
00 Getting started Numeral systems p. 1

00.4 Numeral systems

The following is a myth in the good sense of the

term.

The myth of Niles and Pepper

Niles was an unusual boy with great hair, living

in a time before number systems. Quantities

were familiar, but symbolic representations of

them were not. Niles lived in a grove of trees. A

grove on the other side of the hill was home to

his friend Pepper, a sassy, no-nonsense girl.

One day Niles and Pepper were walking

together and, as children do, began arguing

about whose grove had more trees. If the

argument had been about who had more

skipping stones, they could have simply

matched up stone-for-stone to discover who

had more. But this was impractical with the

trees. Niles had an insight:

We can represent each tree by a

drawing and match these to

determine who has more.

It went something like this.

Niles: 🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲

Pepper: 🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲

Not to be discouraged, Niles proposed they

compare, instead, the number of trees on each’s

entire side of the hill. However, there were

many more trees, so Pepper suggested they

simply draw the symbol > to represent each
tree, to save time. The results were no

more-satisfying to Niles.

Niles: >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
Pepper: >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
Niles pushed on: let’s include the neighboring

hill on each side. With so many more trees,

Pepper suggested a shorthand notation.

00 Getting started Numeral systems p. 2

We can compactly represent the

number of trees with two symbols©
and | used in combination.

She explained it to Niles by counting up:

• � =©
• > = |

• >> = |©
• >>> = ||

• >>>> = |©©
• >>>>> = |© |

• >>>>>> = ||©
• >>>>>>> = |||.

That is, each position could take on two

symbols, but the position of each symbol

denoted its “weight.” The far-right symbol

represented either a lack© or presence | of a

single tree. The next symbol to the left was the

“overflow” from the first symbol, and therefore

represented the number of pairs of trees. The

next symbol to the left was the next overflow,

representing pairs of pairs of trees.

What fun! They started counting and Pepper

immediately recognized a process

improvement:

If we use more symbols, we can

represent numbers even

more-compactly.

Pepper suggested a symbol for each digit of

their hands:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9. (1)

Now they could count on their fingers:

• � = 0

• > = 1

• >> = 2

• >>> = 3

• >>>> = 4

00 Getting started Numeral systems p. 1

• >>>>> = 5

• >>>>>> = 6

• >>>>>>> = 7

• >>>>>>>> = 8

• >>>>>>>>> = 9

• >>>>>>>>>> = 10.

That is, the second symbol now represented a

group of ten of the group to the right: the

rightmost, the number of trees; to its left, the

number of tens of trees; to its left, the number of

tens of tens (hundreds); to its left, the number of

tens of hundreds (thousands); etc.

Pepper still had more trees.

Positional numeral systems

Niles and Pepper, when they represented a tree

by >, created a very simple numeral system: a
way of representing quantities with symbols

called numerals. Once they recognized the

value of including multiple symbols (© and |, at

first) and endowed the position of each numeral

with significance, the system became a

positional numeral system. The number of

numerals used is called the system’s base: two

for the system with© and | and ten for that with

0–9. Base-2 systems are called binary, and

typically use the symbols 0 and 1 instead of©
and |. Base-10 systems are those with ten

numerals, the most common of which is called

the Hindu-Arabic numeral system and uses the

Arabic numerals 0-9.

Let’s consider the meaning of the Arabic

number 937. It means 9 hundreds, 3 tens, and 7

ones. A corresponding arithmetic

representation is

9× 102 + 3× 101 + 7× 100.

Similarly, the binary number 1011 has the

meaning 1 pair of pairs of pairs of ones, 0 pair of

00 Getting started Numeral systems p. 1

pairs of ones, 1 pair of ones, 1 one. Let’s convert

this binary representation to base-10:

1× 23 + 0× 22 + 1× 21 + 1× 20 = 11.

This highlights an important ambiguity: how

can we tell in which numeral system 11 is

written? We cannot, so we must either rely on

context, explicitly state, or add subscripts, as in

10112 = 1110. (2)

As a convention, we restrict interpretations of

numeral system-denoting subscripts to base-10.

Now we introduce nuanced versions of the

above numeral systems.

Decimal numeral system

Representing non-integer numbers is done with

a radix point, often “.”. The decimal numeral

system is the Hindu-Arabic system extended to

include non-integer numbers. Digits (decimal

numerals) increasingly right of the radix point

(called a decimal point in the decimal system)

represent tenths, hundredths, thousands, etc.

For instance, the decimal 2.73 would be

2× 100 + 7× 10−1 + 3× 10−2.

Hexadecimal numeral system

The hexadecimal numeral system extends the

decimal system with an additional six numerals,

borrowed from the beginning of the Latin

alphabet, to have a total of sixteen numerals:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9,A,B,C,D,E,F.

As we will see, this base-16 system provides a

convenient way to represent the contents of

computer memory.

