','9',ENT},
{'0','.','-',DEL} };

For example, if the detected row was 1, and the
column was 2, then the value of table[1][2] is
the character '6'.
The symbols UP, DN, ENT, DEL are defined in
me477.h.

Wait The xms time delay will be determined

by executing a delay-interval routine. The

“wait” function below is suggested. It executes

in a small fraction of a second. In next week’s

lab we will calculate and measure its precise

duration.

Digital communication and low-level io Lab Exercise: Low-level character io p. 1

/*--
Function wait

Purpose: waits for x ms.
Parameters: none
Returns: none

---/
void wait(void) {

uint32_t i;

i = 417000;
while(i>0){
i--;

}
return;

}

Writing the main function

Write a main function that tests your versions of
putchar_lcd and getkey. It should:

1. Make at least one individual call to each of

putchar_lcd and getkey. Be sure to test
the value-out-of-range error returned by

putchar_lcd.
2. Collect an entire string using

fgets_keypad (which automatically calls
getkey).

3. Write an entire string using printf_lcd
(which automatically calls putchar_lcd).
Be sure to test all four escape sequences.

Laboratory Procedure

Test and debug your program.

Part III

Timing, Threads, and Finite State

Machines

04

Finite state machine control

Finite state machines model the behavior of an

intelligent system as consisting of a finite

number of states and transitions thereamong.

These models are commonly used in the design

of intelligent systems.

This chapter introduces some additional

concepts of importance:

• pulse-width modulation (Lec. 04.1),

• the driving of a DC motor (Lec. 04.2), and

• measuring motor position and velocity

(Lec. 04.3).

Finally, finite state machines are introduced in

Lec. 04.4 . In Lab Exercise 04, we apply a finite

state machine model to basic DC motor speed

control.

04 Finite state machine control Pulse-width modulation p. 1

1. This lecture appears also in the Mechatronics Laboratory Manual.
04.1 Pulse-width modulation1

1 Pulse-width modulation (PWM) is a

technique used to deliver an effectively variable

signal to a load (in our case a motor) without a

truly variable power source. A pulse of full

source amplitude is repeated at a high

frequency (e.g. 20 kHz), delivering a signal that

is effectively averaged by the load dynamics

such that its effects on the load are nearly

continuous. The fraction of the period T that the

signal is high (on) is called the duty cycle δ.

Fig. 04.1 shows a PWM signal v(t) and its

average v(t) with a few parameter definitions.

2 The mean of any periodic signal with period

T can be computed with the integral

v(t) =
1

T

ˆ T

0

v(t),

which is easily evaluated for a PWM signal:

v(t) =
Aw

T
= Aδ.

3 This result shows that if a PWM signal is

delivered to a load, such as a DC motor, that is

relatively unaffected by high-frequency signals,

the effective signal will be simply the product of

the source amplitude A and the duty cycle δ.

The duty cycle can have values from 0 to 1, so

Figure 04.1: a pulse-width modulation (PWM) signal.

http://ricopic.one/mechatronics_lab_manual/

04 Finite state machine control Pulse-width modulation p. 2

the effective DC signal produced varies linearly

with δ from 0 to A.

04 Finite state machine control DC motor driving p. 1

04.2 DC motor driving

1 There are two common methods of driving

DC motors: (a) with a digital motor driver and

(b) with an analog amplifier. Schematics of both

are shown in Fig. 04.1.

M
µC

driver

dc supply

DO, PWM

encoder signal

(a) with a digital motor driver.

M
µC

amp
dc supply

AO

encoder signal

(b) with an analog amplifier.

Figure 04.1: two common methods of driving motors.

Digital motor drivers

2 A microcontroller such as the myRIO or

Arduino can easily produce a PWM signal,

which, as we saw in Lec. 04.1 , can be averaged

by a system’s dynamics such that varying the

duty cycle varies the averaged signal. However,

microcontrollers are low-power and cannot

drive even small DC motors. Therefore it is

common to include a special kind of integrated

circuit (IC) that uses the microcontroller’s

low-power PWM signal to gate a high-power

DC source signal for delivery to the motor.

These are called digital motor drivers; a

common system setup with a motor driver is

shown in Fig. 04.1(a). They deliver power from

a high-power source in accordance with a PWM

signal, and they often include many additional

features such as

1. compact forms;

2. forward- and reverse-driving (see

Lec. 04.2)

3. protection against reverse voltage,

overcurrent, and overheating; and

04 Finite state machine control DC motor driving p. 1

4. output pins that monitor delivered current

and voltage.

3 These digital motor drivers are sometimes

called class-D or switching amplifiers.

Generally, they inexpensive and are quite

efficient (around 90% in some cases), which, in

addition to conserving power, adds the capacity

of delivering high-power operation or requiring

lower heat dissipation (or a “Goldilocks”

mixture thereof).

H-bridge circuits

4 We want to drive DC motors at different

effective voltages and different directions. An

H-bridge circuit allows us to reverse the

direction of the PWM signal delivered to the

motor. Fig. 04.2 is a diagram of the H-bridge

circuit.

5 The switches S1-S4 are typically instantiated

with MOSFET transistors. As shown in the

figure below, during the high duration of the

PWM pulse, either S1 and S4 (Fig. 04.2(b)) or S2

and S3 (Fig. 04.2(c)) are closed and the others

are open.

(a) off. (b) on one direction. (c) on the other direction.

Figure 04.2: H-bridge operation.

04 Finite state machine control DC motor driving p. 1

6 Recall that the electronics side of a DC motor

can be modeled as a resistor and inductor in

series with an electro-mechanical transformer.

The inductance of the windings make it an

“inductive” load, which presents the following

challenge. We can’t rapidly change the current

flow through an inductor without a huge spike

in voltage, and the switches do just that, leading

to switch damage. Therefore, during the low or

“off” duration of the PWM signal, S1-S4 cannot

all be simply opened. There are actually a few

options for switch positions that allow the

current to continue to flow without inductive

“kickback.”

7 What’s up with the diodes? Technically,

they could be used to deal with the kickback.

But since the diodes dissipate power, the proper

switching is the primary kickback mitigation

technique. However, the diodes ease the

transition between switch flips, which are never

quite simultaneous.

Analog amplification

8 An alternative to digital motor drivers are

analog amplifiers, which require a slightly

different setup, shown in Fig. 04.1(b). This setup

requires an analog signal from the

microcontroller, a digital device. Therefore, the

microcontroller performs a process called

digital-to-analog conversion (DAC), treated

further in Lec. 06.1 and Resource 14. Many

microcontrollers have this functionality and can

produce analog signals over ranges such as ±10
V, the range of the myRIO’s CIO channel analog
outputs.

9 An amplifier essentially “adds power” to the

microcontroller analog output from an external

power source. There are several varieties that

can operate as voltage/current-controlled

voltage/current sources within a range of

04 Finite state machine control DC motor driving p. 1

operation. When that range is exceeded,

operation typically becomes nonlinear and

finally saturates (increased input does not

increase output). Saturation is, of course, one of

several considerations when designing with

amplifiers.

10 A comparison between digital motor

drivers and analog amplifiers is given in

Table 04.1. For more, see (Collins, 2018).

Table 04.1: comparison between digital motor drivers and linear analog amplifiers.

feature digital motor driver analog amplifier

cost less expensive more expensive
signal noise noisy minimal
audible noise load none
low-signal fidelity poor good
high-precision control poor good
efficiency 90% 50%
heat generation low high
high-powered > 100W < 100W
brushed/less dc good good
H-bridge required not required

The ECL instantiation

11 The Embedded Computing Lab (ECL) has

both digital motor drivers and linear analog

amplifiers, both of which are commercially

available.

Digital motor drivers

12 For a digital motor driver, we use a

connectorized printed circuit board (PCB)—the

Pololu motor driver carrier:

pololu.com/product/1451
ricopic.one/resources/pololu_VNH5019.pdf

(manual)

This includes an STMicroelectronics VNH5019

H-bridge motor driver integrated circuit:

https://www.pololu.com/product/1451
http://ricopic.one/resources/pololu_VNH5019.pdf

04 Finite state machine control DC motor driving p. 1

ricopic.one/resources/vnh5019.pdf

13 This type of motor driver is commonly

found in small-motor applications such as those

in an automobile used for adjusting seat,

window, and mirror positions.

Analog amplifiers

14 The Copley Controls 412 voltage-controlled

current source (or transconductance) amplifiers

in the ECL are actually switched amplifiers,

internally (so they’re relatively efficient and

capable of high-power), but function as analog

amplifiers. This is a standard type of motor

amplifier found in industrial settings. The

device manual can be found here:

ricopic.one/resources/Copley412.pdf

15 For the amplifier settings used in the ECL,

see Resource 10.

http://ricopic.one/resources/vnh5019.pdf
http://ricopic.one/resources/Copley412.pdf

04 Finite state machine control Measuring motor velocity p. 1

04.3 Measuring motor position and velocity

1 Motor position and angular velocity are best

measured by rotational quadrature encoders.

Rotational encoders are made from a wheel

with alternating dark and light stripes called

lines. The encoder we have affixed to the rear

shaft—the HP HEDS-5640-A06 with manual

ricopic.one/resources/encoder_manual.pdf

—has black lines on clear plastic. A light source

either reflects differently off the stripes or, as in

our case, passes the light through the clear

plastic wheel into a photodiode or is blocked by

the black stripes. Each time a stripe passes by,

the photodiode detects a “blink,” which is

passed on to the myRIO via digital channels of

the myRIO configured for detecting encoder

outputs.

2 The encoder pinout is shown in Fig. 04.1,

from the manual.

Quadrature encoders

3 The only issue remaining is that a given

“blink” doesn’t give one important piece of

information: which direction the encoder is

rotating. However, a clever technique called

quadrature encoding can be used to determine

direction. If we offset one of the two

Figure 04.1: the encoder used (source: HEDM-55xx/560x & HEDS-55xx/56xx Data Sheet).

http://ricopic.one/resources/encoder_manual.pdf
http://ricopic.one/resources/encoder_manual.pdf

04 Finite state machine control Measuring motor velocity p. 2

Figure 04.2: quadrature encoding with channels A and B.

sources/detectors by half of a stripe width, then

measure both “channels” A and B, then the
direction can be determined by which channel

“leads” the other. For instance, in Fig. 04.2, the

encoder output is high when light is detected

and low when it is blocked by a stripe. Channel

A leads Bwhen the encoder is rotating clockwise
(CW) and B leads Awhen it is rotating
counter-clockwise (CCW).

4 Note that this also gives us better resolution

in that we detect four blinks per line. So a 500

line (CPR) quadrature encoder changes state

4× 500 = 2000 times per revolution.

04 Finite state machine control Finite state machines p. 1

04.4 Finite state machines

A program that sequences a series of actions, or

handles inputs differently depending on what

mode it’s in, is often implemented as a finite

state machine. A state is a condition that defines

a prescribed relationship between inputs and

outputs, and between inputs and subsequent

states. A finite state machine is an algorithm

that can be in a finite number of different states.

For example, consider the control algorithm for

an elevator operating between two floors. The

elevator has four possible states:

1. stopped on floor-1,

2. stopped on floor-2,

3. moving up, and

4. moving down.

Inputs include:

1. the buttons that are pushed in the elevator

car and on each floor and

2. limit switches indicating that the car has

reached each floor.

The outputs are the commands

1. to the lift motor,

2. to the elevator doors, and

3. to the indicator displays in the car and on

the floors.

The outputs and the transition from one state to

another depend on the current state and inputs.

A state machine for which the outputs are

functions of both the current state and the

inputs is called a Mealy machine. A state

machine for which the outputs are functions of

only the current state is called a Moore machine.

An advantage of using state machines is that the

necessary logic can be represented graphically

in a state transition diagram. A state transition

diagram shows the input/output relationships

04 Finite state machine control Finite state machines p. 2

1 2 3 4 5 2 3 4 56 79 88 9 1

...

...
...

0 0

Clock

out = 2
out = 1
out = 0

state-A state-B state-C state-A state-B

Figure 04.1:

state-A state-B

state-C

Clock = 2 / out = 1

Clock = 5 / out = 2 Clock = 9 / out = 0;
 clock = 0

Figure 04.2:

and the conditions for transitions between

states. A skeleton of code that implements any

state transition diagram can be standardized.

Let’s examine the state transition diagram for a

simple example, and see how it might be coded.

This system contains three states (A, B, and C).

Its only input is the sequential count of a

variable Clock (0, 1, 2, …). Its outputs are a

variable out and the Clock (which the algorithm
may reset to 0). The clock increments at a fixed

rate. Potential state transitions are evaluated at

each clock count.

The state machine operates as follows. The

system stays in A until Clock == 2, then it sets
out = 1, and changes to B. It stays in B until
Clock == 5, then sets out = 2, and changes to
C. Finally, it stays in C until Clock == 9, then
sets out = 0, resets the clock (Clock = 0), and
changes back to A. The process repeats

indefinitely, producing a periodic output of 9

clock counts. A plot of the output would look

like that of Fig. 04.1.

This complicated natural language specification

of the system operation can be represented very

simply in a state transition diagram, such as that

of Fig. 04.2.

The arrows between states are commonly

04 Finite state machine control Finite state machines p. 3

Table 04.1: state transition table with©: no change.

when and input is then output and make
state is state

Clock out Clock

A 2 1 © B
B 5 2 © C
C 9 0 0 A

2. See also Gomez (2000).

labeled as:〈
event that caused

the transition

〉/〈 output(s) as a

result of the

transition

〉

Often the information in the state transition

diagram is described in the form of a state

transition table, such as that of Table 04.1.

As shown, the table lists all possible transitions

between states, the conditions that cause the

state transitions, and the corresponding outputs.

Now, how can this be efficiently coded? The

listing on the following page illustrates one

possibility.2 You will need to study this code

carefully. Be sure that you understand all the C

constructs. Some of them are tricky!

Each state is implemented as a separate C

function. The heart of the program is the “Main

state transition loop” (note: just three lines of

code!) This infinite loop calls the function

corresponding to the current state. The variable

curr_state keeps track of which state is
current. The loop also causes a wait for one

clock period, increments Clock, and then
repeats.

The primary task of each state function is to

determine if the current state should be

changed. If no change is needed, the function

does nothing. If the state is to be changed, the

function sets curr_state to the new state and

alters the outputs appropriately.

A function, initializeSM, is included in the
following to initialize the state machine.

04 Finite state machine control Finite state machines p. 4

/* State Machine Example */

#include <stdio.h>

/* Prototypes */
void stateA(void);
void stateB(void);
void stateC(void);
void initializeSM(void);
void wait(void);

/* Define an enumerated type for states */
typedef enum {STATE_A=0, STATE_B, STATE_C} State_Type;

/* Define an array of pointers to each state function */
static void (*state_table[])(void) = {

stateA, stateB, stateC
};

/* Global variable declaration */
static State_Type curr_state; // The "current state"
static int Clock;
static int out;

void main(void) {
/* Initialize the state machine */
initializeSM();

/* Main state transition loop */
while (1) {
state_table[curr_state](); // call cur. state fnct.
wait(); // wait fixed time interval
Clock++;

}
}

/* SM initialization function */
void initializeSM(void) {

curr_state = STATE_A;
out = 0;
Clock = 1;

}

/* State functions */
void stateA(void) {

04 Finite state machine control exe Finite state machines p. 5

if(Clock == 2) { // change state?
curr_state = STATE_B; // next state
out = 1; // new output

}
}

void stateB(void) {
if(Clock == 5) { // change state?
curr_state = STATE_C; // next state
out = 2; // new output

}
}

void stateC(void) {
if(Clock == 9) { // change state?
Clock = 0; // reset clock
curr_state = STATE_A; // next state
out = 0; // new output

}
}

At first, this may appear to be unnecessarily

complicated for this simple example. However,

the same code can be expanded easily (by

adding more state functions) to implement a

state machine of any complexity, with an

unlimited number of states, inputs, and outputs.

04 Finite state machine control exe Exercises for Chapter 04 p. 1

04.exe Exercises for Chapter 04

Exercise 04.13

Consider the series of actions controlling the

operation of an airplane landing gear. For

example, beginning in the “stowed” position,

when the cockpit switch is set to “lower”, first

the landing gear door opens; and then the gear

moves down to the “locked” position.

Subsequently, when the switch is set to “raise”,

the gears moves up, and the door closes. See

Fig. exe.1.

Figure exe.1: landing gear schematic.

Our task is to design a Finite State Machine

(FSM) to produce outputs that actuate the

motors that move the door and gear. Inputs to

the FSM are from the cockpit switch, and from

door and gear position limit sensors.

Operation rules The following are the

required operation rules.

1. When the switch is set to “raise”, the

gear moves up to the stowed

position, and then the door closes.

2. When the switch is set to “lower”, the

door opens, and then the gear moves

down to the locked position.

3. If, while the gear is moving up, the

switch is changed to “lower”, the

04 Finite state machine control exe Exercises for Chapter 04 p. 2

gear should reverse direction and

move down to the locked position.

4. If, while the gear is moving down,

the switch is changed to “raise”, the

gear should reverse direction and

move up to the stowed position, with

the door closed.

5. ...

6. If, while the door is closing, the

switch is changed to “lower”, the

sequence should reverse: door opens

and gear moves down.

7. If, while the door is opening, the

switch is changed to “raise”, the

sequence should reverse: door closes.

FSM Inputs There are three inputs to the FSM.

The possible values of each variable are

shown in brackets.

1. switch (sw), [raise, lower] A

two-position Landing Gear Switch

used to command the raising or

lowering of the gear.

2. gear limit sensor (gs), [top, bottom,

other] The limit sensor variable gs

indicates whether the gear is at the

top, the bottom, or in between.

3. door limit sensor (ds), [opened,

closed, other] The limit sensor

variable ds indicates whether the

door is completely open, completely

closed, or in between.

