
00 Getting started Introduction to embedded computing p. 1

00.1 Introduction to embedded computing

Embedded computers comprise the vast

majority of computers, yet are perhaps the least

familiar to the uninitiated. A computer in a

kitchen appliance, smart thermostat, or

pacemaker is embedded—that is, it has most of

the following characteristics: it

• performs a specific, limited function;

• performs its function in real-time;

• is small;

• is inexpensive;

• is low-power;

• is ruggedly packaged.

The central processing unit (CPU) of any

computer is the electronic circuitry that

performs a computer’s most basic instructions,

such as arithmetic, logic, and input/output. A

CPU is typically an integrated circuit (IC, i.e.

“microchip” or just “chip”), which is made of a

single silicon chip, the size of a human

fingernail, transformed into a circuit containing

billions of elements, such as transistors, diodes,

and capacitors, by a process in which the

semiconductor material silicon is selectively

doped with impurities, locally changing its

conductivity. An IC CPU is called a

microprocessor.

Many embedded computers are

microcontrollers (µC), which are integrated

circuits that include CPUs, memory, and

input/output peripherals—classes of

computing components that will be described in

this chapter. Images of a microprocessor and a

microcontroller are found in Figure 00.1.

The instructions carried out by a CPU are rather

basic, yet combinations of them can be vastly

more complex. This is analogous to words,

perhaps relatively simple, alone, being

combined to form complex phrases, sentences,



00 Getting started Introduction to embedded computing p. 2

Figure 00.1: (left) a Hudson HuC5260A microprocessor (Baz1521,
2018) and (right) an Intel 8742 microcontroller—including a 12MHz CPU, 128
B RAM, 2048 B EPROM, and input/output peripherals—broken open (Sameli,
2018).

and books. In fact, this is why a CPU’s

instructions are said to form a machine

language—literally just numbers with

predefined meanings, often represented in

binary. These languages are very cumbersome

for humans to write useful software with, as we

will see, so higher level languages are

developed. The first level above machine

language is called assembly language, which

typically assigns a more descriptive mnemonic

to represent each instruction (“opcodes”). A list

of languages by level is given in Table 00.1. A

program is a sequence of instructions that

performs some task.

Higher-level languages such as C, Python, and

Matlab are called programming languages.

They have the important quality of

microprocessor independence—that is, they can

be written for multiple processors, then

translated into lower-level, processor-specific

languages. There are two archetypical ways this

translation occurs for a program:

compilation When a program is compiled, it is

converted en masse into machine code

before it is processed. This is often

considered to be optimal for performance

because each high-level function of the

program is converted directly to

processor-specific instructions.

interpretation When a program is

interpreted, its high-level functions have



00 Getting started Introduction to embedded computing p. 3

Table 00.1: categories of programming languages descending from high-
level to low-level.

type examples

graphical LabVIEW, Simulink
scripting Bash, Perl, BASIC
typically interpreted MATLAB, Python, Ruby
typically compiled C, C++, Java
assembly symbolic codes
machine numerical codes

1. Previously, it was common to refer to a specific language
as “compiled” or “translated,” but this terminology is increasingly
obsolete.

been pre-translated to machine code such

that it can be directly processed “on the

fly” without compilation. This is often

considered more convenient and easier to

implement than compilation.

Most modern programming languages provide

both options.1 Due to typically stringent

performance and memory requirements,

embedded programs often use compilation.

The C programming language is the

language-of-choice for embedded computer

programming. It can be thought of as being as

close as possible to machine language without

being processor-specific. It deals with numbers

and arithmetic and memory addresses, which is

what a processor does, also. That is, it is a

low-level, general-purpose language. A

limitation of the core language is that it lacks

functions for basic operations like reading or

writing to a file. The C standard library

augments this functionality.

An advantage of its compactness is its relatively

small size, a key advantage for embedded

computing. Other key advantages of C for

embedded computing include its ubiquity (C

compilers are available for most processors),

speed (a result of a small language and good

compilers), and energy efficiency (in that

executing fewer cycles requires less power).

Although the vast majority of embedded

https://en.wikipedia.org/wiki/C_standard_library


00 Getting started Introduction to embedded computing p. 4

computer programming is in C, recently

languages such as Python (which is, itself,

written in C) have captured a small sliver of the

embedded market (Altera, 2018).