It is conventional to begin hexadecimal numbers

with the prefix “0x” as in 0x9A78 0D38.

00 Getting started Numeral systems p. 2

Converting to and from decimal

Converting from a base-b number xb with digits

xnxn−1 · · · x0.x−1x−2 · · · x−m to decimal is

straightforward. Represent each numeral in

base-10, then use the formula

x10 =

n∑
i=−m

xib
i. (3)

For instance, if x2 = 1010.01,

x10 = 1× 23 + 0× 22 + 1× 21 + 0× 20 + 0× 2−1 + 1× 2−2

= 10.25.

Similarly, if x16 = B8.F,

x10 = 11× 161 + 8× 160 + 15× 16−1

= 184.9375.

Converting from decimal into a base-b numeral

system can be accomplished by the following

procedure.

• For the integer part of the number,

successively divide by the base b10,

represented in base-10. The remainder xb,

represented in base-b, of each step is the

base-b numeral in that position, from

right-to-left.

• For the decimal part of the number,

successively multiplying by the base b10.

The overflow x−b of 110 and above, at each

step, is the corresponding base-b numeral

in that position, from left-to-right.

Note that division and multiplication in the

conversion process are the usual base-10

versions. Technically, this process can be used

for converting between other numeral systems,

but it is not recommended due to our

unfamiliarity with division and multiplication

in these numeral systems.

00 Getting started Numeral systems p. 3

Example 00.4 -1 re: decimal to binary and hex

1. Convert 1410 to binary.

2. Convert 1410 to hexadecimal.

3. Convert 421.7310 to binary.

1. The following table shows the division.

b/divisor dividend/quotient remainder

14

2 7 0

2 3 1

2 1 1

2 0 1

Therefore, 1410 = 11102.

2. There is no need to divide because

1410 6 1510, the number of hex numerals.

Therefore, 1410 = E16.

3. For the integer part, the following table

shows the division.

b/divisor dividend/quotient remainder

421

2 210 1

2 105 0

2 52 1

2 26 0

2 13 0

2 6 1

2 3 0

2 1 1

2 0 1

Therefore, 42110 = 1101001012. Now for

the number right of the decimal point.

00 Getting started Numeral systems p. 1

b/factor factor/product overflow

0.73

2 .46 1

2 .92 0

2 .84 1

2 .68 1

2 .36 1

2 .72 0

2 .44 1

2 .88 0

2 .76 1

2 .52 1

2 .04 1

2 .08 0

2 .16 0

2 .32 0

2 .64 0

2 .28 1

2 .56 0

2 .12 1

2 .24 0

2 .48 0

2 .96 0

2 .92

This last row is identical to the

second row. Therefore, an infinite

loop will occur and 421.7310 =

110100101.1011101011100001010002. This

has profound implications: an exact

decimal value of 421.73 must be rounded

to be stored as binary. This introduces

rounding error even when it might

appear we know the number, exactly.

(Note that this is for floating point

representations of the decimal number,

which is common. Alternatively, five

integers could represent the decimal,

exactly.) See Lecture 01.1 for exactly this

(BCD).

00 Getting started Numeral systems p. 1

Converting between hex and binary

Binary numbers can be easily converted

hexadecimal and vice-versa. In Lecture 01.1

these conversions will be motivated. There are

24 = 16 unique four-numeral binary numbers

and 16 hex characters (which is no coincidence).

This allows us to write each grouping of four

binary numerals, called a nibble, as a single hex

character. It is often easiest to convert each

nibble to base-10, then (trivially) to hex. For

instance, 11012 is

1× 23 + 1× 22 + 0× 21 + 1× 20 = 1310.

The thirteenth hex numeral is D.

Similarly, one can convert a hex numeral to a

nibble by converting it first to decimal, then to

binary.

Signed binary numeral system

The signed binary numeral system, often called

the two’s complement numeral system, is used

to represent both positive and negative numbers

in binary form. When encountering a signed

binary number, first consider the leftmost

numeral: if it is 0, the number it represents is

positive or zero and the usual binary-to-decimal

conversion holds; if it is 1, the number it

represents is negative and must undergo the

two’s complement operation before the usual

binary-to-decimal conversion holds for its

negation.

The two’s complement operation can be

performed by flipping all the bits (0→ 1 and

1→ 0) and adding 1. For instance,

1101 0110
flip bits
−−−−→ 0010 1001

add one−−−−−→ 0010 1010.

This result can be converted to decimal in the

usual way: 0010 10102 = 4210. Therefore

1101 01102 = −4210.

00 Getting started Numeral systems p. 2

Of course, this means that an n-numeral in

two’s complement binary stores not (as would

unsigned binary)

0, 1, · · · 2n − 1

but

−2n−1 + 1,−2n−1 + 2, · · ·− 1, 0, 1 · · · 2n−1.

In both unsigned and (two’s complement)

signed binary, however, a total of 2n numbers

are represented by n binary numerals.