FSM Outputs There are two outputs from the

FSM. Again, the possible values of each

variable are in brackets.

1. gear motor (gm), [raising, lowering,

off] The motor variable gm controls

whether the gear motor is raising or

lowering the gear, or is off.

2. door motor (dm), [opening, closing,

off] The motor variable dm controls

04 Finite state machine control L Exercises for Chapter 04 p. 1

whether the door motor is opening or

closing the door, or is off.

FSM States At any time, the landing gear

control system can be in one of six states.

The system remains in a state until

conditions are met that cause a transition

to another state.

Name the states as follows:
1. gear stowed (up) GS

2. gear locked (down) GL

3. gear moving up GMU

4. gear moving down GMD

5. door moving open DMO

6. door moving closed DMC

Perform the following steps to complete the

exercise.

1. Draw the state transition diagram. Use the

input, output, and state variable names

and values defined above. For each

transition show the event that caused the

transition, and the output resulting from

the transition.

2. From your diagram fill in the

corresponding state transition table

Table exe.1. Again, use the input, output,

and state variable names and values

defined previously. Use a “−” to indicate

no change in a variable.

04 Finite state machine control L Exercises for Chapter 04 p. 2

Table exe.1: the state transition table.

Inputs Outputs
current
state

sw gs ds gm dm next
state

GL

GMU DMC

GMU

DMC GS

GS

DMO GMD

GMD

GMD GL

DMO

DMC

04 Finite state machine control L Lab Exercise: Finite state machine motor control p. 1

3. We use the C notation that the integer 1 means boolean true and the
integer 0means boolean false.

04.L Lab Exercise: Finite state machine motor control

Objectives

The objectives of this exercise are to:

1. Become familiar with optical encoding.

2. Implement a finite state machine control

algorithm.

3. Understand pulse-modulation control of a

dc motor.

4. Use instruction timing to produce a

calibrated delay.

Introduction

In this exercise, your program will drive and

monitor the speed of a dc motor using a finite

state machine model. The myRIO will drive the

motor with pulse-width modulation (PWM) on

a DIO channel configured as a digital output.

This digital signal will be amplified by the

analog amplifier described in Lec. 04.2 , as

shown in Fig. L.1. The speed of the motor will

be measured with a quadrature encoder on the

motor and read by the myRIO FPGA encoder

counter. Two buttons connected to myRIO DIO

inputs will also control the operation of the

system.

Pulse-width modulation

Channel-0 of Connector A, the digital signal on

which we call run (the line over name denotes a
logical “not,” so we call this signal “not-run”), is

connected to a motor driver circuit such that

when run is 1 (high),3 no voltage is applied to

the motor; and when run is 0 (low), 20 V is

applied. Your program will periodically alter

this digital signal, applying an oscillating signal

to the motor. The duty cycle (the percentage of

time power is applied) is the percentage of time

the channel is low.

04 Finite state machine control L Lab Exercise: Finite state machine motor control p. 2

Current
Source
Amplifier

channel 0
run

stop

print

myRio
Connector-A

DC
Motor

Encoder

1
2
3
4
5
6
7

myRio
Encoder
Interface
Counter

Figure L.1: a schematic of the pulse-modulation via run DIO output, the
speed measurement via the FPGA encoder input, and the UI buttons print and
stop.

Encoder and counter

An optical encoder is mounted on the shaft of

the dc motor. The encoder is the Avago

HEDS-5640-A06. It is a quadrature encoder. It

has 500 lines (i.e. counts per revolution, CPR),

and two LED/Phototransistor pairs. The two

signals (e.g. A and B) are 90 degrees of phase
apart. If the encoder is rotating clockwise, A
leads B by 90 degrees. If the encoder is rotating

counter-clockwise A lags B by 90 degrees. This is

how direction is encoded. In total, then, there

are 4× 500 = 2000 state changes per revolution.

Therefore, each encoder state change

corresponds to a motor rotation of 1/2000

revolution, called a basic displacement

increment (BDI).

The two phases are connected to a quadrature

counter. The counter detects two state changes

(one down-to-up and one up-to-down) for each

line passage. Two changes for phase A and two

for phase B: a total of four state changes for each

line. So, for one revolution the counter totals

2000 state changes, and counts up or down

depending of which phase leads.

An encoder counter in the FPGA interface

determines the total number of these state

http://ricopic.one/resources/encoder_manual.pdf
http://ricopic.one/resources/encoder_manual.pdf

04 Finite state machine control L Lab Exercise: Finite state machine motor control p. 1

changes. The speed is determined by

computing the number of state changes from

the encoder during a certain time interval,

called the basic time interval (BTI). Therefore,

the number of state changes occurring during

each interval represents the angular speed of

rotation in units of BDI/BTI.

Initializing the encoder counter

Counting of the encoder state changes is

accomplished by the FPGA associated with the

Xilinx Z-7010 system-on-a-chip, with dual

Cortex-A9 ARM processors. The counter must

be initialized before it can be used. Initialization

includes identifying the encoder connection,

setting the count value to zero, configuring the

counter for a quadrature encoder, and clearing

any error conditions. The function

EncoderC_initialize, included in the me477
library, alters the appropriate control registers to

initialize the encoder interface on Connector C.

The prototype for the initialization function is:

NiFpga_Status EncoderC_initialize(
NiFpga_Session myrio_session,
MyRio_Encoder *channel

);

The first argument, myrio_session (type:
NiFpga_Session), identifies the FPGA session,

and must be declared as a global variable for

this application. That is, above main,

NiFpga_Session myrio_session;

The second argument channel (type:
MyRio_Encoder *) points to a structure that
maintains the current status and count value,

and must also be declared as a global variable.

We will use encoder #0. For example,

MyRio_Encoder encC0;

04 Finite state machine control L Lab Exercise: Finite state machine motor control p. 1

Reading the encoder counter

The position of the encoder (in BDI) may be

found at any time by reading the counter value.

The prototype of a library function provided for

that purpose is:

uint32_t Encoder_Counter(MyRio_Encoder* channel);

where the argument is the counter channel

declared during the initialization, and the

returned value is the current count in the form

of a 32-bit integer.

Pre-laboratory preparation

Main Program

Write a main program that produces a periodic

waveform on run that applies an average
voltage to the motor determined by the duty

cycle. The period and 1 BTI will be controlled by

calling N wait functions, each of which takes
the same deterministic amount of time. During

the firstM waits each period, voltage will be
applied to the motor. See the first graph in

Fig. L.2.

In addition, while Channel 7 of Connector A is

0, the program will print the measured speed on

the display at the beginning of each BTI. You

will control Channel 7 through a push button

switch. The corresponding run waveform is

shown in the second graph of Fig. L.2.

The algorithm should be implemented as a

finite state machine (see Lec. 04.4). As shown in

Fig. L.3, the machine will have five possible

states: high, low, speed, stop, and (the terminal)

exit. The inputs will be the Clock variable, and
channels 6 and 7 (for the stop and print buttons).
The outputs will be run, Clock (which
sometimes needs reset to 0), and the motor
speed printed to the LCD display. The

04 Finite state machine control L Lab Exercise: Finite state machine motor control p. 2

corresponding state transition table, listing all

possible transitions, is shown in Table L.1.

1 2 MN N... 1 2 M...

...

...
......

0 0

Clock

RUN = 1

RUN = 0

low
state

high
state

low
state

high
state

1 2 MN N... 1 2 M...

...

...
......

0 0

Clock

RUN = 1

RUN = 0

speed
state

low
state

high
state

speed
state

low
state

high
stateCh7=0

1 BTI

Ch7=1

Figure L.2: run waveforms for (top) when the print button is not
being pressed and (bottom)when the print button is being pressed.

highstop low

speed

Clock = N &&
Ch-6= 1 && Ch-7= 1

Clock = M / run = 1

Clock =0
run = 0

Clock = N &&
Ch-7=0 && Ch-6=1

Clock =0
run = 0

Clock = 1/ print speed

Clock = N
&& Ch-6=0 run = 0

Figure L.3: State transition diagram.

Overall, the main program will:

1. Use MyRio_Open to open the myRIO
session, as usual.

2. Setup all interface conditions and initialize

the finite state machine using

initializeSM, described, below.
3. Request, from the user, the number (N) of

wait intervals in each BTI.

04 Finite state machine control L Lab Exercise: Finite state machine motor control p. 1

Table L.1:×: irrelevant input,©: no change in output.

when and input is then output and make
state is state

stop print Clock run Clock speed
Ch6 Ch7 Ch0

high 1 1 N 0 0 © low
high 1 0 N 0 0 © speed
high 0 × N 0 0 © stop
low × × M 1 © © high
speed × × 1 © © print low
stop × × × © © © exit

4. See NiFpga_MyRio1900Fpga30.h and MyRio1900.h for more
description of the NI FPGA U8 Control enums that specify
register addresses. For instance, DIOA_158DIR is short for
NiFpga_MyRio1900Fpga30_ControlU8_DIOA_158DIR, which is at
address 0x181C6, and stores the “direction” (input or output) of a DIO
pin in the upper bank (pins 8–15) of Connector A.

4. Request the number (M) of intervals the

motor signal is “on” in each BTI.

5. Start the main state transition loop.

6. When the main state transition loop

detects that the current state is exit, it
should close the myRIO session, as usual.

Functions

In addition to main, several functions will be
required, as described, below. These functions

include one for each state: high for high, low for
low, speed for speed, and stop for stop.

double_in To execute the user I/O you may

use the routine double_in developed in
Lab Exercise 01, or you may simply call it

from the me477 library:

double double_in(char *string);

initializeSM Perform the following:

1. Initialize channels 0, 6, and 7 on

Connector A, in accordance with

Fig. L.1, by specifying to which

register each DIO corresponds. For

example, for Channel 6,4

Ch6.dir = DIOA_70DIR; // "70" used for DIO 0-7
Ch6.out = DIOA_70OUT; // "70" used for DIO 0-7
Ch6.in = DIOA_70IN; // "70" used for DIO 0-7
Ch6.bit = 6;

04 Finite state machine control L Lab Exercise: Finite state machine motor control p. 2

2. Additionally, initialize Connector A

DIO Channels 1 and 2 in the usual

way. Furthermore, set them to 1 and

0, respectively, via Dio_WriteBit.
(An example would be

Dio_WriteBit(&Ch1, NiFpga_True);
which sets Channel 1 to 1.) This sets

the motor direction via its input pins

INA and INB (1, 0 is “positive”

rotation and 0, 1 is “negative”). See

the motor driver manual for more

information.

3. Initialize the encoder interface. See

above.

4. Stop the motor (set run to 1).
5. Set the initial state to low.

6. Set the Clock to 0.

high If Clock is N, set it to 0 and run to 0.
If Ch7 is 0, change the state to speed.
If Ch6 is 0, change the state to stop.
Otherwise, change the state to low.

low If Clock is M, set run to 1, and change the
state to high.

speed Call vel. The function vel reads the
encoder counter and computes the speed

in units BDI/BTI. See vel below. Convert
the speed to units of revolutions/min.

Print the speed as follows:

printf_lcd("\fspeed %g rpm",rpm);
Finally, change the state to low.

vel Write a function to measure the velocity.

Each time this subroutine is called, it

should perform the following functions.

Suppose that this is the start of the nth BTI.

1. Read the current encoder count: cn

(interpreted as an 32-bit signed

binary number, int).
2. Compute the speed as the difference

between the current and previous

counts: (cn − cn−1).

http://ricopic.one/courses/me316_2017F/resources/pololu_VNH5019_motor_driver_carrier.pdf

04 Finite state machine control L Lab Exercise: Finite state machine motor control p. 3

3. Replace the previous count with the

current count for use in the next BTI.

4. Return the speed double to the
calling function.

Note: The first time vel is called, it should
set the value of the previous count to the

current count.

stop The final state of the program.

1. Stop the motor. That is, set run to 1.
2. Clear the LCD and print the message:

“stopping”.

3. Set the current state to exit. The
while loop in main should terminate
if the current state is exit.

4. Save the response to a Matlab file.

(See laboratory procedure of

Lec. 04.L.)

wait Your program will determine the time by

executing a calibrated delay-interval

function. Consider this “wait” function.

/*-----------------------------------
Function wait
Purpose: waits for xxx ms.
Parameters: none
Returns: none
-----------------------------------/
void wait(void) {

uint32_t i;

i = 417000;
while(i>0){

i--;
}
return;

}

Notice that the above program does

nothing but waste time! The compiler

generates the following operation codes

for this function. The first column contains

the addresses, and the second contains the

corresponding opcodes.

04 Finite state machine control L Lab Exercise: Finite state machine motor control p. 1

5. See Instruments (2013).

6. See ARM (2012), Appendix B.

wait+0 push {r11}
wait+4 add r11, sp, #0
wait+8 sub sp, sp, #12

wait+12 mov r3, #417000
wait+16 str r3, [r11, #-8]
wait+20 b 0x8ed4 <wait+36>

wait+24 ldr r3, [r11, #-8]
wait+28 sub r3, r3, #1
wait+32 str r3, [r11, #-8]
wait+36 ldr r3, [r11, #-8]
wait+40 cmp r3, #0
wait+44 bne 0x8ec8 <wait+24>

wait+48 nop ; (mov r0, r0)
wait+52 add sp, r11, #0
wait+56 ldmfd sp!, {r11}
wait+60 bx lr

The clock frequency of our microprocessor

is 667MHz.5 Note carefully how the

branch instructions are used. Determine

the exact number of clock cycles6 for the

code to execute, accounting for all

instructions. From that, calculate the delay

interval in ms.

When free running, the speed of the motor

is approximately 2000 RPM. Considering

all the above, determine a reasonable

value for N, the number of delay intervals

in a BTI. What inaccuracies or

programming difficulties are there in

using a delay routine for control and time

measurement?

Header files

The following header files will be required by

your code.

#include <stdio.h>
#include "Encoder.h"

04 Finite state machine control L Lab Exercise: Finite state machine motor control p. 1

#include "MyRio.h"
#include "DIO.h"
#include "me477.h"
#include <unistd.h>
#include "matlabfiles.h"

Modulo Arithmetic

We will estimate the rotational speed by

computing the difference between the current

encoder count cn and the previous count cn−1.

The counter is capable of counting up and

down, depending on the direction of rotation.

Interpreting the count as 32-bit signed binary,

the value is in the range [−231, 231 − 1]. For

example, starting from 0 and rotating in the

clockwise direction, the count will increase until

it reaches 231 − 1, then roll over to −231, and

continue increasing.

How will this rollover affect our estimate of the

velocity? Assume that the current and previous

counts (cn and cn−1) are assigned to signed

integer variables of width equal to that of the

counter. For our C compiler the int data type is
32 bits (4-bytes). Further assume that the

angular position of the encoder changes less

than 232/2000 revolutions (about 2million

revolutions!) during a single BTI. That is,

|cn − cn−1| < 232.

When we compute the difference between two

signed integer data types, the result is defined

by the offset modulo function:

mod(m,n, d) = m− n

⌊
m− d

n

⌋
(1)

wherem is the value, n is the modulus, d is the

offset, and bxc is the floor function (i.e. the
greatest integer less than or equal to x.) The

result is modulo-n, and always in the range

[d, d+ n− 1].

Then, for our case of int data, we estimate the
relative displacement using modulo 232, with

04 Finite state machine control L Lab Exercise: Finite state machine motor control p. 1

offset d = −231.

∆θ = mod(cn − cn−1, 2
32,−231)

= cn − cn−1 − 232
⌊
cn − cn−1 − (−231)

232

⌋
(2)

Let’s examine what happens when we cross the

rollover point. Suppose that the previous

counter value cn−1 was 231 − 2. And, that

during the BTI the encoder has moved forward

by +4, such that the current reading cn is

−231 + 2. The numerical difference cn − cn−1 is

−4, 294, 967, 292. However, applying Equation 2,

the 32-bit signed integer arithmetic gives the

correct result:

mod(−4294967292, 232,−231) = +4. Note that C

is automatically implementing Equation 2 and

this description is to deepen our understanding.

Laboratory Procedure

1. Examine the circuit on the breadboard on

Connector A of the myRIO. The push

button switches of Fig. L.4 connect

channels 6 and 7 to ground when pressed.

Note: These channels have pull-up

resistors.

Channel 6 or 7

Switch
Top View

Figure L.4:

2. Use the oscilloscope to view the waveform

produced by your program. For example,

use N = 5,M = 3.

3. Use the oscilloscope to view the start/stop

waveform produced by your program,

and to measure the actual length of a BTI.

Is it what you expect? If not, why not?

4. Repeat the previous step while printing

the speed (press the switch). What does

04 Finite state machine control L Lab Exercise: Finite state machine motor control p. 2

the oscilloscope show has happened to the

length of the BTI. What’s going on!?

5. Describe how you made this measurement

and discuss any limitations in accuracy. In

a later lab, we will find ways of

overcoming this limitation.

6. Recording a step response

After you have your code running as

described above, try this: Record the

velocity step response of the DC motor,

save it to a file and plot it in Matlab.

Here’s how:

Add code to your speed function to save
the measured speed at successive

locations in a global buffer. You will need

to keep track of a buffer pointer in a

separate memory location. Increment the

buffer pointer each time a value is put in

the buffer. The program must stop putting

values in the buffer when it is full. For

example,

#define IMAX 2400 // max points
static double buffer[IMAX]; // speed buffer
static double *bp = buffer; // buffer pointer

and, in the executable code,

if (bp < buffer+IMAX) *bp++ = rpm;

To record an accurate velocity,

temporarily comment-out the printf_lcd
statement in speed, and hold down the
Ch7 switch while you start the program.

7. Saving the response

The program should save the response

stored in the buffer to a Matlab (.mat) file
on the myRIO under the real-time Linux

operating system during the stop state.
See Resource 9 for more details.

The Matlab file must be called Lab4.mat.
In the file, save the speed buffer, the

values of N and M, and a character string

04 Finite state machine control L Lab Exercise: Finite state machine motor control p. 1

containing your name. The name string

will allow you to verify that the file was

filled by your program.

For your report, the array can be plotted

using the Matlab plot command.

a) From your plot, estimate the time

constant of the system. Plotting

points, instead of a continuous line,

will make interpretation easier.

b) What is the steady-state velocity in

RPM?

8. Extra: fixing theM = 1 case

You may have noticed that whenM = 1

the finite state machine does not function

as desired. What is wrong? How would

modifying the state transition diagram

correct this problem? How would you

modify the state transition table? Modify

your program to correct theM = 1 case.

Test the result.

A better way to PWM

In this exercise, among other things, we have

come to understand PWM and the limitations of

implementing it in the way we have.

Fortunately, there is a better way: using the

PWM capabilities from the FPGA, accessible via

PWM.h.
The PWM example (myRIO Example - PWM)
from the NI archive

C_Support_for_myRIO_v3.0.zip shows how to

do this. This method mitigates several of the

issues encountered in this exercise, especially

those related to duty-cycle resolution and

“jerky” operation due to low PWM rates. The

FPGA-based PWM can operate as high as 10

MHz, but, as with our finite state machine

implementation, loses duty cycle resolution as

its rate increases. So, although we have a higher

rate, and therefore more cushion, the same issue

http://www.ni.com/download/labview-myrio-toolkit-2015/5548/en/

04 Finite state machine control Lab Exercise: Finite state machine motor control p. 2

of balancing PWM frequency and duty cycle

resolution remain.

Of course, we still might need a finite state

machine for controlling the state at a

higher-level. For instance, we might include a

knob for controlling the duty cycle of the FPGA

PWM. This and the encoder, speed, and stop

functionality of the finite state machine of the

exercise could have a much lower frequency

(governed by wait) than the PWM. Decoupling

the timing for processes at much different rates,

like this, is typically advantageous.

04 Finite state machine control Lab Exercise: Finite state machine motor control p. 1

7. See http://www.malcolmmclean.site11.com/www/
MatlabFiles/matfiles.html.

Resource R9 Saving myRIO C data to a Matlab file

The following C functions7 write data of types

double or char to a Matlab .mat file. They are
included in the me477 library. Be sure to
#include "matlabfiles.h".
Use the following functions to open a named

file on the myRIO, and successively add any

number of data arrays, variables, and strings to

the file. Finally, close the file.

Open a .mat file The prototype for the open

function is

MATFILE *openmatfile(char *fname, int *err);

where fname is the filename, and err
receives any error code. The function

returns a structure for containing the

Matlab file pointer.

A typical call might be:

mf = openmatfile("Lab.mat", &err);
if(!mf) printf("Can't open mat file %d\n", err);

For this course, always use the file name:

Lab.mat. Notice the use of pointers.
Add a matrix The prototype of the function

for adding a matrix to the Matlab file is

int matfile_addmatrix(
MATFILE *mf,
char *name,
double *data,
int m,
int n,
int transpose

);

where mf is the Matlab file pointer from

the open statement, name is a char string
containing the name that the matrix will

be given in Matlab, data is a C data array

of type double, m and n are the array
dimensions, transpose takes value of 0 or
1 to indicate where the matrix is to be

transposed.

http://www.malcolmmclean.site11.com/www/MatlabFiles/matfiles.html
http://www.malcolmmclean.site11.com/www/MatlabFiles/matfiles.html

04 Finite state machine control Lab Exercise: Finite state machine motor control p. 2

For example, to add a 1-D matrix the call

might be

matfile_addmatrix(mf, "vel", buffer, IMAX, 1, 0);

Or, to add a single variable the call might

be

double Npar;
Npar = (double) N;
matfile_addmatrix(mf, "N", &Npar, 1, 1, 0);

Again, note the use of pointers, and the

cast to double.
Add a string The prototype of the function for

adding a string to the Matlab file is

int
matfile_addstring(

MATFILE *mf,
char *name,
char *str

);

where mf is the Matlab file pointer from

the open statement, name is a char string
containing the name that the matrix will

be given in Matlab, and str is the string.
For example, to add a string the call might

be

matfile_addstring(mf,"myName","Bob Smith");

Close the file After all data have been added,

the file must be closed. The prototype of

the function for closing the Matlab file is

int matfile_close(MATFILE *mf);

where mf is the Matlab file pointer from

the open statement.

For example, to close the Matlab file the

call might be

matfile_close(mf);

Example code Putting these ideas together:

mf = openmatfile("Lab.mat", &err);
if(!mf) printf("Can't open mat file %d\n", err);

04 Finite state machine control Lab Exercise: Finite state machine motor control p. 3

matfile_addstring(mf, "myName", "Bob Smith");
matfile_addmatrix(mf, "N", &Npar, 1, 1, 0);
matfile_addmatrix(mf, "M", &Mpar, 1, 1, 0);
matfile_addmatrix(mf, "vel", buffer, IMAX, 1, 0);
matfile_close(mf);

Transfer file to Matlab After the Lab.mat file
has been created, it can be transferred

directly to Matlab.

1. In Eclipse’s right pane of the Remote

Systems Explorer perspective, select

172.22.11.2, and select the icon
Refresh information of selected

resource.

2. Double click on the Matlab data file:

172.22.11.2>SftpFiles>MyHome>
Lab.mat.

3. The Lab.mat file will be opened in
Matlab on your laptop. Use Matlab’s

whos command to list all of the
named variables in the workspace.

4. In Matlab navigate to a convenient

folder on your laptop. Then, issue the

save('Lab.mat') command to save
the Matlab workspace, locally. The

file can later be opened from a Matlab

script, using the command

load('Lab.mat'), for plotting or
analysis.

Note: You will also find the Lab.mat file in
the RemoteSystemsTempFiles folder
within your workspace folder.

05 Finite state machine control Lab Exercise: Finite state machine motor control p. 1

Resource R10 Copley 412 analog amplifier setup

This should be adequate (and safe) for the

Clifton Precision JDH-2000-V-1C or similar dc

motor. It has a stall voltage of 24 V and stall

current of 2.18 A.

Resistor settings

• RH15 Peak Current 6.2 kΩ (20% of 20 A =

4 A)

• RH16 Continuous Current Limit 0 Ω (16%

of 20 A = 3.2 A)

• RH17 Peak Current Time Limit open (1
second)

• RH20 Armature Inductance 49.9 kΩ (0.6 to

1.9mH)

Capacitor settings

• CH18 Armature Inductance 4.7 nF (0.6 to

1.9mH)

Dip switch settings

• S1 Ground-active Enable OFF (up, away
from the board)

• S2 Torque Mode ON (down, toward the
board)

Gain adjustment

We will be operating the amplifier in TORQUE
MODE. For transconductance, (output current /
input voltage) = peak current / 10 V, which can

be set up with the following steps:

1. Set S2 ON.
2. Set Ref Gain fully CW.

3. Set Loop Gain fully CCW.

4. Adjust the transconductance gain to 4 A /

10 V.

a) To increase gain, turn Loop Gain CW.

05 Finite state machine control Lab Exercise: Finite state machine motor control p. 2

b) To decrease gain, turn Ref Gain CCW.

05

Threads and interrupts

05 Threads and interrupts Processing threads p. 1

1. Intel uses the term “hyperthreading” for SMT.

05.1 Processing threads

A processing thread is a sequences of

instructions to be executed by the CPU. One or

more threads typically comprise a process.

Threads can share the same memory space and

other resources, but processes are typically

independent.

The computer operating system’s scheduler

controls the execution of processes and threads.

For most modern processors, each core can

handle two threads by sharing a core, which

swaps back-and-forth between the

threads—called simultaneous multithreading

(SMT) or time-slicing.1 A schematic of this

process is shown in Fig. 05.1.

Thread 1

Thread 2

processing stallCPU Core

time

idle

Figure 05.1: a schematic of simultaneous multithreading (SMT) in a single
CPU core.

Although the core is not actually simultaneously

processing the threads, there is frequently an

overall speedup by exploiting stalls in the

thread such as cache misses: when a thread

requires data not available in the CPU caches

and must wait for the data from some relatively

slow source, such as the main memory. When

there is a cache miss in one thread, the other can

execute in what would have otherwise been

stalled processing time. Frequently, a single

program will make use of multiple threads.

UNIX-based operating systems, such as the NI

Linux Real-Time OS of the myRIO, have a

standardized (IEEE POSIX 1003.1c) threading

language in C called POSIX threads (Pthreads).

This widely used interface is incorporated into

05 Threads and interrupts Processing threads p. 2

header files of the C library provided with the

myRIO. This is how we will implement

threading in our programs from Lab

Exercise 05, on.

The ARM Cortex A-9 processor of the myRIO

has two cores and is capable of handling

multiple threads.

05 Threads and interrupts Interrupts p. 1

05.2 Interrupts

Embedded computing frequently requires a

program to respond to events the timing of

which is unkown, beforehand. These events

include

• digital user input such as keypad and

button presses;

• other digital input such as limit switch

detection; and

• analog input such as sensor values.

One way to handle these types of events is to

frequently poll the analog and digital inputs in a

program’s main loop. However, there are two

drawbacks to this method: (1) events can be

missed if the inputs are polled too infrequently,

(2) it is difficult to control polling timing in a

loop that contains other processes, and (3) the

main loop’s timing can be affected by the

additional time it takes to handle the event.

The first and second concerns are mitigated by

using another method: threaded interrupt

handling. A new thread (in addition to the main

thread) is created to handle an interrupt. This

thread processes an interrupt service routine

(ISR) which checks to see if there has been an

interrupt request (IRQ) and, if so, responds to

the event. The IRQ can be expressed in memory

or externally on a programmable interrupt

controller (PIC). In either case, the ISR

frequently checks for the corresponding IRQ

and, once serviced, clears it. We call an IRQ-ISR

pair an interrupt.

Even when only a single core is available,

interrupts can be given high-priority by the OS

scheduler (via simultaneous multithreading)

such that the program will be responsive to

interrupts. Of course, unless the threads are run

on distinct cores, an interrupt thread does add

to the time of the iteration of the main loop (our

05 Threads and interrupts Interrupts p. 2

third concern from above). For some

applications (such as that of Lab Exercise 05),

this additional time is negligible. But for many

real-time applications, this will be problematic.

Mitigation can be achieved by using a timer

interrupt, which will be explored in Lab

Exercise 06.

05 Threads and interrupts Boolean algebra on digital signals p. 1

05.3 Boolean algebra on digital signals

We will require an understanding of Boolean

algebra on digital signals to implement a switch

debouncing circuit in Lec. 05.4 . It is a digital

circuit that operates with logic gates, which are

here introduced.

A digital signal’s Boolean variable values 1 and
0 are isomorphic to propositional calculus’s
truth values > (true) and ⊥ (false). Similarly,
Boolean algebra (i.e. Boolean logic) operations

are isomorphic to propositional calculus

operations, such as not (¬), and (∧), and or (∨).

Table 05.1 is a truth table for a number of

Boolean algebra operators.

Digital electronics instantiate these operators as

logic gates, sometimes as subcircuits of CPUs

and sometimes as discrete integrated circuits for

incorporation on a prototyping board (as in Lab

Exercise 05) and eventually on a PCB. The

simplest gate is the not gate, which has the

following circuit symbol.

p ¬p

This gate accepts digital signal represented by

Boolean variable p and returns ¬p. So,

p = 1⇒ ¬p = 0 and p = 0⇒ ¬p = 1.
Most gates have two inputs. For instance, the or

gate, what has circuit symbol

Table 05.1: a truth table for logic operations. The first two columns are
operation inputs, the rest, outputs.

not and or nand nor xor xnor
p q ¬p p∧ q p∨ q p ↑ q p ↓ q p Y q p⇔ q

0 0 1 0 0 1 1 0 1
0 1 1 0 1 1 0 1 0
1 0 0 0 1 1 0 1 0
1 1 0 1 1 0 0 0 1

05 Threads and interrupts Boolean algebra on digital signals p. 2

Table 05.2: logic operations and equivalent C expressions and gate
symbols.

name logic C gate

not ¬p !p

and p∧ q p&&q

or p∨ q p||q

nand p ↑ q !(p&&q)

nor p ↓ q !(p||q)

xor p Y q p!=q

xnor p⇔ q p==q

p

q
p∨ q

accepts digital signals with Boolean variables

(say) p and q and returns p∨ q. Table 05.2

summarizes logic gates and their associated

Boolean algebra operators.

05 Threads and interrupts exe Debouncing switches p. 1

2. � Horowitz and Hill, 2015.

05.4 Debouncing circuits for switches

When a mechanical switch is thrown via a

button, toggle, or some other interface, the new

contact between the two conductors is not

immediately seamless. In fact, over a few

milliseconds, contact is made and broken

dozens of times2. This phenomenon is called

switch contact bounce.

Often, we mitigate switch bounce with a

circuit—called a debouncing circuit—between

the switch and the microcontroller. Debouncing

circuits yield a single transition of the digital

signal, low-to-high or high-to-low.

Consider in detail the debouncing circuit of

Fig. 05.1. For the outputs to switch, both inputs

must switch, effectively mitigating bounce.

05 Threads and interrupts exe Debouncing switches p. 2

+5v
To DIO0

Q

Q*

A

B

(a) a debouncing circuit for a mechanical switch.

1 2 3 4 5 6 7

891011121314

GND

Vcc

(b) 7401 quad nand, open-collector outs.

A

B

Q

Q∗

A

B

A

B

A

B

A

B

A

B

(c) logic levels corresponding different switch states through time.

Figure 05.1: an illustration of the operation of a debouncing circuit. With
the switch initially drawing B low, Q∗ must be high and Q low. The loss of contact
with B does not affect Q∗ or Q. Initial contact with A draws a low and therefore Q
high and Q∗ low. The ensuing bounce doesn’t affect Q because it doesn’t affect Q∗
being low, so Q is high, regardless of A. This logic is then mirrored in the transition
from contact with A to B, with its ensuing bounce. A TTL IC, shown in (b), can be
used to instantiate this circuit.

05 Threads and interrupts L Exercises for Chapter 05 p. 1

05.exe Exercises for Chapter 05

05 Threads and interrupts L Lab Exercise: Introduction to interrupts p. 1

05.L Lab Exercise: Introduction to interrupts

Objectives

The objectives of this exercise are to:

1. introduce the use of interrupts in I/O

programming,

2. introduce the use of multiple threads,

3. become familiar with digital signal

conditioning for interrupts, and

4. use TTL gates to “debounce” a switched

input.

Introduction

This exercise illustrates the use of interrupts,

originating from sources that are external to the

microcomputer. The principal activity of your

main program is to print the value of a counter

on the LCD display. If uninterrupted, the

counter display, which is updated once per

second, would continue for 60 counts.

Generally, the “service” of an interrupt, may be

arbitrarily complex in both form and function.

However, in this exercise, each time an interrupt

request (IRQ) occurs, the interrupt service

routine (ISR) thread will simply print out the

message, “interrupt_”. A push-button switch

on an external circuit will cause the IRQ to

occur.

Therefore, the overall effect will be that the

display will print the count repeatedly, with the

word “interrupt_” interspersed for each push
of the switch.

Although this program is not long, it is essential

that you understand the events that take place

at the time of the interrupt: (1) an unscheduled

(asynchronous) external event causes the

activity of the CPU to be suspended, and (2) a

separate section of code (ISR) executes, before

returning control to the original program at

05 Threads and interrupts L Lab Exercise: Introduction to interrupts p. 1

precisely the point where the execution was

interrupted. That the counter display continues

to run accurately both before and after the

interrupt illustrates that the main program is

not altered, regardless of where the interrupt

occurs in the execution.

The Threads

The main thread

The main program runs in the main thread. It

will perform the following tasks:

1. Open the myRIO session.

2. Register the interrupt and the digital input

(see below).

3. Create an interrupt thread to “catch” the

interrupt (see below).

4. Begin a loop. Each time through the loop:

• Wait one second by calling the (5ms)

wait function (from Lab Exercise 04)

200 times.

• Clear the display and print the value

of an int count.
• Increment the value of count.

5. After a count of 60, signal the interrupt
thread to stop, and wait until it terminates.

6. Unregister the interrupt.

7. Close the myRIO session.

The ISR thread

The ISR runs in an interrupt thread, separate

from the main thread. It should begin a loop

that terminates only when signaled by the main

thread. Within the loop it will:

1. Wait for an external interrupt to occur on

DIO0.
2. Service the interrupt by printing the

message: “interrupt_” on the LCD
display.

05 Threads and interrupts L Lab Exercise: Introduction to interrupts p. 1

3. Acknowledge the interrupt.

Background

Several library interrupt functions are used in

the following. For more documentation on

them, see Resource 11.

Setting up main for interrupts, generally

Within mainwe will configure the DI interrupt
and create a new thread to respond when the

interrupt occurs. The two threads communicate

through a globally defined thread resource

structure:

typedef struct {
NiFpga_IrqContext irqContext; // IRQ context reserved
NiFpga_Bool irqThreadRdy; // IRQ thread ready flag
uint8_t irqNumber; // IRQ number value

} ThreadResource;

National Instruments provides two C functions

to set up the digital input (DI) interrupt request

(IRQ).

Register the DI0 IRQ The first of these

functions reserves the interrupt from the FPGA

and configures the DI and IRQ. Its prototype is:

int32_t Irq_RegisterDiIrq(
MyRio_IrqDi* irqChannel,
NiFpga_IrqContext* irqContext,
uint8_t irqNumber,
uint32_t count,
Irq_Dio_Type type

);

where the five input arguments are:

1. irqChannel: a pointer to a structure
containing the registers and settings for

the IRQ I/O to modify; defined in DIIRQ.h
as:

05 Threads and interrupts L Lab Exercise: Introduction to interrupts p. 1

typedef struct{
uint32_t dioCount; // count register
uint32_t dioIrqNumber; // number register
uint32_t dioIrqEnable; // enable register
uint32_t dioIrqRisingEdge; // rising edge-trig reg.
uint32_t dioIrqFallingEdge; // falling edge-trig reg.
Irq_Channel dioChannel; // supported I/O

} MyRio_IrqDi;

2. irqContext: a pointer to a context
variable identifying the interrupt to be

reserved. It is the first component of the

thread resources structure.

3. irqNumber: the IRQ number (1–8).

4. count: the number times the interrupt
condition is met to trigger the interrupt.

5. type: the trigger type used to increment
the count.

The returned value is 0 for success.

Create the interrupt thread The second

function, pthread_create called from main,
creates a new thread and configures it to

“service” the DI interrupt. Its prototype is:

int pthread_create(
pthread_t *thread,
const pthread_attr_t *attr,
void * (*start_routine) (void *),
void *arg

);

where the four input arguments are:

1. thread: a pointer to a thread identifier.
2. attr: a pointer to thread attributes. In our

case, use NULL to apply the default
attributes.

3. start_routine: name of the starting
function in the new thread. The prototype

syntax means the function start_routine,
which will be given argument arg in the
new thread, should be given to

pthread_createwith no argument.

05 Threads and interrupts L Lab Exercise: Introduction to interrupts p. 1

3. Note: the IRQ channel settings symbols (and others) associated
with the DI interrupt, are defined in header files: DIIRQ.h and
IRQConfigure.h.

4. arg: the sole argument to be passed to
start_routine. In our case, it will be a
pointer to the thread resource structure

defined above and used in the second

argument of Irq_RegisterDiIrq.

This function returns 0 for success.

Setting up main for our interrupt, specifically

We can combine these ideas into a portion of the

main code needed to initialize the DI IRQ.3 For
interrupts on falling-edge transitions on DIO0 of
Connector A, assigned to IRQ 2, we have:

int32_t status;
MyRio_IrqDi irqDI0;
ThreadResource irqThread0;
pthread_t thread;
int i, j, count=0;

// Open the myRIO NiFpga Session.
status = MyRio_Open();
if (MyRio_IsNotSuccess(status)) return status;

// Configure the DI IRQ number, incremental times,
// and trigger type.
const uint8_t IrqNumber = 2;
const uint32_t Count = 1;
const Irq_Dio_Type TriggerType = Irq_Dio_FallingEdge;

// Specify the settings that correspond to
// the IRQ channel to be accessed.
irqDI0.dioChannel = Irq_Dio_A0;
irqDI0.dioIrqNumber = IRQDIO_A_0NO;
irqDI0.dioCount = IRQDIO_A_0CNT;
irqDI0.dioIrqRisingEdge = IRQDIO_A_70RISE;
irqDI0.dioIrqFallingEdge = IRQDIO_A_70FALL;
irqDI0.dioIrqEnable = IRQDIO_A_70ENA;

// Initiate the IRQ number resource of interrupt thread.
irqThread0.irqNumber = IrqNumber;

// Register DI0 IRQ. Terminate if not successful.
status=Irq_RegisterDiIrq(

&irqDI0,
&(irqThread0.irqContext),
IrqNumber,
Count,
TriggerType

);
if (status != NiMyrio_Status_Success) {

05 Threads and interrupts L Lab Exercise: Introduction to interrupts p. 1

printf(
"Status: %d\nConfiguration of DI IRQ failed\n",
status

);
return status;

}

// Set the indicator to allow the interrupt thread.
irqThread0.irqThreadRdy = NiFpga_True;

// Create interrupt threads to catch
// the specified IRQ numbers.
status = pthread_create(

&thread,
NULL,
DI_Irq_Thread,
&irqThread0

);

Other main tasks go here.
After the other main tasks are completed, it
should signal the new thread to terminate by

setting the irqThreadRdy flag in the
ThreadResource structure. Then, wait for the
thread to terminate. For example,

irqThread0.irqThreadRdy = NiFpga_False;
status = pthread_join(thread,NULL);

Finally, the interrupt must be unregistered:

status = Irq_UnregisterDiIrq(
MyRio_IrqDi* irqChannel,
NiFpga_IrqContext irqContext,
uint8_t irqNumber

);

using the same above arguments. To use the

pthread functions, #include <pthread.h> in
your code.

The ISR thread

This is the separate thread that was named and

started by the pthread_create function. Its
overall task is to perform any necessary function

in response to the interrupt. This thread will

execute until signaled to stop by main.

05 Threads and interrupts L Lab Exercise: Introduction to interrupts p. 2

4. For pointer to a structure struct * a with member name b, the
member value can be accessed with a->b, which is equivalent to (*a).b.

The beginning of the new thread is the starting

routine specified in the pthread_create
function called in main:
void *DI_Irq_Thread(void* resource).
The first step in DI_Irq_Thread is to cast its
input argument into appropriate form. In our

case, we cast the resource argument back to the
ThreadResource structure. For example, declare

ThreadResource* threadResource =
(ThreadResource*) resource;

The second step is to enter a loop. Two tasks are

performed each time through the loop, as

described in Algorithm L.1.

Algorithm L.1 ISR thread loop pseudocode

while the main thread has not signaled this
thread to stop do

wait for the occurrence (or timeout) of the
IRQ

if the numbered IRQhas been asserted then
perform operations to service the

interrupt (print interrupt_)
acknowledge the interrupt

end if
end while

Let’s explore how to do this. The while loop
should continue until the irqThreadRdy flag (set
in main) indicates that the thread should end.
For example:4

while (threadResource->irqThreadRdy == NiFpga_True) {
// stuff!

}

The two tasks within the loop are as follows.

1. Use the Irq_Wait function to pause the
loop while waiting for the interrupt. For

our case the call might be:

uint32_t irqAssert = 0;
Irq_Wait(

threadResource->irqContext,

05 Threads and interrupts L Lab Exercise: Introduction to interrupts p. 1

5. A bit flag is bit of independently useful information stored in a (larger)
integer variable. This is because a byte is the smallest addressable unit of
memory. Of course, multiple bit flags can be assigned to a single integer
variable.

6. The bitwise operator << shifts 1 of ...0001 left irqNumber bits. Then
the bitwise and & “bit masks” to see if any bits of both numbers match
(there’s only potentially one match, the irqNumber bit). Note that any
nonzero integer is considered true (1) for a conditional statement.

7. The switch is actually double-pole-double-throw (DPDT), but one
pole is disconnected.

threadResource->irqNumber,
&irqAssert,
(NiFpga_Bool*) &(threadResource->irqThreadRdy)

);

Notice that it receives the ThreadResource
context and IRQ number information, and

returns the irqThreadRdy flag set in the
main thread.

2. Because Irq_Wait times out after 100ms,
we must check the irqAssert bit flag5 to
see if our numbered IRQ has been

asserted.

In addition, after the interrupt is serviced,

it must be acknowledged to the scheduler.

For example, using bitwise operators,6

if (irqAssert & (1 << threadResource->irqNumber)) {
// Your interrupt service code here
Irq_Acknowledge(irqAssert);

}

The third step terminates the new thread and

returns from the function:

pthread_exit(NULL);
return NULL;

Laboratory procedure

Build, debug, and execute your program.

Provide interrupt signal by connecting the

single-pole-double-throw (SPDT)7 switch on the

circuit bread board to DIO0 of Connector A as

shown in Figure L.1. Try your program. What

happens? This undesirable phenomenon is

caused by the bounce of the mechanical switch.

Adjust the oscilloscope to examine the

high-to-low transition of the IRQ signal.

Typically, what length of time is required for

the transition to settle at the low level? How

many TTL triggers occur during the settling?

Correct the problem by replacing the switch in

Figure L.1 with the debouncing circuit shown in

05 Threads and interrupts Lab Exercise: Introduction to interrupts p. 2

IRQ
DIO0

myRIO

Vcc
Pull-Up
Resistor

On Bread
Board

Switch
Top View

Figure L.1: Connecting the interrupt signal to myRIO.

+5v

+5v

To DIO0

Q

Q*

1 2 3 4 5 6 7

891011121314

GND

SN74F38
Open-Collector
Quad NAND Gate

A

B

Vcc

Figure L.2: Debouncing circuit.

Figure L.2. This circuit incorporates a (TTL)

quad open-collector NAND gate (7401).

Box 05.1 caution

Be certain that Vcc and GND are connnected
to the chip before wiring the rest of the

circuit.

Try your program again. Explain, in detail, why

this circuit should solve the switch bounce

problem. That is, graph the time-history of

signals at points A and B that would occur

during the operation of a bouncing switch.

Then, graph the corresponding signals at Q and

Q∗.

Finally, in your own words, explain how the

main thread configures the interrupt thread,
how it communicates with the interrupt thread

during execution, and how the interrupt thread

functions.

05 Threads and interrupts Lab Exercise: Introduction to interrupts p. 1

Resource R11 Interrupt functions documentation

This resource includes some documentation of

functions from the National Instruments

C_Support_for_myRIO library (included in the
me477 library) used in Lab Exercise 05. For more
details, see the me477 library header files
DIIRQ.h and IRQConfigure.h and POSIX C

library pthread.h.

Register DI IRQ

Irq_RegisterDiIrq() Reserves the

interrupt from

FPGA and

configures DI IRQ.

Declared in the

DIIRQ.h header file.
Prototype:

int32_t Irq_RegisterDiIrq(
MyRio_IrqDi *irqChannel,
NiFpga_IrqContext *irqContext,
uint8_t irqNumber,
uint32_t count,
Irq_Dio_Type type

);

Arguments:

• irqChannel structure containing the
registers and settings for a digital IRQ I/O

• irqContext IRQ context to be reserved

• irqNumber the IRQ number

(IRQNO_MIN-IRQNO_MAX)
• count the incremental times that you use
to trigger the interrupt

• type the trigger type that you use to
increment the count

• return the configuration status

05 Threads and interrupts Lab Exercise: Introduction to interrupts p. 1

Unregister DI IRQ

Irq_UnregisterDiIrq() Clears the DI IRQ

configuration

setting. Declared

in the DIIRQ.h
header file.

Prototype:

int32_t Irq_UnregisterDiIrq(
MyRio_IrqDi *irqChannel,
NiFpga_IrqContext irqContext,
uint8_t irqNumber

);

Arguments:

• *irqChannel structure containing the
registers and settings for a digital IRQ I/O

• irqContext IRQ context to be reserved

• irqNumber the IRQ number

(IRQNO_MIN-IRQNO_MAX)

Wait for Interrupt

Irq_Wait() Wait until the specified IRQ

number occurred or ready

signal arrives. Declared in the

IRQConfigure.h header file.
Prototype:

void Irq_Wait(
NiFpga_IrqContext irqContext,
NiFpga_Irq irqNumber,
uint32_t *irqAssert,
NiFpga_Bool *continueWaiting

);

Arguments:

• irqContext context of current IRQ
• irqNumber IRQ number

• continueWaiting signal which aborts the
waiting thread

• return irqAssert asserted IRQ number

05 Threads and interrupts Lab Exercise: Introduction to interrupts p. 1

This is a blocking function that stops the calling

thread until the FPGA asserts any IRQ in the

number parameter, or until the function call

times out. The irqsAssert parameter can be
used to determine which IRQs were asserted for

each function call.

Acknowledge IRQ

Irq_Acknowledge() Acknowledges an IRQ

to the FPGA. Declared

in the IRQConfigure.h
header file.

Prototype:

void Irq_Acknowledge(
uint32_t irqAssert

);

Arguments:

• irqAssert asserted IRQ number

Create POSIX thread

pthread_create() Creates a new thread

within a process.

Declared in the

pthread.h header

file.
Prototype:

int pthread_create(
pthread_t *thread,
const pthread_attr_t *attr,
void *(*start_routine) (void *),
void *arg

);

Arguments:

• *thread new thread identifier

• *attr new thread attributes (NULL -
default)

• *start_routine starting function of new
thread

Threads and interrupts Lab Exercise: Introduction to interrupts p. 1

• *arg sole argument of start_routine
• return status = 0 for success

Join POSIX thread

pthread_join() Suspends execution of the

calling thread until the

target thread terminates.

Declared in the pthread.h
header file.

Prototype:

int pthread_join(
pthread_t thread,
void **retval

);

Arguments:

• thread thread identifier
• *retval if not NULL, copies the exit status
into the location pointed to by retval

• return status = 0 for success

Exit POSIX thread

pthread_exit() Terminates the calling

thread. Declared in the

pthread.h header file.
Prototype:

void pthread_exit(
void *retval

);

Arguments:

• *retval if not NULL, copies the exit status
into the location pointed to by retval

• return status = 0 for success

Part IV

Feedback Control of Mechanical

Systems

06

Discrete dynamic systems

Control systems engineers frequently need to

make a discrete embedded computer system

behave like a single-input-single-output (SISO)

dynamic system. The input and output for the

continuous system are continuous functions of

time. The corresponding input and output for a

discrete dynamic system are signals sampled

(Lec. 06.1) to form discrete time sequences, as

shown in Fig. 06.1.

A continuous system can be described by a

differential equation or transfer function that

operate on and returns continuous signals; A

discrete system can be described by a difference

equation (Lec. 06.2) or discrete transfer function

x(t) y(t)

Input Output

t t
Continuous

System

x(nT) y(nT)

Input Output

t t
Discrete
System

T

x(n) y(n)

n nSequences

0
3T 4T 5T 6T1T 2T

0
3T 4T 5T 6T1T 2T

0
3 4 5 61 2

0
3 4 5 61 2

Figure 06.1: continuous systems, discrete systems, and sequences.

06 Discrete dynamic systems p. 4

(Lec. 06.3) that operate on and returns

sequences.

In addition to discrete system dynamics

considerations, this chapter also introduces

timer interrupts (Resource 12) to improve

realtime performance. As an application of this

material, in Lab Exercise 06, we will learn how

to instantiate a dynamic system in our

microcontroller.

06 Discrete dynamic systems ADC and DAC p. 1

06.1 Analog-to-digital and digital-to-analog

conversion

Most sensors and actuators, which are necessary

components for control systems, have as input

and output analog signals. These are

continuous in time and can take on a virtually

infinite number of real values. In preceding

chapters, we have learned that computers work

with binary digital signals, which communicate

information by changing voltage between

conventional levels representing logical true

and false. How can a binary digital signal

represent an analog signal and vice versa?

Analog-to-digital conversion and analog outputs

Analog-to-digital conversion (ADC) is the

process by which a binary digital signal is made

to represent an analog signal. This proceeds in

three operations, as illustrated in Fig. 06.1:

sampling the analog signal is sampled:

measured at discerete moments in time,

usually at a fixed sample period T (i.e.

sample rate 1/T or angular sample rate

2π/T);

quantization the sampled measurement is

quantized: represented by one of a finite

set of values limited by the number of bits

available in binary conversion; and

binary conversion the quantized

measurement is converted to binary: given

a binary representation such that it can be

represented by a binary digital signal.

sample quantize binarize
analog discrete quantized digital

Figure 06.1: the operations required to convert an analog to a binary
digital signal.

06 Discrete dynamic systems ADC and DAC p. 1

1. Sometimes this is called a digital signal, but we reserve that term for
(usually binary-) quantized signals.

2. These are distinct mathematical functions. Sometimes we call a
function of integern a sequence and a function ofnT a discrete function.
Even this obscures some details, but a precise mathematical treatment is
unnecessary for our purposes.

It is convenient to give a name to the

measurement after it is sampled, but before it is

quantized: a discrete signal,1 which is

represented mathematically as a sequence of

real numbers paired with corresponding time

intervals (usually fixed). These sequences are

either denoted as functions of an integer n or its

product nT with a fixed sample period T .2

A microcontroller, such as the myRIO,

frequently has at least a few analog inputs (AIs):

voltage measurement channels with ADC. The

ADC takes time, so a lag is introduced in the

process. Microcontrollers with an FPGA (like

the myRIO) can frequently use it perform much

faster ADC than those without.

For details about programming the myRIO

analog inputs, see Resource 14.

Digital-to-analog conversion and analog outputs

Microcontrollers also commonly have at least a

few analog outputs (AOs): channels that can

programmatically produce an analog signal

voltage in some range (usually something like

[0, 5] V or [−10,+10] V). But, as we know, that

continuous output once had a digital

representation, so it can only construct a

continuous representation of some finite

number of voltage levels.

The process of converting a digital signal to an

analog signal is called digital-to-analog

conversion (DAC). It is essentially the opposite

process as ADC; the key move is to convert a

discrete signal to a continuous signal.

Considered broadly, it is the approximation of a

discrete function by a continuous one, which is

called “curve fitting”: an attempt to fill-in

continuous values in the intermediate time

between discrete samples.

There is a tradeoff here between accuracy and

speed because curve fitting requires

06 Discrete dynamic systems ADC and DAC p. 2

computation time. In embedded computing

applications, it is frequently more-important to

immediately represent the realtime output than

to be accurate with intermediate

approximations, especially if (as is usually the

case) output resolution is sufficient. This

suggests the ubiquitous method of the

zero-order hold, which simply maintains the

previous sample value throughout the

intermediate sample period, yielding a step-like

analog signal. While this introduces some

high-frequency noise, it is usually the best

option.

For details about programming the myRIO

analog outputs, see Resource 14.

06 Discrete dynamic systems Difference equations p. 1

06.2 Difference equations

Many continuous dynamic systems can be

described by a linear, constant-coefficient

differential equation:

αn
dny

dtn
+ αn−1

dn−1y

dtn−1
+ . . .+ α1

dy

dt
+ α0y =

= βm
dmx

dtm
+ βm−1

dm−1x

dtm−1
+ . . .+ β1

dx

dt
+ β0x

(1)

where αk and βk are constants.

The corresponding discrete system is described

by a difference equation that operates on the

sequence of input values x(n) to produce the

output sequence y(n). The difference equation

has the form

a0y(n) + a1y(n− 1) + . . .+ aNy(n−N) =

= b0x(n) + b1x(n− 1) + . . .+ bMx(n−M) (2)

for n = 0, 1, 2, . . . , where x(n) is a sequence of

periodically digitized values of the analog input

signal, y(n) is a sequence of values that

determine the output signal, and ak for

k = 0, 1, . . . , N and bk for k = 0, 1, . . . ,M are

constants.

This equation can also be written in summation

form:

N∑
k=0

aky(n− k) =

M∑
k=0

bkx(n− k) (3)

or, solving this for the current output sample

y(n),

y(n) =
1

a0

[
M∑
k=0

bkx(n− k) −

N∑
k=1

aky(n− k)

]
(4)

Notice that the current output value y(n)

depends on previous values of y and on the

previous and current values of the input x.

The problem of finding a discrete

approximation of a continuous dynamic system

06 Discrete dynamic systems Difference equations p. 2

represented by the differential equation Eq. 1,

then, is now just the problem of finding

appropriate constants ak and bk in the

difference equation such that its behavior

approximates that of Eq. 1 with its constants αk

and βk.

It turns out the best methods of approximation

are derived not directly from the

differential-difference equation relationship, but

instead from the (implied) continuous-discrete

transfer function relationship thereof. It is to the

discrete transfer function that we therefore turn.

06 Discrete dynamic systems Discrete transfer functions p. 1

06.3 Discrete transfer functions

We begin with a review of Laplace transforms

and continuous transfer functions.

Laplace transforms

In the analysis of this continuous systems, we

use the Laplace transform, defined by

L (f(t)) =

ˆ ∞
0

f(t)e−stdt (1)

which leads directly to the familiar Laplace

transform properties (1) of linearity and (2) of

differentiation: the Laplace transform of the

derivative of a function f(t) (with zero initial

conditions) is s times the transform of the

function F(s) ≡ L(f(t)):

L

(
df(t)

dt

)
= sF(s). (2)

Continuous transfer functions

These properties allow us to find the transfer

function of a linear continuous system, given its

differential equation. We define the continuous

transfer function T(s) to be the Laplace

transform of the output Y(s) divided by the

Laplace transform of the input X(s); i.e.

T(s) =
Y(s)

X(s)
. (3)

Reconsider the continuous differential equation

for a dynamic system Eq. 1. The equivalent

transfer function, using the linearity and

differentiation properties of the Laplace

transform, is

T(s) =
βmsm + βm−1s

m−1 + · · ·+ β1s
1 + β0

αnsn + αn−1sn−1 + · · ·+ α1s
1
+α0

(4)

where αk and βk are the same constants that

appeared in Eq. 1.

06 Discrete dynamic systems Discrete transfer functions p. 1

3. There are many more uses for z-transforms. For more details, see
Franklin, Powell and Workman (1998).

z-Transforms

For discrete systems and their difference

equations, a very similar procedure is available.

The z-transform F(z) ≡ Z (f(n)) of a sequence

f(n), with complex variable z (analogous to s), is

defined by3

Z (f(n)) =

∞∑
n=0

f(n)z−n. (5)

This leads directly to the z-transform properties

(1) of linearity and (2) of delay, analogous to (2)

for discrete systems: the z-transform of a

function delayed by one sample period is z−1

times the transform of the function F(z):

Z (f(n− 1)) = z−1F(z), (6)

Discrete transfer functions

We define the discrete transfer function T(z) to

be the z-transform of the output Y(z) divided by

the z-transform of the input X(z); i.e.

T(z) =
Y(z)

X(z)
. (7)

Given the z-transform properties, we can easily

find the transfer function of a discrete system

given its difference equation.

Example 06.3 -1 re: discrete transfer function

What is the discrete tranfer function

corresponding to the second-order difference

equation

a0y(n) + a1y(n− 1) + a2y(n− 2) =

= b0x(n) + b1x(n− 1) + b2x(n− 2) (8)

with constants an and bn?

The z-transform of the difference equation

is determined by linearity and successively

06 Discrete dynamic systems Discrete transfer functions p. 1

applying (6) to arrive at(
1+ a1z

−1 + a2z
−2

)
Y(z) =

(
b0 + b1z

−1 + b2z
−2

)
X(z).

(9)

Rearranging, the discrete transfer function is

Y(z)

X(z)
=

b0 + b1z
−1 + b2z

−2

1+ a1z−1 + a2z−2
(10)

Notice that the transfer function (10) and the

difference equation (8), can be derived from

each other by inspection. Notice also that the

transfer function of a discrete system is the ratio

of two polynomials in z, just as the transfer

function of a continuous system is the ratio of

two polynomials in s.

Discrete approximations of continuous transfer functions

There are several ways to derive an

approximate discrete transfer function from a

corresponding continuous transfer function. We

will use a popular technique called Tustin’s

method that approximates a continuous

function of time by straight lines connecting the

sampled points (i.e. trapezoidal integration).

The discrete transfer function is found using

Tustin’s method by making the following

substitution:

s 7→ 2

T

(
1− z−1

1+ z−1

)
(11)

and rewriting the transfer function in the form

of equation (10). Here, T is the sample period.

Example 06.3 -2 re: Tustin’s method

Consider a continuous first order system

described by the transfer function:

Y(s)

X(s)
=

1

τs+ 1
, where τ is the time constant.

(12)

Using Tustin’s method, derive a discrete

transfer function and the corresponding

difference equation.

06 Discrete dynamic systems Discrete transfer functions p. 2

Substituting Equation 11 into the transfer

function, we have:

Y(z)

X(z)
=

α+ αz−1

1− (1− 2α)z−1
,

where α is a constant:

α =
T

2τ+ T

from which the difference equation can be

inferred (see Eqs. 8 to 10 above):

y(n) = (1− 2α)y(n− 1) + αx(n) + αx(n− 1)

Notice again that the current value of the output

y(n) depends on the previous output, y(n − 1),

and on the current and previous inputs, x(n)

and x(n− 1).

Notice also that the coefficients depend on

the time constant τ in the original continuous

system and on the sample period T .

During each sample period, the value of the

current value of the input x(n) is measured

and the current value of the output y(n) is

computed. Suppose that the time constant τ =

2, the sample period T = 1, and that the input

is a unit step (x(n) = 1 for all n), and the initial

condition y(0) = 0.

Then, from our solution for y(n),

y(n) = 0.6y(n− 1) + 0.4 (13)

and we can compute the output sequence:

y(0) = 0

y(1) = 0.6(0) + 0.4 = 0.4

y(2) = 0.6(0.4) + 0.4 = 0.64

y(3) = 0.6(0.64) + 0.4 = 0.784

y(4) = 0.6(0.784) + 0.4 = 0.870

...

Figure 06.1 shows plots of the input and output

sequences.

06 Discrete dynamic systems Discrete transfer functions p. 1

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

n

x(
n)

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

n

y(
n)

Figure 06.1: input and output sequences.

The dotted line is the exact solution y(t/T) of the

original continuous differential equation. As

you can see, in this example, Tustin’s method

is very close to the exact solution at the sample

points.

See Resource 13 for a table of common

controller transfer functions converted to

discrete transfer functions via Tustin’s method.

Matlab’s c2d

The Matlab Control Systems Toolbox includes a

function c2d that computes the Tustin
equivalent discrete system sysd from the

continuous system sys, as follows.

sysd = c2d(sys, T, 'tustin')

This function can also use other common

techniques to yield a discrete approximation of

a continuous transfer function.

06 Discrete dynamic systems The biquad cascade p. 1

4. “Biquad” is short for “biquadratic.” The biquad transfer function has
second-order polynomials in both numerator and denominator.

06.4 The biquad cascade

Although we could implement Eq. 4 as shown,

the sensitivity of the output to the coefficients

leads to numerical inaccuracies as the order of

the system N becomes large. We will solve this

problem by breaking the Nth order system it

into a series of ns second-order systems.

The technique is called a biquad cascade and is

illustrated in Figure 06.1.

Notice that the output of each second-order

section (biquad)4 is the input to the subsequent

section. Each biquad implements the same

second-order difference equation, but with

different coefficients, inputs, and outputs.

For example, the current output yi(n) from the

ith section would be:

yi(n) =
1

a0i

(
b0i

xi(n) + b1i
xi(n− 1) + b2i

xi(n− 2) +

− a1i
yi(n− 1) − a2i

yi(n− 2)
)
.

(1)

Of course, a first or second order transfer

function would require only one biquad.

Depending on the value of N, some of the

coefficients of at least one biquad may be zero.

We will implement a function to handle any

value of N.

There are a variety of algorithms for breaking a

transfer function into biquadric sections.

Matlab’s Signal Processing Toolbox contains a

...

x(nT) y(nT)

x(nT) y(nT)

Input

Input

Output

Output

Nth Order
System

2nd
Order

2nd
Order

2nd
Order

2nd
Order

1 2 ns-1 ns

Figure 06.1: a biquad cascade.

06 Discrete dynamic systems The biquad cascade p. 2

function tf2sos (transfer function to second
order sections) for this purpose.

06 Discrete dynamic systems The biquad cascade p. 1

Resource R12 Timer interrupts

This resource describes how to program the

myRIO in C to perform timer interrupts.

Main thread: background

Initializing the timer interrupt is similar to

initializing the digital input interrupt.

We will use a separate thread to produce

interrupts at periodic intervals. Within main, we
will configure the timer interrupt and create a

new thread to respond when the interrupt

occurs. The two threads communicate through

a globally defined thread resource structure:

typedef struct {
NiFpga_IrqContext irqContext; // IRQ context reserved
NiFpga_Bool irqThreadRdy; // IRQ thread ready flag

} ThreadResource;

National Instruments provides C functions to

set up the timer interrupt request (IRQ).

Register the Timer IRQ

The first of these functions reserves the

interrupt from the FPGA and configures the

timer and IRQ. Its prototype is:

int32_t Irq_RegisterTimerIrq(
MyRio_IrqTimer* irqChannel,
NiFpga_IrqContext* irqContext,
uint32_t timeout

);

where the three input arguments are:

1. irqChannel: A pointer to a structure

containing the registers and settings for

the IRQ I/O to modify; defined in

TimerIRQ.h as:

typedef struct {
uint32_t timerWrite; // Timer IRQ interval register
uint32_t timerSet; // Timer IRQ setting register

06 Discrete dynamic systems The biquad cascade p. 1

5. The IRQ settings symbols associated with the timer interrupt, are
defined in the header file: TimerIRQ.h.

Irq_Channel timerChannel; // Timer IRQ supported I/O
} MyRio_IrqTimer;

2. irqContext: a pointer to a context
variable identifying the interrupt to be

reserved. It is the first component of the

thread resources structure.

3. timeout: the timeout interval in µs.

The returned value is 0 for success.

Create the interrupt thread

A new thread must be configured to service the

timer interrupt. In mainwe will use
pthread_create to set up that thread. Its
prototype is:

int pthread_create(
pthread_t *thread,
const pthread_attr_t *attr,
void *(*start_routine) (void *),
void *arg

);

where the four input arguments are:

1. thread: a pointer to a thread identifier.
2. attr: a pointer to thread attributes. In our

case, use NULL to apply the default
attributes.

3. start_routine: the name of the starting
function in the new thread.

4. arg: the sole argument to be passed to the
new thread. In our case, it will be a

pointer to the thread resource structure

defined above and used in the second

argument of Irq_RegisterDiIrq.

This function also returns 0 for success.

Main thread: our case

We can combine these ideas into a portion of the

main code needed to initialize the Timer IRQ.5

06 Discrete dynamic systems The biquad cascade p. 1

For interrupts triggered by the timer in the

FPGA, we have:

int32_t status;
MyRio_IrqTimer irqTimer0;
ThreadResource irqThread0;
pthread_t thread;

// Registers corresponding to the IRQ channel
irqTimer0.timerWrite = IRQTIMERWRITE;
irqTimer0.timerSet = IRQTIMERSETTIME;
timeoutValue = 5;
status = Irq_RegisterTimerIrq(

&irqTimer0,
&irqThread0.irqContext,
timeoutValue

);

// Set the indicator to allow the new thread.
irqThread0.irqThreadRdy = NiFpga_True;

// Create new thread to catch the IRQ.
status = pthread_create(

&thread,
NULL,
Timer_Irq_Thread,
&irqThread0

);

Other main tasks go here.
After the tasks of main are completed, it should
signal the new thread to terminate by setting the

irqThreadRdy flag in the ThreadResource
structure. Then it should wait for the thread to

terminate. For example,

irqThread0.irqThreadRdy = NiFpga_False;
status = pthread_join(thread, NULL);

Finally, the timer interrupt must be

unregistered:

status = Irq_UnregisterTimerIrq(
&irqTimer0,
irqThread0.irqContext

);

using the same arguments from above.

06 Discrete dynamic systems The biquad cascade p. 2

The interrupt thread

This is the separate thread that was named and

started by the pthread_create function. Its
overall task is to perform any necessary function

in response to the interrupt. This thread will

run until signaled to stop by main.
The new thread is the starting routine specified

in the pthread_create function called in main.
In our case:

void *Timer_Irq_Thread(void* resource).
The first step in Timer_Irq_Thread is to cast its
input argument (passed as void *) into
appropriate form. In our case, we cast the

resource argument back to a ThreadResource
structure. For example, declare

ThreadResource* threadResource =
(ThreadResource*) resource;

The second step is to enter a while loop. Two
functions are performed each time through the

loop, as described in Algorithm 06.1.

Algorithm 06.1 ISR thread loop pseudocode

while the main thread has not signaled this
thread to stop do

wait for the occurrence (or timeout) of the
IRQ

schedule the next interrupt
if the Timer IRQ has been asserted then

perform operations to service the
interrupt

acknowledge the interrupt
end if

end while

The while loop should continue until the
irqThreadRdy flag (set in main) indicates that
the thread should end. For example,

1. Use the Irq_Wait function to pause the
loop while waiting for the interrupt. For

our case the call might be, with

TIMERIRQNO a constant defining the Timer

06 Discrete dynamic systems The biquad cascade p. 3

IRQ’s IRQ number, defined in

TimerIRQ.h:

uint32_t irqAssert = 0;
Irq_Wait(

threadResource->irqContext,
TIMERIRQNO,
&irqAssert,
(NiFpga_Bool*) &(threadResource->irqThreadRdy)

);

Notice that it receives the ThreadResource
context and Timer IRQ number

information, and returns the

irqThreadRdy flag set in the main thread.
Schedule the next interrupt by writing the

time interval into the IRQTIMERWRITE
register, and setting the IRQTIMERSETTIME
flag. That is,

NiFpga_WriteU32(
myrio_session,
IRQTIMERWRITE,
timeoutValue

);
NiFpga_WriteBool(

myrio_session,
IRQTIMERSETTIME,
NiFpga_True

);

The timeoutValue is the number of µs
(uint32_t) until the next interrupt. The
myrio_session used in these functions
should be declared within this timer

thread. That is,

extern NiFpga_Session myrio_session;

This variable was defined when you called

MyRio_Open in the main thread.
2. Because the Irq_Wait times out after 100

ms, we must check the irqAssert flag to
see if the Timer IRQ has been asserted. In

addition, after the interrupt is serviced, it

must be acknowledged to the scheduler.

For example,

06 Discrete dynamic systems exe The biquad cascade p. 4

if(irqAssert & (1 << TIMERIRQNO)) { // Bit mask
// Your interrupt service code here
Irq_Acknowledge(irqAssert);

}

In the third step (after the end of the loop) we

terminate the new thread, and return from the

function:

pthread_exit(NULL);
return NULL;

06 Discrete dynamic systems L Exercises for Chapter 06 p. 1

06.exe Exercises for Chapter 06

06 Discrete dynamic systems L Lab Exercise: Transfer function generator p. 1

06.L Lab Exercise: Transfer function generator

Objectives

The objectives of this exercise are to:

1. Use real-time clock interrupts to provide

timing.

2. Implement an arbitrary transfer function

generator.

3. Introduce A/D and D/A conversion.

Introduction

In this lab exercise, you will write a general

purpose program capable of approximating the

performance of any SISO, LTI system! The

system input and output will both be analog

electrical signals. Your program will implement

this with a difference equation.

At the beginning of each BTI, your ISR will read

an analog input to obtain the current input

value, compute the current value of the output

y(n), and apply the current output value to an

analog output.

This process continues until is entered on

the keypad. The input voltage will be provided

by a function generator. Both the input and

output voltages will be displayed on the

oscilloscope.

You will use three new myRIO features in this

experiment: an interrupt timer, the ADC, and

the DAC. The first is described in detail in

Resource 12 and the others in Resource 14.

Although we could implement the difference

equation Eq. 4 as shown, the sensitivity of the

output to the coefficients leads to numerical

inaccuracies as the order of the system N

becomes large, so we use the biquad cascade

representation of Lec. 06.4 .

06 Discrete dynamic systems L Lab Exercise: Transfer function generator p. 1

Pre-laboratory preparation

The program consists of a main function and an
interrupt service routine (ISR) running in a

separate thread. The ISR is set to execute with a

period of 0.5ms (determined by the Timer IRQ),

and computes the DAC output from the ADC

input by means of a difference equation.

Main program

The only tasks of mainwill be the following.

1. Set up and enable the Timer IRQ interrupt,

2. Enter a loop, ending only when a is

received from the keypad. Use getkey.
3. Signal the timer thread to terminate using

the irqThreadRdy flag, and wait for it to
terminate.

Interrupt service routine

The interrupt service routine thread implements

a dynamic system. The heart of the ISR is a

while loop that checks the irqThreadRdy flag
(set in main) to see if the thread should continue.
Before the loop begins, initialize the analog

input/output, and set the analog output to 0 V.

Each time through the loop:

1. Get ready for the next interrupt by waiting

for the IRQ to assert. Then write the time

interval to wait between interrupts (BTI)

to the IRQTIMERWRITE register and write
TRUE to the IRQTIMERSETTIME register.

2. Read the analog input to obtain the

current input value x(n).

3. Call a function cascade (see below) to
calculate the current value of the output

y(n) by computing all of the sections in

the biquad cascade. Each biquad section is

computed according to Eq. 1.

4. Send the output value to the analog

output.

06 Discrete dynamic systems L Lab Exercise: Transfer function generator p. 2

5. Acknowledge the interrupt.

After the loop terminates, save the response to

Lab6.mat.
The ISR must allocate storage for variables and

arrays associated with the discrete dynamic

system, including:

1. the length of the BTI in microseconds,

2. the number of biquad sections ns, and

3. the system constants (ai and bi) for the

biquad sections.

The dynamic system corresponding to the

collection of biquad sections can be

conveniently referred to and manipulated by

first defining a structure to contain the

coefficients and previous values of input and

output for a single biquad section. We might

define a “biquad” structure as follows.

struct biquad {
double b0; double b1; double b2; // numerator
double a0; double a1; double a2; // denominator
double x0; double x1; double x2; // input
double y1; double y2; // output

};

This definition should be placed just before the

prototypes section of your program.

Then, a specific dynamic system can be defined

as an array of these biquad structures, each

array element corresponds to an individual

biquad section:

int myFilter_ns = 2; // No. of sections
uint32_t timeoutValue = 500; // T - us; f_s = 2000 Hz
static struct biquad myFilter[] = {

{1.0000e+00, 9.9999e-01, 0.0000e+00,
1.0000e+00, -8.8177e-01, 0.0000e+00, 0, 0, 0, 0, 0},
{2.1878e-04, 4.3755e-04, 2.1878e-04,
1.0000e+00, -1.8674e+00, 8.8220e-01, 0, 0, 0, 0, 0}

};

This system description can be placed within

the ISR, near its beginning. The first two lines

06 Discrete dynamic systems L Lab Exercise: Transfer function generator p. 1

establish the number of biquad sections, and the

length of the BTI in microseconds. Finally,

myFilter is the name of an array of biquad
structures being initialized.

For testing purposes, the initialized constants in

the example above correspond to a system of

two biquad sections (ns = 2), encoding a

unity-gain low-pass filter, with sampling

frequency of 2000 Hz. Derived using Tustin’s

method, they correspond to a third-order

continuous system having a pair of complex

poles with natural frequency of 40 Hz, and with

damping ratio 0.5. The remaining real pole is at

40 Hz.

Crazy about pointers!

The most challenging part of this task is the

calculation of the current output value y(n). The

use of pointers makes the calculation both

straightforward and efficient.

Box 06.1 hint

Don’t be tempted to code this algorithm

using array indices (instead of pointers);

that would be much too slow for our

purposes.

The cascade function

The cascade function implements the complete
dynamic system by passing the measured input

through the string of biquad sections. The ISR

must pass to cascade the value of the current
input x(n)measured by the ADC, the number of

biquad sections ns, the array of biquad

structures containing the coefficients and

history variables (xi and yi) for all sections. It

might have a prototype that looks like:

double cascade(
double xin, // input

06 Discrete dynamic systems L Lab Exercise: Transfer function generator p. 1

struct biquad *fa, // biquad array
int ns, // no. segments
double ymin, // min output
double ymax // max output

);

Here, xin is the current system input, fa is the
name of an array of biquad structures, ns is the
corresponding number of biquad sections, and

ymin and ymax are the saturation limits.
In the above example, myFilterwould be
passed through fa. The value returned by
cascade is the current value of the system
output y(n).

Coding cacade

An efficient way to code cascade is to allocate a
pointer f in cascade that will be used to point to
elements of the array of biquad structures.

Begin the function by equating the pointer to the

first element in the array (i.e. the first biquad):

f = fa;. Variables inside the biquad structure
are accessed by using the pointer name, e. g.

f->a0, f->b0, f->x0, f->y1, etc. (The ->
operator is equivalent to dereferencing and then

accessing a member (say, (*f).a0) and is typed
as a minus sign immediately followed by >.)
Then, loop ns times, to cycle through each of the

biquad sections in the array. At the beginning of

each loop, the output value y0 of previous
biquad must be passed to the input value f->x0
of the current biquad.

Within the loop, coding the output value y0
might look like:

y0 = (
f->b0*f->x0 + f->b1*f->x1 + // ... etc.

)/f->a0;

See Equation 1.

Each time through the loop, after the output

value has been computed, the previous values x

06 Discrete dynamic systems L Lab Exercise: Transfer function generator p. 1

and ymust be updated, so that they will be

correct at the next time step. For example,

f->x2 = f->x1; f->x1 = f->x0; // ... etc.

At the end of the loop, the pointer f is
incremented to advance to the next biquad in

the array.

One more point: if the DAC is given a value

beyond its range [−10,+10] V, it will saturate its

output value appropriately. However, our

difference equation Eq. 1 depends on previous

values of the output, but doesn’t saturate. To

correct this disparity, cascade should saturate
the output y0 of the final biquad before it is
saved for the next iteration.

For example, define the macro

#define SATURATE(x,lo,hi) { \
((x) < (lo) ? (lo) : (x) > (hi) ? (hi) : (x)) \

}

Pass appropriate values of the xmin and xmax
parameters to cascade. Then, for the last
biquad, immediately after y0 is computed,
saturate its value:

y0 = SATURATE(y0, ymin, ymax);

Laboratory Procedure

A good strategy to follow in writing this

program is to first implement and debug

everything except the calculation of the biquad

cascade. That is, set up the main program and

the ISR, including all arrays and timing. In the

ISR, simply pass the input value from the ADC

directly to the DAC. For example,

VADin = Aio_Read(&CI0);
Aio_Write(&CO0, VADin);

This will allow you to observe the input and

output on the oscilloscope, and determine if the

interrupt timing is functioning properly.

06 Discrete dynamic systems L Lab Exercise: Transfer function generator p. 1

6. To simulate the theoretical response, Matlab’s lsim is a good choice.

When you have debugged those portions of the

program augment the code above with the call

to cascade.

Does it work?

The low-pass digital filter described above was

derived using Tustin’s method from the transfer

function of the three-pole continuous system:

Vout(s)

Vin(s)
=

ω3
n

(s+ωn)(s2 + 2ζωns+ω2
n)

(1)

where ωn = 2π× 40 rad/s, and ζ = 0.5. This

system belongs to a class of filters called

Butterworth filters. They are signal processing

filters designed to have the flattest possible

frequency response in the passband.

Step response

Using the oscilloscope (DC coupled), observe

the step response of the system by applying a

low frequency square wave (e.g. at 8 Hz) with

an amplitude of 5 V as the input with the

function generator.

Save the input and output of cascade in
500-point buffers. After the timer loop ends,

save the buffers to Lab6.mat, and transfer the
data to Matlab. Plot and compare the measured

step response to the theoretical response of the

corresponding continuous system.6. Explain.

Frequency response

Again, using the oscilloscope (AC coupled),

observe the frequency response by altering the

frequency of a 5 V input sine wave.

Record (write down) the amplitude and phase

of the output relative to the input sine wave at

the following frequencies:

[5, 10, 20, 40, 60, 100, 140, 200] Hz. Given the input

amplitude, compute the transfer function

magnitude (dB) at each frequency.

06 Discrete dynamic systems Lab Exercise: Transfer function generator p. 2

7. To generate the data for this plot, Matlab’s bode is a good choice. Note
that the specifications for the plot format require you to generate the plot
separately from your call to bode.

In Matlab, plot the theoretical magnitude (dB)

and phase (deg) versus the frequency (Hz on a

logarithmic scale) for the continuous system

transfer function.7 Plot the corresponding

measured data as discrete symbols on top of the

theoretical frequency response. Explain.

06 Discrete dynamic systems Lab Exercise: Transfer function generator p. 1

Resource R13 Discrete-time controllers

For reference, Table 06.1 contains Tustin

equivalents for some common continuous-time

controllers.

Table 06.1: Tustin equivalents for common continuous-time controllers.
Usage of z is contextual, meaning a zero in continuous transfer functions and
meaning the z-transform z in discrete transfer functions.

phase lag/lead PI PID

continuous k
s+ z

s+ p
Kp +

Ki

s
Kp +

Ki

s
+ Kds

discrete k
b0 + b1z

−1

a0 + a1z−1

b0 + b1z
−1

a0 + a1z−1

b0 + b1z
−1 + b2z

−2

a0 + a1z−1 + a2z−2

differential equation
dy

dt
+ py = k

(
dx

dt
+ zx

)
y = Kpx+ Ki

ˆ t

0

xdt y = Kpx+ Ki

ˆ t

0

xdt+ Kd
dx

dt

difference equation

y(n) = −
a1

a0
y(n− 1)

+
b0

a0
x(n)

+
b1

a0
x(n− 1)

y(n) = −
a1

a0
y(n− 1)

+
b0

a0
x(n)

+
b1

a0
x(n− 1)

y(n) = −
a1

a0
y(n− 1)

−
a2

a0
y(n− 2)

+
b0

a0
x(n)

+
b1

a0
x(n− 1)

+
b2

a0
x(n− 2)

a0 1 1 1

a1 (pT − 2)/(pT + 2) −1 0

a2 −1

b0 k(zT + 2)/(pT + 2) Kp + KiT/2 Kp + KiT/2+ 2Kd/T

b1 k(zT − 2)/(pT + 2) −Kp + KiT/2 KiT − 4Kd/T

b2 −Kp + KiT/2+ 2Kd/T

06 Discrete dynamic systems Lab Exercise: Transfer function generator p. 1

Resource R14 Analog input and output

Analog initialization

For our project, we will use the analog input

channel CI0 and the analog output channel CO0
on Connector C. They communicate with the

processor through the FPGA.

Before they can be used, they must be initialized

using

AIO_initialize(&CI0, &CO0);

Call it once, where CI0 and CO0 are structures
that must be of type MyRio_Aio. This
initialization function is included in the me477
library.

Analog-to-digital converter

The single-channel 12-bit analog-to-digital

converter (ADC) measures the current value of

the applied voltage in the range

[−10.000,+9.995] V. Voltages outside that range

saturate the conversion as shown in Figure 06.1.

The ADC has a resolution of 4.883 mV, with

absolute accuracy of ±200mV. Each channel has
input impedance of > 500 kΩ and overload

protection of ±16 V.
Our library contains a function that reads a

specified channel of the ADC and returns the

converted value. Its prototype is:

double Aio_Read(MyRio_Aio* channel);

+10 V

Converted
Value

ADC
Input
Voltage-10 V

-10 V

0 V

+10 V

Figure 06.1: ADC saturation.

07 Discrete dynamic systems Lab Exercise: Transfer function generator p. 1

+10 V

Converted
Output Value

Specified
DAC
Voltage
Value

-10 V

-10 V

0 V

+10 V

Figure 06.2: DAC saturation.

where channel is the pointer to the channel
structure defined above: &CI0.

Digital-to-analog converter

The single-channel 12-bit digital-to-analog

converter (DAC) produces a voltage at the

output terminal in the range [−10.000,+9.995] V.

Again, specified voltages outside that range

saturate the conversion as shown in Figure 06.2.

The DAC has a resolution of 4.883mV, with

absolute accuracy ±200mV. Each channel has a
maximum drive current of 3mA, a maximum

slew rate of 2 V/µs, and an overload protection

of ±16 V.
Our library contains a function that accepts a

specified channel for the DAC, and returns the

converted value. Its prototype is:

void Aio_Write(MyRio_Aio* channel, double value);

where channel is the pointer to the channel
structure defined above: &CO0 and value is the
specified value of the analog output voltage.

07

Closed-loop control

07 Closed-loop control DC motor velocity control p. 1

07.1 DC motor velocity control

07 Closed-loop control exe Designing a PI controller p. 1

07.2 Designing a PI controller

07 Closed-loop control L Exercises for Chapter 07 p. 1

07.exe Exercises for Chapter 07

07 Closed-loop control L Lab Exercise: DC motor PI velocity control p. 1

07.L Lab Exercise: DC motor PI velocity control

Objectives

The objectives of this exercise are to:

1. Incorporate many of the hardware and

software elements developed previously

in this course into an integrated

closed-loop control system.

2. Implement a program structure allowing

continuous modification of the control

parameters without halting the control

algorithm.

3. Implement a proportional-integral (PI)

velocity control algorithm for the DC

motor.

Introduction

In this exercise, a closed-loop control system for

the DC motor will be developed. This system is

similar to actuators used in many types of

positioning systems. The primary drive of one

axis of an automated machine tool or of one axis

of motion of an industrial robot is often a

computer-controlled DC motor.

Our system will control the motor speed. The

control algorithm will repeatedly compare the

actual velocity of the motor Vact with the desired

reference velocity Vref, and automatically alter

the applied control voltage to correct any

differences. Although this is not a trivial

computer control task, you have developed

nearly all the required elements in the

preceding six exercises.

The optical encoder (through the FPGA), the

D/A converter (connected to the motor

amplifier), and the periodic timer interrupt, will

be combined to control the DC motor. As in Lab

Exercise 06, a separate timer thread will

produce an interrupt at the end of each basic

07 Closed-loop control L Lab Exercise: DC motor PI velocity control p. 2

LCD Display

Keypad

Current
Amplifier

Encoder

Xilinx Zynq-7010

NI myRIO-1900

FPGA

Processors

AO

DIODIO

UART

/
8

DC
Motor/

2

Figure L.1:

time interval (BTI). The ISR will load the

IRQTIMERWRITE and IRQTIMERSETTIME registers
to schedule the next BTI, and then call functions

to:

1. read the encoder counter and compute the

velocity,

2. execute the motor control algorithm, and

3. save the results, as necessary.

The control system will be “table-driven.” That

is, the parameters used by the control algorithm

(reference speed, system gains, and BTI length)

will be kept in a special table of values. Through

the keypad/LCD, the values of the parameters

in the table will be altered (interactively) by a

“table editor” function called from the main

program thread. The only tasks of the table

editor will be to change the table values in

response to commands from the keypad, and to

display performance information.

This table-driven structure will allow the

program user to change any of the control

parameters, at any time, without stopping the

execution of the control algorithm. It will

appear as though two programs, the table editor

and the control algorithm, are executing

simultaneously.

You will not write the table editor. The required

function, ctable2 is described in Resource 15. It

07 Closed-loop control L Lab Exercise: DC motor PI velocity control p. 1

Vref(s) Vact(s)+

-

e(s)

PI Controller

u(s)
H(s)Kp+ Ki

s Output

Motor

error control

Figure L.2: continuous representation of the control loop.

has been included in our library, and is

automatically linked with your program.

Although you will not write this function, it

uses the basic keypad/display algorithms that

you developed in Lab Exercises 01, 02 and 03.

The prototype for ctable2 is in ctable2.h.
The motor will be controlled using a

proportional-plus-integral (PI) control law as

shown in Figure L.2. The PI control law relates

the error e(t) to the output control signal u(t)

using the gain constants Kp and Ki.

Applying Tustin’s method to the continuous

controller transfer function Kp + Ki

s , the

corresponding discrete transfer function is

U(z)

E(z)
=

b0 + b1z
−1

a0 + a1z−1
, (1)

where

a0 = 1, a1 = −1, b0 = Kp +
1

2
KiT, and b1 = −Kp +

1

2
KiT.

(2)

where T is the sample time, and the error is

e(n) = Vref(n) − Vact(n)

For more on Tustin’s method, see Lec. 06.3 . You

will implement the corresponding difference

equation using the general-purpose algorithm

you developed in Lab Exercise 06.

Pre-laboratory preparation

Drawing on your previous work, write two

threads to: (1) communicate with the user and

(2) control the motor.

07 Closed-loop control L Lab Exercise: DC motor PI velocity control p. 1

Two threads

Main program thread The main program

performs these tasks:

1. Initialize the table editor variables.

2. Set up and enable the timer IRQ interrupt

(as in Lab Exercise 06).

3. As in Lab Exercise 06, register the Timer

Thread and create the thread to catch the

Timer Interrupt. In this lab, the Timer

Thread will gain access to the table data

through a pointer. Modify the Timer

Thread resource to include a pointer to the

table. For example,

typedef struct {
NiFpga_IrqContext irqContext; // context
table *a_table; // table
NiFpga_Bool irqThreadRdy; // ready flag

} ThreadResource;

4. Call the table editor. The table should

contain six values, labeled as shown:

V_ref: rpm {edit}
V_act: rpm {show}
VDAout: mV {show}
Kp: V-s/r {edit}
Ki: V/r {edit}
BTI: ms {edit}

All of the table edit values should be

initialized to zero, except for the BTI

length, which should be 5ms. Note the

units.

After the main program calls the table

editor, the user may edit and view the

table values whenever desired.

5. When the table editor exits, signal the

Timer Thread to terminate. Wait for it to

terminate.

Timer thread – ISR At the beginning of the

starting function, declare convenient names for

the table entries from the table pointer:

07 Closed-loop control L Lab Exercise: DC motor PI velocity control p. 1

double *vref = &((threadResource->a_table+0)->value);
double *vact = &((threadResource->a_table+1)->value);
// ...etc.

As in Lab Exercise 06, the Timer Thread

includes a main loop timed by the IRQ, and is

terminated only by its ready flag.

Before the loop begins:

• initialize the analog I/0, and set the motor

voltage to zero, using Aio_Write (as is Lab
Exercise 06).

• Set up the encoder counter interface (as in

Lab Exercise 04).

Each time through the loop of the it should:

1. Get ready for the next interrupt by:

waiting for the IRQ to assert, writing the

Timer Write Register, and writing TRUE to
the Timer Set Time Register.

2. Call vel, from Lab Exercise 04, to measure

the velocity of the motor.

3. Compute the current coefficients (a’s and

b’s) for the PI control law from the current

values of Kp and Ki. See Equation 1.

Update the values of the biquad structure.
4. Compute the current error Vref − Vact.

5. Call cascade to compute the control value
from the current error using the difference

equation for PI control law. Important:

limit the computed control value to the

range [−7.5, 7.5] V.

6. Send the control value to the D/A

converter CO0 using Aio_Write.
7. Change the show values in the table to

reflect the current conditions of the

controller.

8. Save the results of this BTI for later

analysis. (See below.)

9. Acknowledge the interrupt.

07 Closed-loop control L Lab Exercise: DC motor PI velocity control p. 1

Functions

cascade – The cascade function, called once,
from the ISR, during each BTI, implements the

general-purpose linear difference equation

algorithm from Lab 06. For this lab use the same

C code that you used in Lab Exercise 04. In this

case, the number of biquad sections will be one.

Note that, as in Lab Exercise 06, all calculations

should be made in (double) floating-point
arithmetic.

vel – Use the vel function, developed in Lab
Exercise 04, to read the encoder counter and

estimate the angular velocity in units of

BDI/BTI.

Saving the Responses

A convenient method of saving the data is to

define data arrays in the ISR for both the

velocity and the torque. Then an

auto-incremented index variable is used to store

the data in the arrays during each BTI.

Increment the index as needed, stopping when

index reaches the length of the arrays. A

convenient length would be 250 points each.

Since our program runs continuously, you may

wish to save the response whenever the

reference velocity is changed. This is easily

accomplished by checking to see if the reference

velocity has changed since the last BTI, and

resetting the index to zero if it has. Since the

index is then less than the length of the arrays,

the arrays will be refilled. This is equivalent to

recording the response to a step input in the

reference velocity.

In addition, when the ISR resets the index to

zero, save the previous value of the reference

velocity. That value, along with other system

parameters, will be used in MATLAB to predict

the theoretical model response.

07 Closed-loop control L Lab Exercise: DC motor PI velocity control p. 1

Table L.1: the base set of controller parameters.

Vref ±200 rpm

BTI length 5 ms

Kp 0.1 V-s/rad

Ki 2.0 V/rad

After the main loop terminates, but while still in

the Timer Thread, write the results to the

Lab7.mat file. The results should include:

1. your name (string),

2. the actual velocity array (rad/s),

3. the torque array (N-m),

4. the current and the last, previous reference

velocities (rad/s),

5. Kp (V-s/rad),

6. Ki (V/rad), and

7. BTI length (s).

Use the same methods as Lab Exercise 04 and

Lab Exercise 06 to bring the Lab7.mat file to
Matlab.

Laboratory Procedure

1. Test and debug your program.

For debugging purposes, use the base set

of controller parameters in Table L.1.

2. While the motor is at steady-state speed,

gently apply a steady load torque to the

motor shaft. What are the responses of the

actual speed and control voltage? Explain.

3. Beginning with the base set of parameters,

explore the effect of varying the

proportional gain Kp on the transient

response. Try small (0.05) and large (0.2)

values of Kp. What are the effects on the

oscillation frequency and on the damping?

Explain in terms of the transfer function

parameters.

4. Beginning with the base set of parameters,

explore the effect of varying the integral

07 Closed-loop control L Lab Exercise: DC motor PI velocity control p. 1

Js + B

Controller

Kvi Kt

Current Source
Amplifier

-

+

volts amps

Inside Computer Outside Computer

+

+

Disturbance
Torque, TdMotor Torque

Constant

Nm Nm

Nm

Vref
Kp(s + Ki/Kp)

s

Motor
Speed

Vactual
1

Figure L.3: continuous version of the full control loop.

gain Ki on the transient responses. Try

small (1) and large (10) values of Ki. What

are the effects on the oscillation frequency

and on the damping? Explain in terms of

the transfer function parameters.

5. Finally, using the base set of parameters,

record the control torque and actual

velocity responses for a step change in the

reference velocity that starts from −200

rpm and goes to +200 rpm.

In Matlab, compare these experimental

responses with the analytical responses for

the continuous system approximation.

The theoretical responses can be

calculated using the (appropriately scaled)

Matlab step command. The analysis
should be plotted over the experimental

responses. Use the subplot command to
place both the control value and the

measured velocity plots on the same page.

What do you conclude?

DC Motor Controller Model

The model in Figure L.3 is the continuous

approximation of the actually discrete control of

the DC motor.

For accuracy of the approximation, we need the

following:

1. the sampling frequency is much larger

than the natural frequency of the system

07 Closed-loop control Lab Exercise: DC motor PI velocity control p. 2

Table L.2:

Kvi Current Source Amplifier Gain 0.41 A/volt

Kt Motor Torque Constant 0.11 N-m/A

J Inertia in conventional units 3.8 ×10−4 N-m-s2/r

Kp Proportional Gain — V-s/r

Ki Integral Gain — V/r

and

2. time delays caused by computation are

insignificant and

3. the control value does not saturate and

4. the mechanical damping B is small in

comparison with the effects of the

proportional term Kp in the controller.

Parameter values are shown in Table L.2.

The following transfer functions can be obtained

from the block diagram:

Vact(s)

Vref(s)
=

τs+ 1
s2

ωn
2 + 2ζ

ωn
s+ 1

, (3)

Vact(s)

Td(s)
=

sKd

s2

ωn
2 + 2ζ

ωn
s+ 1

, and (4)

U(s)

Vref(s)
=

sKu(τs+ 1)
s2

ωn
2 + 2ζ

ωn
s+ 1

. (5)

Let K = KviKt N-m/V; then the following values

can be used to model the system:

numerator values: τ =
Kp

Ki
s,

Kd = 1
KiK

rad/N-m,

Ku = J
K V-s2/rad

natural frequency: ωn =
√

KiK
J rad/s

damping ratio: ζ =
Kp

2

√
K
JKi

.

07 Closed-loop control Lab Exercise: DC motor PI velocity control p. 1

Resource R15 A table editor for the myRIO

The following describes ctable2(), a utility
program that displays values that are stored in

memory, and allows the user to change selected

values. The values, with appropriate labels,

appear on the LCD display. The user enters

values on the keypad.

When ctable2() is called, it then runs
continually, returning to the calling program

only when← is entered. However, other

threads may use and cause to be displayed the

information stored by ctable2().
A table “title” is displayed on the first line of the

LCD display. The table can have as many as

nine numbered entries. Three of these entries

are always displayed below the title. The user

can scroll the entries up and down using the UP
and DWN keys. Alternately, the user can cause
any entry to become the top entry by entering

its number.

For example, a three-entry table, shown with the

third entry scrolled to the top, might look like:

Flow Control Table
3 BTI: ms 3.0
1 Qref: (cc/s) 450.
2 Qact: (cc/s) 453.
The user may alter an entry by scrolling it to the

top of the list, and pressing ENTR. The display

prompts for a new value of the parameter. For

the example above, pressing ENTR would cause

the prompt: Enter: BTI: ms to be displayed.
The user could then enter a new value (followed

by ENTR), causing the new value to be placed in

memory and displayed.

“Edit” values and “Show” values

There are two kinds of values, called “edit”

values and “show” values. Edit values are those

that the user may change at will. Each edit

value is presumed not to have changed since the

last time it was changed (edited) by the user.

07 Closed-loop control Lab Exercise: DC motor PI velocity control p. 2

Show values are those that the user may observe

more or less continually. A separate thread,

created within ctable2(), periodically updates
the table to reflect the current show values.

Show values may not be edited; each show

value is presumed perhaps to have changed

since the last time the table was updated. (The

changes would generally be made by another

thread, which would determine a new show

value and place it in memory; the new value

would then be displayed when the table is

updated.)

Typically, edit values are system parameters set

by the user, while show values are computed

and change with time.

07 Closed-loop control Lab Exercise: DC motor PI velocity control p. 3

Calling ctable2()

The prototype of ctable2() is:

int ctable2(char *title, struct table *entries, int nval);

The ctable2() function is automatically linked
with your code from the ME477Library. The

statement: #include "ctable2.h"must appear
in main.c.
When calling ctable2(), your program must

supply appropriate values for the following

arguments:

title is a string array for the table title.

Less than 20 characters.

entries is an array of structures of type table
defined as:

typedef struct {
char *e_label; // entry label label
int e_type; // entry type (0-show; 1-edit)
double value; // value

} table;

Each element of the array corresponds to

an entry in the table, and specifies the

entry label, type (edit or show), and value

of the entry. A good practice is to make the

length of the labels 12 characters or less.

nval specifies the number of table entries.

Again, the total number of edit and show

entries must be no greater than 9.

Entering←while the table is displayed causes

ctable2() to terminate, returning 0 for a
normal exit.

For example,

In this table entitled: Flow Control Table,
there are two edit values that can be changed by

the user (qref and bti), and one show value

(qact).
In the main thread, the variables for the table

title, and the table structure array are declared

and initialized.

char *Table_Title ="Flow Control Table";
table my_table[] = {

08 Closed-loop control Lab Exercise: DC motor PI velocity control p. 4

{"Qref: (cc/s)", 1, 0. },
{"Qact: (cc/s)", 0, 0.0 },
{"BTI: ms ", 1, 5.0 }

};

Notice that the each element of the array my_table is
a struct of type table containing the entry label,
type, and initial value.

Finally, the table editor is called:

ctable2(Table_Title, my_table, 3);

Within the thread that uses or changes the table

values, pointers corresponding to convenient

names of the table values can be declared. In the

example:

double *qref = &((threadResource->a_table+0)->value);
double *qact = &((threadResource->a_table+1)->value);
double *bti = &((threadResource->a_table+2)->value);

Then, variables may be referred to by their

named pointers. For example,

T = *bti/1000.;

Note the dereferencing of the bti pointer.

08

Path planning

08 Path planning Path planning p. 1

08.1 Path planning

08 Path planning exe Designing a PID controller p. 1

08.2 Designing a PID controller

08 Path planning L Exercises for Chapter 08 p. 1

08.exe Exercises for Chapter 08

08 Path planning L Lab Exercise: DC motor PID position control p. 1

08.L Lab Exercise: DC motor PID position control

Objectives

The objectives of this exercise are to:

1. implement a position control system for

an inertia dominated load,

2. explore appropriate path planning, and

3. integrate the use of a standard Matlab

design tool into the application

development system.

Introduction

In this exercise, a closed-loop position control

system for the DC motor will be developed. The

physical system is identical to that of Lab

Exercise 07: as shown in Figure L.1, the optical

encoder (through the FPGA), the D/A converter

(connected to the motor amplifier), and the

periodic timer interrupt will be combined to

control the DC motor.

A Matlab tool will be used to design an

appropriate proportional-integral-derivative

(PID) controller, shown in Figure L.2. Later, you

will evaluate the controller performance for a

time-varying position reference path xref(t).

This project builds on your past work. The

program is structurally similar to that of Lab

LCD Display

Keypad

Current
Amplifier

Encoder

Xilinx Zynq-7010

NI myRIO-1900

FPGA

Processors

AO

DIODIO

UART

/
8

DC
Motor/

2

Figure L.1: schematic of the test apparatus.

08 Path planning L Lab Exercise: DC motor PID position control p. 1

+

-

e(s) u(s)
H(s)

Output

Motor

error control

Figure L.2: block diagram of the system with a PID controller in the loop.

Exercise 07, and many of its components are

reused.

Path planning

A common task for a positioning system is to

start from a stationary position, move to a new

location, and then stop. Of course, one way to

do this is to apply an appropriate size step to

the reference input of the position control

system. However, depending on the system

bandwidth, a sufficiently large step may require

torques (current) and/or velocities (voltages)

that exceed the motor/driver capabilities. In

addition, the dynamic characteristics (e.g. rise

time and overshoot) may be inconsistent with

the application requirements. One remedy is to

use a form of truncated ramp instead of the step

reference input.

Suppose that we wish to reposition a

mass-dominated load by Xmax as rapidly as

possible, subject to limitations on the maximum

acceleration Amax and velocity Vmax, while

avoiding discontinuities in the position slope.

One such command is constructed as shown in

Figure L.3.

The motion has been divided into three sections:

acceleration, constant velocity, and deceleration.

Within this scheme, many variations are

possible: High Amax would result in a long

constant velocity section, with short

accelerations. Alternately, for high Vmax, the

displacement would approach an s-shaped

curve with no constant velocity section. Finally,

08 Path planning L Lab Exercise: DC motor PID position control p. 1

Figure L.3: a method of path planning for position control is to integrate
piecewise-constant acceleration (top), to obtain piecewise-linear velocity (middle),
also to be integrated to obtain piecewise-quadratic (and continuously differentiable)
position (bottom).

by allowing both high Amax and Vmax, the curve

would approach a step.

In this lab exercise, you will use a C function

Sramps that implements this time-varying
displacement as the control system reference

input. The function can link any number of

ramp segments in succession, including

specified dwell times at the end of each

segment. It can also repeat the sequence of

ramps indefinitely. See Lecture 08.L and

Resource 16 for details.

PID control design and evaluation

For the lab exercise, you will write two Matlab

scripts: one to design your PID controller and

another to compare its performance to an

analytical model. Specifically, the first script

will design a PIDF controller using the

MATLAB Control System toolbox function

pidtune. This compensator should be designed
to track the reference input, and to have control

bandwidth of 8 Hz. A PIDF controller improves

noise immunity of a PID controller by limiting

the high-frequency response of the derivative

08 Path planning L Lab Exercise: DC motor PID position control p. 1

term. Check your controller design by plotting

the closed-loop step response using the plant

parameters from Lab Exercise 07.

The script should convert the continuous-time

transfer function to discrete-time (c2d, tf, and
tfdata, with sample time T = 0.0005 s), and

then use tf2sos (transfer functions to second
order sections) to break the transfer function

into biquads. Finally, use the sos2header
function (see Resource 17) to write the biquad

filter to a C header file (PIDF.h) in your Lab
Exercise 08 project folder. That header can be

#included in your myRIO C program (after the

definition of the biquad struct.) In this way,
when you run your C program in Eclipse, it will

automatically incorporate the latest version of

your compensator design.

As in Lab Exercise 07, your second script will

load the actual response of position control

system (Lab8.mat), and compare it to both the
ideal reference displacement and the dynamic

model prediction. See below for details.

Program description

The program is similar in structure to that of

Lab Exercise 07, consisting of (1) a Main thread

that initializes the task and calls ctable2 to
communicate with the user, and (2) a Timer

thread that maintains timing using an interrupt,

implements the position control, and saves the

results. Your specific controller definition is

derived from the header file written from your

Matlab script.

Two threads

Main thread The main thread performs the

following tasks.

1. Initialize the table editor variables.

2. Initialize the path profile variables as

follows.

08 Path planning L Lab Exercise: DC motor PID position control p. 1

typedef struct {
double xfa; double v; double a; double d;

} seg;

3. Set up the timer IRQ interrupt (as in Lab

Exercise 06 and Lab Exercise 07).

4. As in Lab Exercise 07, register and create

the Timer thread to catch the timer

interrupt. The Timer thread will gain

access to both the table data and the path

profile through pointers in the Thread

resource. For example,

typedef struct {
NiFpga_IrqContext irqContext; // context
table *a_table; // table
seg *profile; // profile
int nseg; // no. of segs
NiFpga_Bool irqThreadRdy; // ready flag

} ThreadResource;

5. Call the table editor. The table should

contain three “show” values, labeled as

follows.

P_ref: revs
P_act: revs
VDAout: mV

6. When the table editor exits, signal the

Timer thread to terminate. Wait for it to

terminate.

Timer thread The Timer thread calls the

interrupt service routine (ISR). At the beginning

of the starting function, declare convenient

names for the table entries from the table

pointer, and for the ramp segment variables.

For example,

double *pref = &((threadResource->a_table+0)->value);
double *pact = &((threadResource->a_table+1)->value);
double *VDAmV = &((threadResource->a_table+2)->value);
seg *mySegs = threadResource->profile;
int nseg = threadResource->nseg;

08 Path planning L Lab Exercise: DC motor PID position control p. 1

The Timer thread includes a loop timed by the

IRQ, and terminated only by its ready flag.

Before the control loop begins:

• initialize the analog I/0, and set the motor

voltage to zero, using Aio_Write (as is Lab
Exercise 07) and

• set up the encoder counter interface (as in

Lab Exercise 04).

Each time through the loop, it should:

1. Get ready for the next interrupt by:

waiting for IRQ to assert, then writing the

Timer Write Register, and writing TRUE to
the Timer Set Time Register.

2. Call Sramps to compute the value of the
current reference position Pref . See below.

3. Call pos, to obtain the position of the
motor Pact. See below.

4. Compute the current error e = Pref − Pact.

5. Call cascade to compute the control value
from the current error using PIDF control

filter. Important: limit the computed

control value to the range [+7.5,−7.5] V.

6. Send the control value to the D/A

converter CO0 using Aio_Write.
7. Change the table to reflect the current

conditions of the controller.

8. Save the results of this BTI for later

analysis. See below.

Functions

cascade – The cascade function, called once,
from the ISR, during each BTI, implements the

general-purpose linear difference equation

algorithm from Lab Exercise 06. For this lab use

the same C code that you used in Lab

Exercise 06. In this case, the number of biquad

sections will be 1.

08 Path planning L Lab Exercise: DC motor PID position control p. 2

Note that, as in Lab Exercise 06, all calculations

should be made in (double) floating-point
arithmetic.

pos – Write a pos function to read the encoder
counter and return the displacement as a

(double) in units of BDI (encoder counts),
relative to the first position read.

Sramps – The C function Sramps, given in
Resource 16, returns the current input reference

position Pref . The function accepts an input

array of structures, each describing a separate

displacement ramp segment. Called once each

cycle of the control loop, Sramps steps through
the segments, then repeats the complete path

indefinitely.

We will initialize the path array in main, then
pass the array and the number of segments to

the Timer thread through the Thread Resource

(described above in the Main thread section).

First, define the new segment data type seg:

typedef struct {
double xfa; // position (revs)
double v; // velocity limit
double a; // acceleration limit
double d; // dwell time (s)

} seg;

Then, to test the position control system,

initialize an array mySegs of type seg as follows:

vmax = 50.; // rev/s
amax = 20.; // rev/s^2
dwell = 1.0; // s
seg mySegs[8] = { // rev

{10.125, vmax, amax, dwell},
{20.250, vmax, amax, dwell},
{30.375, vmax, amax, dwell},
{40.500, vmax, amax, dwell},
{30.625, vmax, amax, dwell},
{20.750, vmax, amax, dwell},
{10.875, vmax, amax, dwell},
{ 0.000, vmax, amax, dwell}

};
nseg = 8;

08 Path planning L Lab Exercise: DC motor PID position control p. 1

Notice that mySegs consists of four increasing
ramps of 10.125 revolutions each, followed by

four similar decreasing ramps that will return

the motor to the starting position. All of the

segments are subject to the same velocity and

acceleration limits, and all dwell for one second

before proceeding to the next segment.

You should declare the prototype of Sramps as:

int Sramps(
seg *segs, // segments array
int nseg, // number of segments
int *iseg, // current segment index
int *itime, // current time index
double T, // sample period
double *xa // next reference positon

);

At the end of the last segment, Sramps returns
the total number of time steps in all of the

segments. It returns 0 otherwise.
A typical call of Srampsmight be:

nsamp = Sramps(mySegs, &iseg, nseg, &itime, T, &Pref);

When Sramps is called for the first time, set
*itime = -1, and *iseg = -1, to initialize its
operation.

Saving the responses

The data can be conveniently saved by defining

data arrays in the ISR for each of the reference

position, the actual position, and the torque.

Then an auto-incremented index variable is

used to store the data in the arrays during each

BTI. Increment the index as needed, stopping

when it reaches the length of the arrays. A

convenient length would be 4000 points each.

After the main loop terminates, but while still in

the Timer thread, write the results, to the

Lab8.mat file. The results should include:

1. your name (string),

08 Path planning L Lab Exercise: DC motor PID position control p. 1

2. the reference position array (rad), cast to

double *,
3. the current position array (rad),

4. the torque array (N-m),

5. the PIDF array, cast to double *, and
6. the BTI length (s).

Use the same methods as Lab Exercises 04, 06

and 07 to bring the Lab8.mat file to Matlab.

Laboratory procedure

Test and debug your program.

Matlab analysis

In the second of your Matlab scripts:

1. Load the experimental results from the

Lab8.mat file.
2. Define a discrete version of the

motor/load plant transfer function from

Lab Exercise 07. Consider using c2d.
3. Form the discrete controller from the

values in the PIDF array in Lab8.mat.
4. Form the closed loop system models

relating the reference position Pref input to

the position Pact and torque T outputs:

G1(z) =
Pact(z)

Pref(z)
and G2(z) =

T(z)

Pref(z)
.

(1)

5. Using lsim, simulate the system to find

the theoretical responses for both the

position Pact(t) and the torque T(t) to the

reference position Pref(t) array that you

stored in Lab8.mat.
6. In a single Matlab figure plot the results in

three subplots versus time, as follows:

a) reference position, theoretical

position, and experimental position;

b) experimental error (reference −

experimental position) and

08 Path planning Lab Exercise: DC motor PID position control p. 2

theoretical error (reference −

theoretical position); and

c) theoretical and experimental torque.

What do you conclude?

08 Path planning Lab Exercise: DC motor PID position control p. 1

Resource R16 C function Sramps for position path planning

The following C function Sramps can be used to
construct position commands that smoothly

transition from one to another position over a

period of time. It is used in Lab Exercise 08 to

define position commands. A file containing

this function, called Sramps.c, can be found at
ricopic.one/embedded_computing/source/Sramps.c.

/*
* Sramps.c
*
* Created on: Mar 18, 2016
* Author: garbini
*/
#include "math.h"

typedef struct {
double xfa; double v; double a; double d;

} seg;

int Sramps(
seg *segs,
int nseg,
int *iseg,
int *itime,
double T,
double *xa

){
// Computes the next position, *xa,
// of a uniform sampled position profile.
// The profile is composed of an array
// of segments (type: seg)
// Each segment consists of:
// xfa: final position
// v: maximum velocity
// a: maximum acceleration
// d: dwell time at the final position
// Called from a loop, the profile proceeds from
// the current position,
// through each segment in turn, and then repeats.
// Inputs:
// seg *segs: - segments array
// int nseg: - number of segments in the profile
// int *iseg: - variable hold segment index
// int *itime - time index within a segment
// (= -1 at segment beginning)
// double T: - time increment
// Outputs:
// double *xa: - next position in profile
// Returns:
// n - number of samples in the profile,

http://ricopic.one/embedded_computing/source/Sramps.c

08 Path planning Lab Exercise: DC motor PID position control p. 2

// 0 otherwise
//
// Call with *itime = -1, *iseg = -1, outside the loop
// to initialize.

double t, t1=0, t2=1, tf=1, tramp;
double x1=1, xramp, xfr=1, xr, d;
static double x0, dir;
static int ntot;
double vmax=1, amax=1;
int n;

if (*itime==-1) {
(*iseg)++;
if(*iseg==nseg) {
*iseg=0;
ntot = 0;

}
*itime=0;
x0=*xa;

}
vmax=segs[*iseg].v;
amax=segs[*iseg].a;
d=segs[*iseg].d;
xfr=segs[*iseg].xfa-x0;
dir=1.0;
if(xfr<0){

dir=-1.;
xfr=-xfr;

}
t1 = vmax/amax;
x1 = 1./2.*amax*t1*t1;
if (x1<xfr/2) {

xramp = xfr-2.*x1;
tramp = xramp/vmax;
t2 = t1+tramp;
tf = t2+t1;

} else {
x1 = xfr/2;
t1 = sqrt(2*x1/amax);
t2 = t1;
tf = 2.*t1;

}
n = trunc((tf+d)/T)+1;

t = *itime*T;
if(t<t1) {

xr = 1./2.*amax*t*t;
} else if (t>=t1 && t<t2) {

xr = x1+vmax*(t-t1);
} else if (t>=t2 && t<tf) {

xr = xfr-1./2.*amax*(tf-t)*(tf-t);
} else {

xr = xfr;
}

08 Path planning Lab Exercise: DC motor PID position control p. 3

*xa=x0+dir*xr;
(*itime)++;
if(*itime==n+1) {

ntot = ntot + *itime - 1;
*itime=-1;
if(*iseg==nseg-1) {

return ntot;
}

}
return 0;
}

08 Path planning Lab Exercise: DC motor PID position control p. 1

Resource R17 Matlab function sos2header for converting

controllers to C

The following Matlab function sos2header can
be used to convert a Matlab controller in

second-order sections to a C floating point

header file. It is used in Lab Exercise 08 to

convert a controller designed in Matlab to a file

a myRIO can read and implement in C. A file

containing this function, called sos2header.m,
can be found at

ricopic.one/embedded_computing/source/sos2header.m.

function sos2header(fid, sos, name, T, comment)
% Print to the filter definition for
% FLOATING POINT header file.
%
% sos2header(fid, sos, name, T, comment)
%
%- fid - File indentity
%- sos - Scaled second order sections, from "tf2sos"
%- name - Name to be given to the array
% of biquad structures, and
% associated with the number of sections.
%- T - Sample period in seconds
%- comment - comment added at top of header

%---structure form of cascade
fprintf(fid,'//---%s\n', comment);
fprintf(fid,'//---%s\n', datestr(now,0));
[ns,m]=size(sos);
fprintf(...

fid,...
'int %s_ns = %d; // number of sections\n',...
name,...
ns...

);
fprintf(...

fid,...
['uint32_t timeoutValue = %d; ',...
'// time interval - us; f_s = %g Hz\n'],...
T*1e6,...
1/T...

);
fprintf(

fid,
['static\tstruct\tbiquad,'...
'%s[]={ // define the array of floating point ',...
'biquads\n'],...
name...

);

http://ricopic.one/embedded_computing/source/sos2header.m

Path planning Lab Exercise: DC motor PID position control p. 2

for i=1:ns-1
fprintf(fid,' {');
for j=[1,2,3,4,5,6]
fprintf(fid,'%e, ',sos(i,j));

end
fprintf(fid,'0, 0, 0, 0, 0},\n');

end
fprintf(fid,' {');
for j=[1,2,3,4,5,6]

fprintf(fid,'%e, ',sos(ns,j));
end
fprintf(fid,'0, 0, 0, 0, 0}\n };\n');

Embedded Computing Laboratory

The Embedded Computing Laboratory

B

Resources

Bibliography

Agarwal, A. and J. Lang (2005). Foundations of

Analog and Digital Electronic Circuits. The

Morgan Kaufmann Series in Computer

Architecture and Design. Elsevier Science.

isbn: 9780080506814.

Altera (2018). Is Tomorrow’s

Embedded-Systems Programming

Language Still C? web.

ARM (june 2012). Cortex-A9 Revision: r4p1

Technical Reference Manual. ARM DDI

0388I (ID073015). ARM.

— (may 2014). ARM Architecture Reference

Manual ARMv7-A and ARMv7-R edition.

ARM DDI 0406C.c (ID051414). ARM.

Baldursson, Stefán (2005). ?BLDC Motor

Modelling and Control – A

Matlab®/Simulink®Implementation?

mathesis. Chalmers University.

Barney, Blaise (july 2019). POSIX Threads

Programming. https:

//computing.llnl.gov/tutorials/pthreads/.

Baz1521 (2018). Microprocessor—Wikipedia,

The Free Encyclopedia. [Online; accessed

21-January-2018].

Booton, Richard C. and Simon Ramo (july 1984).

?The development of systems engineering?

inIEEE Transactions on Aerospace and

Electronic Systems: AES–20, pages 306–9.

Collins, Danielle (november 2018). When do

you need a linear amplifier versus a PWM

drive? web.

https://computing.llnl.gov/tutorials/pthreads/
https://computing.llnl.gov/tutorials/pthreads/

B Resources Bibliography p. 6

Franklin, G.F., J.D. Powell and M.L. Workman

(1998). Digital Control of Dynamic Systems.

Addison-Wesley world student series.

Addison-Wesley. isbn: 9780201331530.

Gomez, Martin (december 2000). ?Embedded

State Machine Implementation?

inEmbedded Systems Programming:

pages 40–50.

Horowitz, P and W Hill (2015). The Art of

Electronics. Cambridge University Press.

isbn: 9780521809269.

Instruments, National (august 2013). User

Guide and Specifications NI myRIO-1900.

376047A-01. National Instruments.

Kernighan, B.W. and D. Ritchie (1988). C

Programming Language. 2nd. Pearson

Education. isbn: 9780133086218.

Lamberson, Jim (2018). Arithmetic logic

unit—Wikipedia, The Free Encyclopedia.

[Online; accessed 24-January-2018].

Nise, N.S. (2015). Control Systems Engineering,

7th Edition. Wiley. isbn: 9781118800829.

Patterson, David A. and John L. Hennessy

(2013). Computer Organization and Design,

Fifth Edition: The Hardware/Software

Interface. 5th. San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc. isbn:

9780124077263.

— (2016). Computer Organization and Design:

The Hardware Software Interface ARM

Edition. 1st. San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc. isbn:

9780128017333.

Rowell, Derek and David N. Wormley (1997).

System Dynamics: An Introduction. Prentice

Hall.

Sameli, Ioan (2018).

Microcontroller—Wikipedia, The Free

Encyclopedia. [Online; accessed

21-January-2018].

Resources Bibliography p. 7

Xilinx (june 2017). Zynq-7000 All Programmable

SoC Data Sheet: Overview. DS190 (v1.11).

Xilinx.

	Preface
	Orientation
	Getting started
	Introduction to embedded computing
	Embedded control of mechanical systems
	Computer architectures
	Numeral systems
	The myth of Niles and Pepper
	Positional numeral systems
	Decimal numeral system
	Hexadecimal numeral system
	Converting to and from decimal
	Converting between hex and binary
	Signed binary numeral system

	Binary and hexadecimal arithmetic
	Exploring C building a sandbox
	Installing and using GCC on Windows
	Installing and using GCC on macOS

	Exercises for Chapter 00
	Exe. 00.1
	Exe. 00.2
	Exe. 00.3
	Exe. 00.4
	Exe. 00.5
	Exe. 00.6
	Exe. 00.7
	Exe. 00.8
	Exe. 00.9
	Exe. 00.10
	Exe. 00.11
	Exe. 00.12

	Lab Exercise: Getting started
	Objective
	Pre-laboratory preparation
	Laboratory procedure

	Resource R1 High-level embedded system
	Resource R2 Embedded computer and development environment subsystem
	Getting Started with CDT
	C/C++ Perspective
	Debug Perspective
	Debug view toolbar commands
	Debug information
	The system on a chip

	Resource R3 User interface hardware subsystem
	Resource R4 Motor driver subsystem
	Resource R5 Motor and mechanical apparatus subsystem
	Motor
	Mechanical apparatus

	Resource R6 Sourcing and costs
	Resource R7 Setting up the C Development Tool for myRIO
	Part A: Setting up the software environment
	Part B: Define a connection to the myRIO
	Part C: Importing C Support and Launch Configurations
	Part D: Connect to the myRIO target
	Part E: Running the myHelloWorld project
	Part F: Debugging the myHelloWorld project

	Resource R8 Suggested reading

	The User Interface
	Computing principles, myRIO C programming, and high-level io drivers
	Memory
	Things you can store in memory
	Memory organization

	Processing
	A CPU programming model
	Core ARM registers
	Other ARM registers
	Types of instructions
	Addressing modes

	Exercises for Chapter 01
	Lab Exercise: Introduction to myRIO C programming and high-level io drivers
	Objectives
	Introduction
	Pre-laboratory preparation
	Laboratory procedure
	Guidance

	Exploring C and mid-level io
	A paper computer
	Exploring C operators
	Operator precedence
	Operator associativity

	Exploring C constants
	Exploring C pointers
	Assigning to a pointee

	Exercises for Chapter 02
	Lab Exercise: Keypad mid-level primitives
	Objectives
	Introduction
	Pre-laboratory preparation
	Background
	Laboratory Procedure
	Guidance

	Digital communication and low-level io
	Digital communication
	Serial and parallel communication
	Synchronous and asynchronous communication
	Standards

	UARTs
	Digital signals
	Exploring C structures
	Exercises for Chapter 03
	Lab Exercise: Low-level character io
	Objectives
	Introduction
	Pre-laboratory preparation
	Laboratory Procedure

	Timing, Threads, and Finite State Machines
	Finite state machine control
	Pulse-width modulation
	DC motor driving
	Digital motor drivers
	Analog amplification
	The ECL instantiation

	Measuring motor velocity
	Quadrature encoders

	Finite state machines
	Exercises for Chapter 04
	Exe. 04.13

	Lab Exercise: Finite state machine motor control
	Objectives
	Introduction
	Pre-laboratory preparation
	Laboratory Procedure
	A better way to PWM

	Resource R9 Saving myRIO C data to a Matlab file
	Resource R10 Copley 412 analog amplifier setup
	Resistor settings
	Capacitor settings
	Dip switch settings
	Gain adjustment

	Threads and interrupts
	Processing threads
	Interrupts
	Boolean algebra on digital signals
	Debouncing switches
	Exercises for Chapter 05
	Lab Exercise: Introduction to interrupts
	Objectives
	Introduction
	The Threads
	Background
	Laboratory procedure

	Resource R11 Interrupt functions documentation
	Register DI IRQ
	Unregister DI IRQ
	Wait for Interrupt
	Acknowledge IRQ
	Create POSIX thread
	Join POSIX thread
	Exit POSIX thread

	Feedback Control of Mechanical Systems
	Discrete dynamic systems
	ADC and DAC
	Analog-to-digital conversion and analog outputs
	Digital-to-analog conversion and analog outputs

	Difference equations
	Discrete transfer functions
	Laplace transforms
	Continuous transfer functions
	z-Transforms
	Discrete transfer functions
	Discrete approximations of continuous transfer functions
	Matlab's matlabc2d

	The biquad cascade
	Resource R12 Timer interrupts
	Main thread: background
	Main thread: our case
	The interrupt thread

	Exercises for Chapter 06
	Lab Exercise: Transfer function generator
	Objectives
	Introduction
	Pre-laboratory preparation
	Laboratory Procedure
	Does it work?

	Resource R13 Discrete-time controllers
	Resource R14 Analog input and output
	Analog initialization
	Analog-to-digital converter
	Digital-to-analog converter

	Closed-loop control
	DC motor velocity control
	Designing a PI controller
	Exercises for Chapter 07
	Lab Exercise: DC motor PI velocity control
	Objectives
	Introduction
	Pre-laboratory preparation
	Laboratory Procedure
	DC Motor Controller Model

	Resource R15 A table editor for the myRIO

	Path planning
	Path planning
	Designing a PID controller
	Exercises for Chapter 08
	Lab Exercise: DC motor PID position control
	Objectives
	Introduction
	Path planning
	PID control design and evaluation
	Program description
	Functions
	Laboratory procedure

	Resource R16 C function Sramps for position path planning
	Resource R17 Matlab function sos2header for converting controllers to C

	The Embedded Computing Laboratory
	Resources
	Bibliography

